Mon.Not.R.Astron.Soc.000,000–000(2011) Printed11January2012 (MNLATEXstylefilev2.2) Moderate Galaxy-Galaxy Lensing Shude Mao1,2(cid:63), Jian Wang3, Martin C. Smith1,4 1NationalAstronomicalObservatories,ChineseAcademyofSciences,20ADatunRoad,Beijing100012,China 2JodrellBankCentreforAstrophysics,theUniversityofManchester,Manchester,M139PL,UK 3DepartmentofPhysicsandTsinghuaCenterforAstrophysics,TsinghuaUniversity,Beijing100084,China 4TheKavliInstituteforAstronomyandAstrophysics,PekingUniversity,YiHeYuanLu5,Beijing100871,China 2 1 0 2 Accepted........Received.......;inoriginalform...... n a ABSTRACT J We study moderate gravitational lensing where a background galaxy is magnified substan- 0 tially,butnotmultiplyimaged,byaninterveninggalaxy.Wefocusonthecasewhereboththe 1 lens and source are elliptical galaxies. The signatures of moderate lensing include isophotal ] distortionsandsystematicshiftsinthefundamentalplaneandKormendyrelation,whichcan O potentiallybeusedtostatisticallydeterminethegalaxymassprofiles.Theseeffectsareillus- C tratedusingMonteCarlosimulationsofgalaxypairswheretheforegroundgalaxyismodelled asasingularisothermalspheremodelandobservationalparametersappropriatefortheLarge . h SynopticSurveyTelescope(LSST).Therangeinradiusprobedbymoderatelensingwillbe p largerthanthatbystronglensing,andisintheinterestingregimewherethedensityslopemay - bechanging. o r t Keywords: Gravitationallensing-galaxies:ellipticalandlenticular-darkmatter-Galaxies: s structure,Galaxies:formation a [ 1 v 0 1 INTRODUCTION an elliptical galaxy is lensed by a foreground elliptical galaxy. 6 Many cases are expected to be found in future surveys (e.g. by Gravitational lensing is usually divided into microlensing, strong 9 PANSTARRS1 andLSST2)wherehundredsofmillionsofgalax- lensing,andweakgravitationallensing.Microlensingreferstothe 1 ies will be imaged. Many pairs of galaxies that are close to each 1. temporalchangeofmagnificationofabackgroundsourcelensedby otherbutatdifferentredshiftswillbediscovered.Mostofthesewill an intervening object (usually stars). Strong lensing occurs when 0 notbemultiply-imaged.Atverylargeseparations,aweak-lensing multiple images or strong distortions (e.g. giant arcs) of a back- 2 galaxy-galaxy analysis will be appropriate; at very small separa- groundsourcearecausedbyaninterveninggalaxyorcluster.For 1 tions,multipleimagesmayform.InthispaperwecarryoutMonte weaklensingthedistortionofabackgroundsourcebythelensing : Carlosimulationsofmoderategalaxy-galaxylensingatintermedi- v objectismuchmoresubtle.Forexample,acircularsourcewillbe ateseparationstoillustratethesignatures,andwhatwecanlearn i lensed into an ellipse with ellipticity of a few percent. Such sub- X fromthese. tledeviationshavetobeinferredstatisticallybyaveragingovera r Thepaperisorganisedasfollows.InSection2,wedescribe a large number of background galaxies. All these fields in gravita- the simple singular isothermal sphere model we use. In Section tionallensinghavebeenextensivelystudied,withdiverseapplica- 3, we present the main results, including the predictions for the tionsrangingfromcosmologytothedetectionofextrasolarplanets optical depth, isophotal distortions, and systematic offsets in the (forareviewonthesetopics,seeSchneideretal.2006andrefer- fundamentalplaneandKormendyrelation.Wepresentasummary encestherein). anddiscussioninSection4.Throughoutthispaper,weadoptaflat Inthiswork,weshallexploretheintermediateregimewhich wetermas“moderategravitationallensing”.Inthiscase,themag- ΛCDMcosmologymodelwithΩm,0 = 0.27andΩΛ,0 = 0.73for thematterandcosmologicalconstant,andtheHubbleconstantis nification is still significant, but no multiple images occur. In the writtenasH = 100hkms−1 Mpc−1 withh = 0.705(Komatsuet contextofclustersofgalaxies,Williams&Lewis(1998)andFuta- 0 al.2009). maseetal.