ebook img

Modern flexible multi-body dynamics modeling methodology for flapping wing vehicles PDF

183 Pages·2018·3.499 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modern flexible multi-body dynamics modeling methodology for flapping wing vehicles

MODERN FLEXIBLE MULTI-BODY DYNAMICS MODELING METHODOLOGY FOR FLAPPING WING VEHICLES CORNELIA ALTENBUCHNER NASA Jet Propulsion Laboratory, Pasadena, CA, USA JAMES E. HUBBARD JR. University of Maryland, Way Hampton, VA, USA AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1800,SanDiego,CA92101 4495,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright(cid:1)2018ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyand thesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978 0 12 814136 6 ForinformationonallAcademicPresspublicationsvisitourwebsiteat https://www.elsevier.com/books and journals Publisher:MatthewDeans AcquisitionEditor:CarrieBolger EditorialProjectManager:CarrieBolger ProductionProjectManager:PaulPrasadChandramohan Designer:VictoriaPearson TypesetbyTNQBooksandJournals The authors would like to dedicate this work to their beloved families and the beauty, elegance, and grace of nature. PREFACE During the past decade the Nation has seen a surge of interest in small un mannedvehicles.Therehasbeenaparticularfocusonbio inspiredflightasa design paradigm for these platforms. The application of biomimetic princi plestothedevelopmentofsmallunmannedvehiclesspansthescaleofflight from insects to avian flyers. Biomimetics is defined as the imitation of the models,systems,andelementsofnatureforthepurposeofsolvingcomplex problems. Researchers, engineers, hobbyist, and aircraft designers all over the world now use nature to inspire and inform the design of modern un manned platforms. There is no doubt that animal flight has played such a role for centuries, but recent times have seen an increased interest. Avian inspired birdlike robotic designs have given rise to modern orni thopters whose aerodynamic and kinematic properties are marginally pre dictable and can produce nonlinear behaviors, which are time varying and involve multiple dynamic scales. The goal of the work presented herein is to develop canonical modeling techniques that can drive the engineering design of avian scale flapping wing ornithopters. Our approach to the modeling of such a complex vehicle is an energy based Lagrangian approach that includes the flexible multi body dynamics characteristic of this class of platforms. We are particularly interested in developing a model form and function suitable for feedback control. This will allow the work here to form the basis of algorithms, which can be implemented for improved agility, stability, lift, and thrust. In developing the approach presented here the authors worked closely withNASAengineers,dronepilots,academicscholars,anddesignerstoun derstandthesubtletiesoflowReynoldsnumberflightanditsassociateddy namics and aerodynamics. We are particularly grateful for the insights and assistance of Dr. Marty Wazak of the NASA Langley Research Center, Dr. Jared Grauer and Dr. Aimy Wissa formerly of the University of Mary landMorpheusLaboratory,andtheauthorshipandeditingassistanceofMs. Debbie McFee. Finally, we are also grateful for the support of the NASA Langley Research Center, theNationalInstitute of Aerospace,theUniver sity of Maryland, the Air Force Office of Scientific Research, and the Morpheus Laboratory. j ix LIST OF FIGURES Figure1.1 Flightcapabilityofflappingwingflyers. 2 Figure1.2 Missionapplicationsforunmannedairvehicles.(A)Civilianand (B)Military. 3 Figure1.3 (A)Naturalflyersdemonstrateglide,hover,dive,andperch.(B) Exampleofmaneuverabilityperformanceofnaturalflyers. 4 Figure1.4 Conceptvehicleexhibitadjustablestiffnessacrossthewing. 