ebook img

Modern computer algebra PDF

812 Pages·2013·21.778 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modern computer algebra

Modern Computer Algebra Computeralgebrasystemsarenowubiquitousinallareasofscienceandengineer- ing. This highly successful textbook, widely regarded as the “bible of computer algebra”,givesathoroughintroductiontothealgorithmicbasisofthemathematical engineincomputeralgebrasystems.Designedtoaccompanyone-ortwo-semester courses for advanced undergraduate or graduate students in computer science or mathematics, its comprehensiveness and reliability has also made it an essential referenceforprofessionalsinthearea. Special features include: detailed study of algorithms including time analysis; implementation reports on several topics; complete proofs of the mathematical underpinnings; and a wide variety of applications (among others, in chemistry, codingtheory,cryptography,computationallogic,andthedesignofcalendarsand musicalscales).Agreatdealofhistoricalinformationandillustrationenlivensthe text. Inthisthirdedition,errorshavebeencorrectedandmuchoftheFastEuclidean Algorithmchapterhasbeenrenovated. JoachimvonzurGathenhasaPhDfromUniversitätZürichandhastaughtatthe UniversityofTorontoandtheUniversityofPaderborn.Heiscurrentlyaprofessor at the Bonn–Aachen International Center for Information Technology (B-IT) and theDepartmentofComputerScienceatUniversitätBonn. Jürgen Gerhard has a PhD from Universität Paderborn. He is now Director of Research at Maplesoft in Canada, where he leads research collaborations with partners in Canada, France, Russia, Germany, the USA, and the UK, as well as anumberofconsultingprojectsforglobalplayersintheautomotiveindustry. Modern Computer Algebra Third Edition JOACHIM VON ZUR GATHEN Bonn–AachenInternationalCenter forInformationTechnology(B-IT) JÜRGEN GERHARD Maplesoft,Waterloo CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,SãoPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107039032 Firstandsecondeditions(cid:2)c CambridgeUniversityPress1999,2003 Thirdedition(cid:2)c JoachimvonzurGathenandJürgenGerhard2013 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished1999 Secondedition2003 Thirdedition2013. PrintedandboundbyiCPIiGroupi(UK)iLtd,iCroydoniCR0i4i4YY AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-03903-2Hardback Additionalresourcesforthispublicationathttp://cosec.bit.uni-bonn.de/science/mca CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. ToDorothea,Rafaela,Désirée Forendlesspatience ToMercedesCappuccino Contents Introduction 1 1 Cyclohexane,cryptography,codes,andcomputeralgebra 11 1.1 Cyclohexaneconformations . . . . . . . . . . . . . . . . . . . . 11 1.2 TheRSAcryptosystem . . . . . . . . . . . . . . . . . . . . . . 16 1.3 Distributeddatastructures . . . . . . . . . . . . . . . . . . . . . 18 1.4 Computeralgebrasystems . . . . . . . . . . . . . . . . . . . . . 19 I Euclid 23 2 Fundamentalalgorithms 29 2.1 Representationandadditionofnumbers . . . . . . . . . . . . . . 29 2.2 Representationandadditionofpolynomials . . . . . . . . . . . . 32 2.3 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4 Divisionwithremainder . . . . . . . . . . . . . . . . . . . . . . 37 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 TheEuclideanAlgorithm 45 3.1 Euclideandomains . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 TheExtendedEuclideanAlgorithm . . . . . . . . . . . . . . . . 47 3.3 CostanalysisforZandF[x] . . . . . . . . . . . . . . . . . . . . 51 3.4 (Non-)Uniquenessofthegcd . . . . . . . . . . . . . . . . . . . 55 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4 ApplicationsoftheEuclideanAlgorithm 69 4.1 Modulararithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2 ModularinversesviaEuclid . . . . . . . . . . . . . . . . . . . . 73 4.3 Repeatedsquaring . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4 ModularinversesviaFermat . . . . . . . . . . . . . . . . . . . . 76 vii viii Contents 4.5 LinearDiophantineequations . . . . . . . . . . . . . . . . . . . 77 4.6 ContinuedfractionsandDiophantineapproximation . . . . . . . 79 4.7 Calendars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.8 Musicalscales . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5 Modularalgorithmsandinterpolation 97 5.1 Changeofrepresentation . . . . . . . . . . . . . . . . . . . . . 100 5.2 Evaluationandinterpolation . . . . . . . . . . . . . . . . . . . . 101 5.3 Application: Secretsharing . . . . . . . . . . . . . . . . . . . . 103 5.4 TheChineseRemainderAlgorithm . . . . . . . . . . . . . . . . 104 5.5 Modulardeterminantcomputation . . . . . . . . . . . . . . . . . 109 5.6 Hermiteinterpolation . . . . . . . . . . . . . . . . . . . . . . . 113 5.7 Rationalfunctionreconstruction . . . . . . . . . . . . . . . . . . 115 5.8 Cauchyinterpolation . . . . . . . . . . . . . . . . . . . . . . . . 118 5.9 Padéapproximation . . . . . . . . . . . . . . . . . . . . . . . . 121 5.10 Rationalnumberreconstruction . . . . . . . . . . . . . . . . . . 124 5.11 Partialfractiondecomposition . . . . . . . . . . . . . . . . . . . 128 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6 Theresultantandgcdcomputation 141 6.1 CoefficientgrowthintheEuclideanAlgorithm . . . . . . . . . . 141 6.2 Gauß’lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.3 Theresultant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.4 Modulargcdalgorithms . . . . . . . . . . . . . . . . . . . . . . 158 6.5 ModulargcdalgorithminF[x,y] . . . . . . . . . . . . . . . . . 161 6.6 Mignotte’sfactorboundandamodulargcdalgorithminZ[x] . . 164 6.7 Smallprimesmodulargcdalgorithms . . . . . . . . . . . . . . . 168 6.8 Application: intersectingplanecurves . . . . . . . . . . . . . . . 171 6.9 Nonzeropreservationandthegcdofseveralpolynomials. . . . . 176 6.10 Subresultants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6.11 ModularExtendedEuclideanAlgorithms . . . . . . . . . . . . . 183 6.12 PseudodivisionandprimitiveEuclideanAlgorithms . . . . . . . 190 6.13 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 7 Application: DecodingBCHcodes 209 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.