(1998)haveconsideredaclassofgravitationallylensed, highly magnified, yet morphologically regular images (originally motivatedbyobservationsoftheobjectcB58,Yeeetal.1996;Seitz etal.1998).Morerecently,Sonnenfeldetal.(2011)discussedthe magnification effect in with a focus on how to remove the mass- sheet degeneracy. In this paper, we shall explore the case where 1 http://pan-starrs.ifa.hawaii.edu/public/home.html (cid:63) [email protected];[email protected] 2 http://www.lsst.org (cid:13)c 2011RAS 2 Mao,WangandSmith 2 THELENSANDSOURCEMODEL galaxiesatredshift2.Belowthistruncationredshift,weassumea constantcomovingnumberdensityoflenses,implyingthephysi- Inthissection,wedescribethelensmassmodel,thesourcepop- calvolumedensityevolvesasΦ (z ,σ)=Φ (σ)(1+z)3,where ulationandthesurfacebrightnessmodelsofforegroundandback- G,L d G,L thefactor(1+z)3accountsfortheexpansionoftheuniverse.Since groundgalaxieswhichwewilluseforMonteCarlosimulationsof mostoftheforeground(lensing)galaxiesarebelowredshift1,this galaxypaircatalogues. assumptionwillnothavemucheffectsonourresults. 2.1 Lensmassmodel 2.3 Ellipticalgalaxyluminosityfunction Forsimplicity,wemodelthemassprofileofthelensinggalaxyas Theluminosityfunction(LF)ofearly-typegalaxiesismodelledby a singular isothermal sphere (SIS). This simple model is analyti- theSchechter(1976)form callytractable,andfitstheobservationaldatawell(e.g.,Koopmans 2009).Thesurfacemassdensitycanbemodelledas Φ (L)dL=Φ(cid:63)(cid:32) L (cid:33)αLexp(cid:32)− L (cid:33)dL. (6) L L L L L σ2 1 (cid:63) (cid:63) (cid:63) Σ(ξ)= , (1) 2Gξ We adopt values from Choi et al. (2007) that were obtained us- ing a galaxy sub-sample of the SDSS Data Release 5 with M − where ξ is the (physical) distance in the lens plane, and σ is the 5log h = −20.23 ± 0.04, α = −0.527 ± 0.043, and Φ(cid:63)(cid:63) = one-dimensional velocity dispersion. The angular Einstein radius 10 L L 0.71×10−2h−3Mpc−3,appropriatefortheSDSSr-band. ofanSISisgivenby Itismoreconvenientforourcalculationheretousethelumi- σ2 D (cid:18) σ (cid:19)2 D nosityfunctionwithabsolutemagnitude M ratherthan L.Eq.(6) θ =4π ds =1.(cid:48)(cid:48)4 ds, (2) E c2 D 220kms−1 D canberewrittenas s s wherecisthespeedoflight,Dds istheangulardiameterdistance ΦL(M)dM=0.4ln10×Φ(cid:63)L10−0.4(M−M(cid:63))(αL+1)exp(−10−0.4(M−M(cid:63)))dM,(7) between the lens and the source, and D is the angular diameter s whereM isgivenbeloweq.(6). distancetothesource. (cid:63) Each survey has its own flux limit which corresponds to a A point source at unlensed angular position 0 < θ < θ s E magnitudelimitinaphotometricband(e.g.theSDSSrband),de- from the galaxy produces two images at the angular positions θ =θ ±θ .Themagnificationofeachimageandthetotalabso- notedbymr.Theabsolutelimitingmagnitude, Mr,ofagalaxyat 1,2 s E redshift z and galactic coordinates (l,b), can be constructed from lutemagnificationaregivenby theapparentmagnitudelimitm asfollows: r θ θ µ1,2= θ1,2, µtotal=|µ1|+|µ2|=2θE, 0<θs<θE. (3) Mr =mr−DM(z)−Kr(z), (8) s s