5 Figure1.5 Fuselagebodyaccelerationsinstate-of-the-artflappingwing robotic. 6 Figure1.6 Positionstateoffuselageofornithoptertestplatform. 7 Figure1.7 Liftandthrustgeneratingmechanismsofflappingwingflight(A) downstrokeand(B)upstroke. 9 Figure1.8 Wingtippathasindicatorordominantwingmotionshownon naturalflyers(A)albatrossinfast-forwardflightmode,(B)pigeon in slow flight mode, (C) horseshoe bat in fast-forward flight mode,and(D)horseshoebatinslowflightmode. 11 Figure1.9 Passivewingmorphing.(A)Bioinspiredtestplatformwing morphing though thrust flap region and (B) radical shape morphingwing. 16 Figure1.10 Activewingmorphingbioinspiredtestplatform.(A)Ornithopter platform. (B) Extended half wingspan versus retracted half wingspan. 16 Figure1.11 Firstornithoptervehicledesigns.(A)DaVincis1490and(B) Lilienthal1894. 17 Figure2.1 Ornithopterschematic:rigidmulti-bodysystem. 24 Figure2.2 Ornithopterschematic:linearelasticmulti-bodysystems. 24 Figure2.3 Ornithopterschematic:nonlinearelasticmulti-bodysystems. 25 Figure2.4 SimXpert:flexiblemulti-bodydynamicsmodelimplementation. 31 Figure2.5 SimXpert:Imageoffullyintegratedflexiblemulti-bodydynamics modelofornithopter. 32 Figure2.6 Ornithoptervehicledynamicsmodels.(A)Singlerigidbody,(B) rigidmulti-bodydynamics,and(C)flexiblemulti-bodydynamics model. 33 Figure2.7 Quasi-steadybladeelementmodel. 38 Figure2.8 CFDanalysisshowing(A)vorticitycontoursontheflexible deformed wing and (B) deformed grid at 50% span location duringupstrokeofthewingatstartofupstroke. 42 Figure2.9 Rigid-bodyornithopterfitinflighttestdataforaerodynamic modelstructuredetermination. 43 Figure2.10 Modelingmethodology:workflowstage1. 44 Figure2.11 Modelingmethodology:workflowstep2. 45 j xi xii ListofFigures Figure2.12 Modelingmethodology:workflowstep3. 45 Figure2.13 Modelingmethodology:workflowstage4. 45 Figure2.14 Modelingmethodology:workflowstage5. 46 Figure2.15 Modelingmethodology:workflowstage6. 46 Figure2.16 Modelingmethodology:workflowstage7. 46 Figure3.1 PrimarytestplatformMorpheusLabcustom-buildtest ornithopter(ML101). 51 Figure3.2 SecondarytestplatformmodifiedornithopterShawnKinkade (MSK004). 52 Figure3.3 Wingstructurebioinspiredornithoptertestplatform(ML101). 52 Figure3.4 Designfeaturewingspars(ML101);(A)leadingedgespar,(B) diagonalspar,(C)fingerspar(ML101). 52 Figure3.5 Schematicandnomenclaturestiffeningcarbonfiberspar configuration. 52 Figure3.6 Abat(Cynopterusbrachyotis)inflight. 53 Figure3.7 Lowerwingsurfaceofanaturalavianflyerphoto. 54 Figure3.8 Designfeaturetail(ML101). 54 Figure3.9 Designfeaturefuselage(ML101). 54 Figure3.10 Definitionflappingangleandupstrokeanddownstrokeon shoulderjoint/barlinkage(ML101). 56 Figure3.11 Upstrokeanddownstrokesequenceornithopter(ML101)scale. 56 Figure3.12 MSK004wingswithtrackingmarkers. 57 Figure3.13 MSK004andViconcamerasystemforthemeasurementof ornithopterwingandconfigurationmotions. 58 Figure3.14 Harmonaerodynamicmodelresultsandbenchtestresults measured integrated forces ML101 at 5 Hz flapping frequency, over a flapping cycle t/T, (A) vertical propulsive force (VPF), (B) horizontalpropulsiveforce(HPF),(C)normalizedFA. 59 Figure3.15 HarmonbenchtestresultsmeasuredintegratedforcesML101at 5 Hz flapping frequency, over a flapping cycle t/T, (A) vertical propulsive force (VPF), (B) horizontal propulsive force (HPF) versusnormalizedflappingangle(FA). 59 Figure3.16 Harmonaerodynamicmodelresultsandbenchtestresults measuredintegratedforcesML101at6.17Hzflappingfrequency, over a flapping cycle t/T, (A) vertical propulsive force (VPF), (B) horizontalpropulsiveforce(HPF),(C)normalizedflappingangle (FA). 60 Figure3.17 HarmonbenchtestresultsmeasuredintegratedforcesML101at 6.17Hzflappingfrequency,overaflappingcyclet/T,(A)vertical propulsive force (VPF), (B) horizontal propulsive force versus normalizedflappingangle(FA). 