ebook img

Modern classical physics: optics, fluids, plasmas, elasticity, relativity, and statistical physics PDF

1552 Pages·2013·25.03 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modern classical physics: optics, fluids, plasmas, elasticity, relativity, and statistical physics

Modern Classical Physics Modern Classical Physics Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics KIPS.THORNE and ROGERD.BLANDFORD PRINCETONUNIVERSITYPRESS PrincetonandOxford Copyright©2017byPrincetonUniversityPress PublishedbyPrincetonUniversityPress,41WilliamStreet,Princeton,NewJersey08540 IntheUnitedKingdom:PrincetonUniversityPress,6OxfordStreet,Woodstock,OxfordshireOX201TR press.princeton.edu AllRightsReserved LibraryofCongressCataloging-in-PublicationData Names:Thorne,KipS.,author.|Blandford,RogerD.,author. Title:Modernclassicalphysics:optics,fluids,plasmas,elasticity, relativity,andstatisticalphysics/KipS.ThorneandRogerD.Blandford. Description:Princeton:PrincetonUniversityPress,2017.|Includes bibliographicalreferencesandindex. Identifiers:LCCN2014028150|ISBN9780691159027(hardcover:alk.paper)| ISBN0691159025(hardcover:alk.paper) Subjects:LCSH:Physics. Classification:LCCQC21.3.T462015|DDC530—dc23 LCrecordavailableathttps://lccn.loc.gov/2014028150 BritishLibraryCataloging-in-PublicationDataisavailable ThisbookhasbeencomposedinMinionPro,Whitney,andRatioModernusingZzTEXbyWindfall Software,Carlisle,Massachusetts Printedonacid-freepaper. PrintedinChina 10 9 8 7 6 5 4 3 2 1 To Carolee and Liz CONTENTS ListofBoxes xxvii Preface xxxi Acknowledgments xxxix PARTI FOUNDATIONS 1 1 NewtonianPhysics:GeometricViewpoint 5 1.1 Introduction 5 1.1.1 TheGeometricViewpointontheLawsofPhysics 5 1.1.2 PurposesofThisChapter 7 1.1.3 OverviewofThisChapter 7 1.2 FoundationalConcepts 8 1.3 TensorAlgebrawithoutaCoordinateSystem 10 1.4 ParticleKineticsandLorentzForceinGeometricLanguage 13 1.5 ComponentRepresentationofTensorAlgebra 16 1.5.1 Slot-NamingIndexNotation 17 1.5.2 ParticleKineticsinIndexNotation 19 1.6 OrthogonalTransformationsofBases 20 1.7 DifferentiationofScalars,Vectors,andTensors;CrossProductandCurl 22 1.8 Volumes,Integration,andIntegralConservationLaws 26 1.8.1 Gauss’sandStokes’Theorems 27 1.9 TheStressTensorandMomentumConservation 29 1.9.1 Examples:ElectromagneticFieldandPerfectFluid 30 1.9.2 ConservationofMomentum 31 1.10 GeometrizedUnitsandRelativisticParticlesforNewtonianReaders 33 1.10.1 GeometrizedUnits 33 1.10.2 EnergyandMomentumofaMovingParticle 34 BibliographicNote 35 TrackTwo;seepagexxxiv Nonrelativistic(Newtonian)kinetictheory;seepage96 Relativistictheory;seepage96 vii 2 SpecialRelativity:GeometricViewpoint 37 2.1 Overview 37 2.2 FoundationalConcepts 38 2.2.1 InertialFrames,InertialCoordinates,Events,Vectors,andSpacetimeDiagrams 38 2.2.2 ThePrincipleofRelativityandConstancyofLightSpeed 42 2.2.3 TheIntervalandItsInvariance 45 2.3 TensorAlgebrawithoutaCoordinateSystem 48 2.4 ParticleKineticsandLorentzForcewithoutaReferenceFrame 49 2.4.1 RelativisticParticleKinetics:WorldLines,4-Velocity,4-Momentumand ItsConservation,4-Force 