ebook img

Modern Control: State-Space Analysis and Design Methods PDF

193 Pages·45.106 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modern Control: State-Space Analysis and Design Methods

Modern Control State-Space Analysis and Design Methods Arie Nakhmani, Ph.D. University ofA labama at Birmingham New York Chkago San Francisco Athens London Madrid Mexico City Milan New Delhi Singapore Sydney Toronto Copyright© 2020 by McGraw Hill. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. ISBN: 978-1-26-045925-8 MHID: 1-26-045925-X The material in this eBook also appears in the print version of this title: ISBN: 978-1-26-045924-1, MHID: 1-26-045924-1. eBook conversion by codeMantra Version 1.0 All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe ment of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com. Information contained in this work has been obtained by McGraw Hill from sources believed to be reliable. However, neither McGraw Hill nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw Hill and its authors are supplying information but are not attempting to render engineering or other professional services. Ifs uch services are required, the assistance of an appropriate professional should be sought. TERMSOFUSE This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education's prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms. THE WORK IS PROVIDED "AS IS." McGRAW-IIlLL EDUCATION AND ITS LICENSORS MAKE NO GUARANfEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, IN CLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR F1TNESS FORA PARTICU LAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility ofs uch damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise. To my parents, who have always been there. About the Author Dr. Arie Nakhmani (M.Sc. in Robust Control, Ph.D. in Computer Vision) is Associate Professor of Electrical and Computer Engineering, Associate Scientist in the Comprehensive Cancer Center, and Director of the ANRY Lab at the University of Alabama at Birmingham. He is the author of over 50 peer-reviewed research articles and book chapters on robust control, machine learning, and signal and image analysis. Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 Introduction to Control Systems • • . . . . . . . • • . . . . . . . • • . . . . . . . • • . 1 Control System Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Plant Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Conversion from ODE to Transfer Function . . . . . . . . . . . . . . . . . . . . . 4 Conversion from Transfer Function to ODE . . . . . . . . . . . . . . . . . . . . . 6 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 State-Space System's Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Why Should We Learn about State Space? . . . . . . . . . . . . . . . . . . . . . . . 11 Conversion from ODE to State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 State-Space Representations . . . • . . . . . . . . • . . . . . . . . • . . . . . . . . • . . . 17 Continuous-Time Single-Input Single-Output (SISO) State-Space Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Transfer Function of Continuous-Time SISO State-Space System . . . . 18 Discrete-Time SISO State-Space Systems . . . . . . . . . . . . . . . . . . . . . . . . 20 Transfer Function of Discrete-Time SISO State-Space System . . . . . . . 20 Multiple-Input Multiple-Output (MIMO) State-Space Systems 21 Stability of Continuous-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Stability of Discrete-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Block Diagrams of State-Space Systems . . . . . . . . . . . . . . . . . . . . . . . . . 22 Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Minimal Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 State Similarity Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Canonical Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Pole Placement via State Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 State Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Tracking the Input Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Integrator in the Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 y VI Contents 4 State Estimation (Observers) ...•........•........•........•... 43 Observer Structure ........................................ .. . 43 Observer Design ............................................ . 45 Integrated System: State Feedback + Observer .................. . 46 Solved Problems .......................................... .. . 50 5 Nonminimal Canonical Forms 57 Canonical Noncontrollable Form 57 Canonical Nonobservable Form ............................... . 58 Stabilizability and Detectability ............................... . 59 How to Check Controllability and Observability of Eigenvalues ... . 59 Solved Problems ............................................ . 60 6 Linearization ••.......••.......••.......••.......••.......••. 69 Equilibrium Points .......................................... . 69 Solved Problems ............................................ . 71 7 Lyapunov Stability ......................................... . 79 Internally Stable Systems .................................... . 79 Direct Lyapunov Method (Second Method) ..................... . 80 Lyapunov Stability for Continuous-Time LTI Systems ............ . 81 Lyapunov Stability for Discrete-Time LT! Systems ............... . 82 Solved Problems ............................................ . 83 8 Linear Quadratic Regulators ................................. . 87 Cost Function .............................................. . 87 Continuous-Time Optimal Controller .......................... . 88 Cross-Product Extension of Cost Function ...................... . 88 Prescribed Degree of Stability ................................. . 89 Discrete-Time Optimal Controller ............................. . 89 Solved Problems ............................................ . 90 9 Symmetric Root Locus 95 Continuous-TimeSRL 95 Discrete-Time SRL .......................................... . 97 How to Sketch Continuous-Time SRL .......................... . 97 How to Sketch Discrete-Time SRL ............................. . 98 Solved Problems ............................................ . 98 10 Kalman Filter .............................................. . 105 The Idea of Optimal Observer (Estimator) in Presence of Noise 105 Optimal Observer (Kalman Filter) ........................... .. . 108 Recursive Solution .......................................... . 110 Alternative Kalman Filter Formulation for Unknown Initial Conditions ....................................... .. . 111 Solved Problems ............................................ . 112 Co I I e I ts VII 11 Linear Quadratic Gaussian Control . . . . . . • . . . . . . . . • . . . . . . . . • . . . 121 Kalman-Bucy Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 What Is LQG Control? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Optimal Cost Function for Stationary LQG . . . . . . . . . . . . . . . . . . . . . . 123 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 12 Project Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 General Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Project 1: Magnetic Levitation System Control . . . . . . . . . . . . . . . . . . . 129 Project 2: Double Inverted Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Project 3: Bridge Crane Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 A Math. Compendium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 A Notation and Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 B Trigonometric Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 C Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 D Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 E Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 F Signals and Systems . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 153 G Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 H Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 References . • . . . . . . . . • . . . . . . . . • . . . . . . . . • . . . . . . . . • . . . . . . . . • . . . 173 Index 175 This page intentionally left blank

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.