60 Figure3.18 ResultsandbenchtestresultsmeasuredintegratedforcesML101 versus flapping frequency, over a flapping cycle t/T, (A) mean absolute value vertical propulsive force (MAVPF), (B) mean horizontalpropulsiveforce(MHPF)versusflappingangle. 61 ListofFigures xiii Figure3.19 ViconVisionwingkinematicsequencedthreepositionstate trackingmarkersi¼1e110,(A)isometricview,(B)sideviewina fuselagefixedreferenceframeCB0. 62 Figure3.20 Viconcamerasystemforthemeasurementofornithopterwing andconfigurationmotions. 62 Figure3.21 AerodynamicforcesonthewingsdresultssystemIDmodelby Grauer.FA,flappingangle;HPF,horizontalpropulsiveforce;VPF, verticalpropulsiveforce. 63 Figure3.22 Asymmetricretroreflectivemarkersonthewing(seenaswhite dots)andwingtiplocation(markedinred). 64 Figure3.23 RetroreflectivemarkerpositiononthewingmeasuredwithVicon Visionsystemmarkersi¼1e53.Markersi¼1e5weremountedon thefuselage. 65 Figure3.24 ImagesmallUnmannedAerialSystemflighttestfacilitydVicon Visionsystemcameras. 65 Figure3.25 Testsetupschematicdtestchamberdimensions:700(W)(cid:2)350(D) (cid:2)350(H). 66 Figure3.26 Schematicornithopterandreferenceframesusedforthe processingoffree-flighttestdata. 67 Figure3.27 Datasetmarkerpositionduringfreeflightintheinertiareference frameCI0. 68 Figure3.28 Datasetmarkerpositioni¼1e53duringfreeflightintheinertia referenceframeCI0dviewZI0/ZI0. 68 Figure3.29 Datasetmarkerpositioni¼1e53duringfreeflightintheinertia referenceframeCI0dviewYI0/XI0. 69 Figure3.30 Positionstatesalltrackingmarkersonthewing/volumeshows testdatausedformodeldevelopmentd3.5flappingcycles. 69 Figure3.31 Singlepositionstateonornithoptershowsalltrackingmarkers i¼1to53inthefuselagefixedreferenceframeCB0. 70 Figure3.32 Verticalpropulsiveforcesactingonthefuselagecenterof massdobtained from experiment. VF, vertical force; HF, horizontalforce;FA,flappingangle. 70 Figure3.33 VacuumchamberatNASALangleyResearchCenter.(Left)Test platform mounted on six degrees of freedom load cell, (Right) vacuumchamber. 71 Figure3.34 ResultsofvacuumchambertestML101testplatformversus flapping frequency, (A) inertial horizontal propulsive force IHPF (B) inertial horizontal propulsive force (C) inertial pitching moment(IPM)versusmagnitude. 72 Figure4.1 Schematicfive-bodydynamicssystem. 80 Figure4.2 Schematicinertialandfuselagebodyfixedreferenceframes. 81 Figure4.3 Schematicwingfixedreferenceframes. 81 Figure4.4 Articulatedmulti-bodysystemrepresentationoftheornithopter. 82 xiv ListofFigures Figure4.5 Positionvectorofrigidmulti-bodymodelofornithopter. 89 Figure4.6 Positionvectorofflexiblemulti-bodymodelofornithopter. 90 Figure4.7 Schematicnotationdefinitionforgeneralizedcoordinatesofthe flexiblemulti-bodysystem. 92 Figure4.8 Positionvectorofflexiblemulti-bodymodelofornithopter,luff region[blue(darkergrayinprintversions)andred(lightgrayin print versions)], thrust flap region [orange (dark gray in print versions)andred(lightergrayinprintversions)]. 94 Figure4.9 Schematicfiniteelementmodelwingstructurecarbonfiberspars andwing. 103 Figure4.10 Thrustflapregionmeshnodes¼352,elements¼860. 105 Figure4.11 Thrustflapregionmodeshapescontourplot. 105 Figure4.12 Modelimageflexiblewingcomponentconnections. 106 Figure5.1 Bladeelementgridschematicaero-modelA. 111 Figure5.2 (A)Bladeelementgridschematicaero-modelB.(B)Blade element(BE)gridschematicaero-modelC. 111 Figure5.3 Variablesforcalculationofaerodynamicforces. 115 Figure5.4 ML101ornithopterconfigurationbladeelement(BE)selection. 119 Figure5.5 Bladeelement(BE)selectionthrustflapregionML101 ornithopterconfiguration. 119 Figure5.6 Aerodynamicloadsmodeldworkflow.FMBD,flexiblemulti-body dynamics. 120 Figure5.7 AerodynamicloadsmodeldworkflowAeroLoadInitialized ExperimentalCoupled.FMBD,flexiblemulti-bodydynamics. 