Noticethatthetotalmagnificationforthetwoimagesexceedstwo. whereDM(z)isthedistancemodulus,andKr(z)istheK-correction A point source at angular separation θs > θE produces only (Hogg 1999). Here we use the Kr(z) given by Choi et al. (2007), oneimageattheangularpositionθ = θ +θ ,withmagnification and we have ignored dust extinction by the Milky Way and the s E (θ +θ)/θ,givingavaluebetween1and2.Thusifasourceisafew foregroundgalaxy. E s s Einstein radiiaway from theline of sight, itmay still experience The lensing probability averaged over all source redshifts is substantial magnification and differential magnification, and have givenby(e.g.,Wyitheetal.2010) observablesignatures. 1 (cid:88)NG 1 (cid:90) zs,(cid:63) dV <τ>= τ(z)= dz C Ψ (M(z),z)τ(z), (9) N i N dz G,S s s s G i=1 G 0 2.2 Lensingprobability whereN isthetotalnumberofbackgroundellipticalgalaxies,V G C Forabackgroundellipticalgalaxyatredshiftz,thelensingproba- isthecomovingvolume,andΨ (M(z),z)isthecomovingnum- s G,S r s s bility(opticaldepth)canbeobtainedasfollows berdensityofellipticalgalaxiesbrighterthanM(z)atredshiftz. r s s (cid:90) zi (cid:90) cdt NGcanbecalculatedas τ(zs) = 0 dzd dσΦσ(zd,σ)σcr(σ) dzd, (4) N =(cid:90) zs,(cid:63)dzdVC Ψ (M(z),z). (10) G dz G,S r s s whereσ isthecross-sectionformoderatelensing,tisthecosmic 0 cr time, and Φ (z ,σ) is the lens velocity dispersion function (e.g. andΨ (M(z),z)as σ d G,S r s s Turner, Ostriker & Gott 1984, Gott, Park & Lee 1989, Fukugita, (cid:90) Mr(zs) Futamase&Kasai1990). Ψ (M(z),z)= Φ (M)dM, (11) G,S r s s L Thelensvelocitydispersionfunctionismodelledbyamodi- −∞ fiedSchechterfunction(Choietal.2007): whereΦ (M)isthebackgroundellipticalgalaxyluminosityfunc- L Φσ(σ)dσ=Φ(cid:63)σ(cid:32)σσ (cid:33)ασexp−(cid:32)σσ (cid:33)βσΓ(αβσ/β )dσσ, (5) trieodnsh(sifetezesqc.o7r)r,easnpdonMdirn(zgs)toistthheemabasgonliututedleimlimitiintgmmr.aTgonibtuedceoMnsrear-t (cid:63) (cid:63) σ σ vativeandforsimplicity,weusetheLSSTsingle-visitdepthlimit whereΦ(cid:63)σ=8.0×10−3h3Mpc−3,ασ=2.32±0.10,βσ=2.67±0.07, mr =24.7inouropticaldepthcalculation. andσ =161±5kms−1.Welimitthevelocitydispersiontothein- (cid:63) terval70∼400kms−1(Loeb&Peebles2003).Mostmassiveearly- 2.4 Lensandsourcesurfacebrightnessprofiles typegalaxieswerealreadyassembledatz<1;beyondthisredshift, thedensityofearly-typegalaxiesdeclinessignificantly(e.g.,Ren- We model the background source (and the lens) as an elliptical zini2006),andsowetruncatetheredshiftofearly-typebackground galaxywithadeVaucouleurssurfacebrightnessprofile: (cid:13)c 2011RAS,MNRAS000,000–000 ModerateGalaxy-GalaxyLensing 3 I(R)=I exp(−7.67((R/R )1/4−1)), (12) e e where R is the two-dimensional radius, R is the effective radius e within which half of the light is enclosed and I is the surface e brightnessattheeffectiveradius.Wequotetheeffectiveradiusas √ thegeometricmeanofthemajorandminoraxes,R = a b .The e e e total apparent magnitude m , average magnitude within effective T radius(cid:104)µ(cid:105) andeffectiveradiusR canberelatedby(Scodeggioet e e al.1998) m =−2.5log (L )−48.6=(cid:104)µ(cid:105) −1.9954−5log (R ), (13) T 10 T e 10 e whereL isthetotalfluxoftheellipticalgalaxyandR ismeasured T e inarcsec. 2.5 Simulatingimagesofearly-typegalaxies In an image of an early-type galaxy, in addition to the signal of thesource,wealsohavethePoissonnoiseintheskybackground, readoutnoiseoftheCCDsandthedarkcurrent.Thesignal-to-noise Figure1.Asimulatedlensedimageofabackgroundellipticalgalaxy,with ratioisgivenby(McMasteretal.2008) a scale of 0.