VAYENAS modern m aspects o d e r n a s p of e c t s o f e l e electrochemistry c t r o c h e m 41 no. i s t r y 41 no. Edited by C.G. VAYENAS MODERN ASPECTS OF ELECTROCHEMISTRY No. 41 Modern Aspects of Electrochemistry Topics in Number 40 include: • Polymer Electrolyte Membrane (PEM) fuel cell bipolar plates, discussion of the difficulties associated with confronting bipolar plate development • The use of graphs in electrochemical reaction networks with focus on analysis of variance (ANOVA) observation methods • Nano-materials in lithium ion battery electrode design, presentation of a plasma-assisted method to create a carbon replica of an alumina template membrane • Direct methanol fuel cells, extensive discussion and review of various types of fuel cells and advances made in the performance of DMFC’s since their inception • Direct simulation of polymer electrolyte fuel cell catalyst layers, presentation of a systematic development of the direct numerical simulation Topics in Number 39 include: • Approaches to Solute-Solvent Interactions including two approaches to computational determination of solution properties, and several other procedures that establish correlations between properties of interest and certain features of the solute and/or solvent molecules • Porous Silicon, including its morphology and formation mechanisms, as well as anodic reaction kinetics • Modeling Electrochemical Phenomena via Markov Chains and Processes gives an introduction to Markov Theory, then discusses applications to electrochemistry, including modeling electrode surface processes, electrolyzers, the repair of failed cells, analysis of switching-circuit operations, and other electrochemical systems • Fractal Approach to Rough Surfaces and Interfaces in Electrochemistry, from a review of Fractal Geometry to the application of Fractal Geometry to the classification of surfaces and Electrochemistry • Phenomenology and Mechanisms of Electrochemical Treatment (ECT) of Tumors, starting from fundamentals and proceeding to electrochemical treatment of tumors in animals and then in humans MODERN ASPECTS OF ELECTROCHEMISTRY No. 41 Edited by CONSTANTINOS VAYENAS University of Patras Patras, Greece and MARIA E. GAMBOA-ALDECO Managin g Editor Superior, Colorado, USA Constantinos Vayenas Maria E. Gamboa-Aldeco Department of Chemical Engineering 1107 Raymer Lane University of Patras Superior, CO 80027 Patras 265 00 USA Greece [email protected] [email protected] Department of Chemical Engineering University of South Carolina Columbia, SC 29208 USA [email protected] L ibrary of Congress Control Number: 2006938037 IS BN-10: 0-387-46107-8 e-ISBN-10: 0-387-46108-6 ISBN-13: 978-0-387-46107-6 e-ISBN-13: 978-0-387-46108-3 Printed on acid-free paper. © 2007 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. 9 8 7 6 5 4 3 2 1 springer.com Contents Chapter 1 SOLID STATE ELECTROCHEMISTRY II: DEVICES AND TECHNIQUES Joachim Maier I. Introduction........................................................................... 1 II. Electrochemical Devices and Applications.......................... 6 1. Electrochemical (Composition) Sensors........................ 7 (i) Bulk Conductivity Sensor (Mode 1)....................... 10 (ii) Surface Conductivity Sensors (Mode 2)................. 11 (iii) Galvanic Sensors (Mode 3).................................... 14 (iv) Extension to Acid–Base Active Gases................... 18 2. Electrochemical (Composition) Actors.......................... 23 3. Electrochemical Energy Storage and Conversion Devices................................................. 29 (i) Fuel Cells................................................................ 30 (ii) Batteries.................................................................. 58 (iii) Other Storage Devices: Supercapacitors and Photobatteries........................ 68 III. Electrochemical Techniques................................................. 74 1. Determination of Bulk Parameters................................. 76 2. Determination of Boundary Parameters......................... 77 3. Electrochemical Polarization—The Effect of Selectively Blocking Electrodes................................ 81 (i) Heuristic Considerations......................................... 81 (ii) The Steady-State Response: The Evaluation of Partial Conductivities......................................... 88 (iii) The Instationary Behavior: The Evaluation of the Chemical Diffusion Coefficient................... 94 4. Chemically Imposed Gradients...................................... 97 (i) Chemical Polarization and Concentration Cell Experiment...................................................... 97 (ii) Oxygen Permeation................................................. 100 (iii) Zero-Driving Force Method................................... 100 (iv) Chemical Relaxation............................................... 101 5. Coulometric Titration..................................................... 