122 Figure6.1 IsometricviewofthepositionstatespathofallViconmarkers overoneflappingcycleat6.06Hz. 129 Figure6.2 SideviewofthepositionstatespathofallViconmarkersoverone flappingcycleat6.06Hz. 130 Figure6.3 TopviewofthepositionstatespathofallViconmarkersoverone flappingcycleat6.06Hz. 130 Figure6.4 Topviewoftheornithoptermarkerspositionstate0deflection plane. 131 Figure6.5 TopviewoftheYcoordinateflexibilityinthewingfixed referenceplaneCW. 132 Figure6.6 TopviewoftheXcoordinateflexibilityinthewingfixed referenceplaneCW. 132 Figure6.7 Bioinspiredornithoptertestplatforminfreeflight:three experimental orientations during a wing beat: viewed in the fuselagebodyfixedreferenceframeCB0. 133 Figure6.8 WingfixedreferenceframeCW. 134 Figure6.9 Bioinspiredornithoptertestplatformwinginfreeflight:maximal elasticdeflectionsofthewinginthewingfixedreferenceframe during a wing beat; viewed in the fuselage fixed reference frameCB0. 135 ListofFigures xv Figure6.10 Bioinspiredornithoptertestplatformwinginfreeflight:maximal occurringelasticdeformationinthethrustflapregionofthewing inthewingfixedreferenceframeCW. 135 Figure6.11 BioinspiredornithoptertestplatformML101winginfreeflight: maximaloccurringelasticdeflectionsluffregioninthewingfixed referenceframeCW. 136 Figure6.12 Bioinspiredornithoptertestplatformwinginfreeflight:maximal occurring elastic deflections of the wing fixed reference frame duringawingbeat;viewedinthefuselagereferenceframeCB0. 136 Figure6.13 SchematiclocationthrustflapregionreferenceframeCBT. 137 Figure6.14 Bioinspiredornithoptertestplatformwinginfreeflight:X-axisof modeledthrustflapregionreferenceframein34positionstates viewedinthefuselagefixedreferenceframeCB0. 137 Figure6.15 Bioinspiredornithoptertestplatformwinginfree-flightmarker location: XBT-axis location on experimental test platform resulting in minimal deformation of a reference YBT/ZBT referenceplaneusinga1degreeoffreedomflappingmotion. 138 Figure6.16 Flappinganglezetaandbetalocationonshowninexperimental wing test data (maximal deformation of CW,0 reference plane, andXBTpositionstates). 139 Figure6.17 Modeledflappingangle(FA)timehistorybasedonflighttest dataversusFAinflighttestdataE-2. 139 Figure6.18 Experimentalthrustflapreferencemotionin34positionstatesin thefuselagefixedreferenceplaneCB0. 140 Figure6.19 Modeledthrustflapreferencemotionin34positionstatesinthe fuselage fixed reference plane CB0 versus wing at zero deformation(PS0). 141 Figure6.20 Experimentalelasticdeflectionsinthefuselagefixedreference frameCB0duringawingbeat. 142 Figure6.21 Experimentalelasticdeformationinthewingfixedreference frameCWduringawingbeat. 142 Figure6.22 ModelimageSimXpertdML101five-bodyflexiblemulti-body dynamicsmodel(fuselagereferenceframeCBishighlighted). 143 Figure6.23 Verificationbenchtestdmodel3AdscaleML101(6.17Hz). FMBD,flexiblemulti-bodydynamics;HFI,horizontalforceinertia; HPF,horizontalpropulsiveforce;VPF,verticalpropulsiveforce. 145 Figure6.24 Wingtiplocationdviewedatoneexperimentalpositionstate (mid-downstroke). 146 Figure6.25 Resultswingkinematicsmodel5experiment:flighttest:(left) backviewand(right)sideview. 147 Figure6.26 Propulsiveforcesactingonthefuselagecenterof massdobtained from experiment (E-2) and five-body vehicle dynamicsmodelusingaerodynamicmodelC. 148 Figure6.27 SimulatedinertiaforcesonfuselagecenterofmassCBinfree flight (inertial vertical propulsive force)dupstrokeedownstroke transition. 149 xvi ListofFigures Figure6.28 Resultsinertiaforces(E3)witherrorbarsversussimulationresults withSTD,(A)inertialhorizontalpropulsiveforce(IHPF),(B)inertial verticalpropulsiveforce(IVPF),(C)inertialpitchingmoment(IPM) versusmagnitude. 150 Figure6.29 Results:bodyforcemagnitudesystemIDmodel(MSK004E1-I)d bodyforcemagnitudedaero-modelC. 152

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.