49 2.4.2 GeometricDerivationoftheLorentzForceLaw 52 2.5 ComponentRepresentationofTensorAlgebra 54 2.5.1 LorentzCoordinates 54 2.5.2 IndexGymnastics 54 2.5.3 Slot-NamingNotation 56 2.6 ParticleKineticsinIndexNotationandinaLorentzFrame 57 2.7 LorentzTransformations 63 2.8 SpacetimeDiagramsforBoosts 65 2.9 TimeTravel 67 2.9.1 MeasurementofTime;TwinsParadox 67 2.9.2 Wormholes 68 2.9.3 WormholeasTimeMachine 69 2.10 DirectionalDerivatives,Gradients,andtheLevi-CivitaTensor 70 2.11 NatureofElectricandMagneticFields;Maxwell’sEquations 71 2.12 Volumes,Integration,andConservationLaws 75 2.12.1 SpacetimeVolumesandIntegration 75 2.12.2 ConservationofChargeinSpacetime 78 2.12.3 ConservationofParticles,BaryonNumber,andRestMass 79 2.13 Stress-EnergyTensorandConservationof4-Momentum 82 2.13.1 Stress-EnergyTensor 82 2.13.2 4-MomentumConservation 84 2.13.3 Stress-EnergyTensorsforPerfectFluidsandElectromagneticFields 85 BibliographicNote 88 PARTII STATISTICALPHYSICS 91 3 KineticTheory 95 3.1 Overview 95 3.2 PhaseSpaceandDistributionFunction 97 3.2.1 NewtonianNumberDensityinPhaseSpace,N 97 3.2.2 RelativisticNumberDensityinPhaseSpace,N 99 viii Contents 3.2.3 DistributionFunctionf(x,v,t)forParticlesinaPlasma 105 3.2.4 DistributionFunctionI /ν3forPhotons 106 ν 3.2.5 MeanOccupationNumberη 108 3.3 Thermal-EquilibriumDistributionFunctions 111 3.4 MacroscopicPropertiesofMatterasIntegralsoverMomentumSpace 117 3.4.1 ParticleDensityn,FluxS,andStressTensorT 117 (cid:2) 3.4.2 RelativisticNumber-Flux4-VectorSandStress-EnergyTensorTTT 118 3.5 IsotropicDistributionFunctionsandEquationsofState 120 3.5.1 NewtonianDensity,Pressure,EnergyDensity,andEquationofState 120 3.5.2 EquationsofStateforaNonrelativisticHydrogenGas 122 3.5.3 RelativisticDensity,Pressure,EnergyDensity,andEquationofState 125 3.5.4 EquationofStateforaRelativisticDegenerateHydrogenGas 126 3.5.5 EquationofStateforRadiation 128 3.6 EvolutionoftheDistributionFunction:Liouville’sTheorem,theCollisionless BoltzmannEquation,andtheBoltzmannTransportEquation 132 3.7 TransportCoefficients 139 3.7.1 DiffusiveHeatConductioninsideaStar 142 3.7.2 Order-of-MagnitudeAnalysis 143 3.7.3 AnalysisUsingtheBoltzmannTransportEquation 144 BibliographicNote 153 4 StatisticalMechanics 155 4.1 Overview 155 4.2 Systems,Ensembles,andDistributionFunctions 157 4.2.1 Systems 157 4.2.2 Ensembles 160 4.2.3 DistributionFunction 161 4.3 Liouville’sTheoremandtheEvolutionoftheDistributionFunction 166 4.4 StatisticalEquilibrium 168 4.4.1 CanonicalEnsembleandDistribution 169 4.4.2 GeneralEquilibriumEnsembleandDistribution;GibbsEnsemble; GrandCanonicalEnsemble 172 4.4.3 Fermi-DiracandBose-EinsteinDistributions 174 4.4.4 EquipartitionTheoremforQuadratic,ClassicalDegreesofFreedom 177 4.5 TheMicrocanonicalEnsemble 178 4.6 TheErgodicHypothesis 180 4.7 EntropyandEvolutiontowardStatisticalEquilibrium 181 4.7.1 EntropyandtheSecondLawofThermodynamics 181 4.7.2 WhatCausestheEntropytoIncrease? 183 4.8 EntropyperParticle 191 4.9 Bose-EinsteinCondensate 193 Contents ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.