104 6. Thermodynamic Data from Electrochemical Cells Involving Solid Electrolytes........................................... 106 vii viii Contents 7. Modifications in the Evaluation of Electrochemical Measurements Due to Internal Defect Reactions........... 109 8. Dynamic Interactions...................................................... 112 9. Transport in Inhomogeneous, Heterogeneous, and Composite Systems................................................. 114 10. Related Techniques......................................................... 120 IV. Conclusions........................................................................... 120 Acknowledgment.................................................................. 121 A Appendix 1—Terminal Potential Difference................. 121 B Appendix 2—Electrochemical Polarization................... 122 C Appendix 3—Chemical Polarization and Relaxation.... 124 D Appendix 4—Electrolytic Domain Boundaries............. 125 E Appendix 5—Coulometric Titration.............................. 126 F Appendix 6—Point Electrode Resistance...................... 127 Symbols................................................................................ 127 References............................................................................ 128 Chapter 2 SYNTHESIS AND CHARACTERIZATION OF NANOPOROUS CARBON AND ITS ELECTROCHEMICAL APPLICATION TO ELECTRODE MATERIAL FOR SUPERCAPACITORS Gyoung-Ja Lee and Su-Il Pyun I. Introduction........................................................................... 139 II. Preparation of Porous Carbons............................................. 141 1. Activation Method.......................................................... 141 2. Templating Method........................................................ 143 III. Structural Characteristics of Porous Carbons....................... 145 1. Types of Adsorption Isotherms and Hysteresis Loops...................................................... 145 2. Determinations of Surface Area and Pore Size Distribution.............................................. 150 IV. Fractal Characteristics of Porous Carbons............................ 154 1. Molecular Probe Method Using Gas Adsorption........... 155 2. Image Analysis Method.................................................. 162 V. Electrochemical Characteristics of Carbon-Based Porous Electrodes For Supercapacitor: The Uses of AC-Impedance Spectroscopy, Current Transient and Cyclic Voltammetry.............................................................. 166 1. General Theory of Electrochemical Behavior of Porous Electrodes....................................................... 166 Contents ix 2. Effect of Geometric Heterogeneity on Ion Penetration into the Pores during Double-Layer Charging/Discharging..................................................... 169 3. Effect of Surface Inhomogeneity on Ion Penetration into the Pores during Double-Layer Charging/Discharging..................................................... 175 VI. Concluding Remark.............................................................. 183 Acknowledgements.............................................................. 185 Notation................................................................................ 186 References............................................................................ 190 Chapter 3 THE USE OF GRAPHS IN THE STUDY OF ELECTROCHEMICAL REACTION NETWORKS Joseph D. Fehribach I. Introduction........................................................................... 197 II. Reaction Species Graphs...................................................... 200 1. Kinetic Graphs................................................................ 201 2. Bipartite Graphs.............................................................. 203 III. Reaction Mechanism Graphs................................................ 205 1. MCFC Cathodic Reactions............................................. 206 (i) Peroxide Mechanism.............................................. 206 (ii) Superoxide-Peroxide Mechanism........................... 208 2. HER Reactions............................................................... 209 IV. Reaction Route Graphs......................................................... 211 1. MCFC Cathodic Reactions............................................. 212 2. HER Reactions............................................................... 213 V. Discussion: Other Reaction Graphs...................................... 217 Acknowledgments................................................................ 218 References............................................................................ 218 Chapter 4 APPROXIMATE ANALYTICAL SOLUTIONS FOR MODELS OF THREE-DIMENSIONAL ELECTRODES BY ADOMIAN’S DECOMPOSITION METHOD Keith Scott and Yan-Ping Sun I. Introduction........................................................................... 222 II. Adomian’s Decomposition Method (ADM)......................... 223