(cid:48)(cid:48)2 per pixel. The foreground lens is at redshift 0.3 and the backgroundellipticalgalaxy(ontheright)isatredshift0.6.Thesizeofthe S = (cid:113) NSt , (14) imageis30.(cid:48)(cid:48)0by25.(cid:48)(cid:48)6.Thedistancebetweenthetwogalaxycentresis N N t+n(N t+N t+N2) 8.2arcsec.TheellipsesareobtainedbyrunningtheIRAFtaskELLIPSE S sky DC R (see§3.2).Noticethesmallchangesinthepositionangleandtwistsinthe whereN isthenumberofphotoelectronsfromthesourceperunit isophotes. S time,N istheintensityofskybackgroundinphotoelectronsper sky pixelperunittime, N isthedarkcurrentinelectronsperpixel DC perunittime,N isthereadoutnoiseinelectronsperpixel,nisthe R numberofpixelscoveredbyanimageofanearly-typegalaxyand TheKormendy(1977)relationbetweenthesurfacebrightness tistheexposuretime. andeffectiveradiusisgivenby(Bernardietal.2003a,asquotedin Toproceedfurther,weneedtoadoptaconcretecaseforthe Oohamaetal.2009) parametersineq.(14).HerewerestrictourselvestoLSST.Thetele- scopewillbesitedinCerroPacho´n,Chile,withexcellentmedian (cid:104)µ(cid:105) =2.04log R +18.7, (16) e 10 e free-air seeing of 0.(cid:48)(cid:48)7 in the r band. Correspondingly, the pixel scaleischosentobe0.(cid:48)(cid:48)2.Thetelescopewillrepeatedlysurveythe where(cid:104)µ(cid:105) isthemeansurfacebrightness(inmag/arcsec2)within e sky covering an area of 20000 square degrees with a cadence of theeffectiveradius(R ,inunitsofkpc).Thescatterinthisrelation e ≈ 7days.Theintegrationtime(t)foreachindividualframeis15 issubstantiallylargerthanthatinthefundamentalplane(see§3.4). seconds.Weassumethatthereadoutnoiseisthesameforallexpo- ForLSST,themeanredshiftofthegalaxysampleisabout0.8 sures.ForthePoissonnoiseintheskybackground,readoutnoise (seetheLSSTsciencebookfordetails).However,tobespecificand of the CCDs and the dark current, we use the mean values given somewhatconservative,weusealensredshiftof0.3andasource bytheLSSTExposureTimeCalculator3.Usingthesenumbers,we redshiftof0.6.Inreality,galaxypairswillhavearedshiftdistribu- verifiedthatthephotonnumbersweobtaindifferfromthosegiven tion,butwecaninprinciplebinthedataandstudythequantities bytheLSSTExposureTimeCalculatorbylessthan3%. weareinterested,andsothissimplificationdoesnotchangethere- Fig.1 shows an example of a simulated moderately lensed sultsofthepaper.Noticethatfortheopticaldepthcalculation,we backgroundellipticalgalaxyover-plottedwiththebest-fitellipses stillassumethelensesandsourceshavearedshiftdistribution,as fromtheIRAFtaskELLIPSE(formoredetails,see§3.2).Notice describedin§2. thatwehavenotconvolvedtheimagewithseeing. For each random galaxy generated for redshift 0, we shift it To simulate a population of early-type galaxies, we use the to redshift z by taking into account its evolution (Bernardi et al. method given in Appendix A of Bernardi et al. (2003a). Briefly, 2003a) eachgalaxyisrandomlyassignedanabsolutemagnitude, M,ef- r fective radius Re and velocity dispersion σ (V in the notation of Mr(z)=Mr(z=0)−Qz, (17) Bernardi et al. 2003a), appropriate at redshift z = 0. This proce- whereQ=0.85fortherband. dure ensures the generated galaxies satisfy the observed correla- We assume a total exposure time of 6000 seconds (i.e., 400 tionsamongobservedproperties,includingthefundamentalplane exposures of 15 seconds). We further select only galaxies which asgivenbyBernardietal.(2003b) satisfy R > 0.(cid:48)(cid:48)7, as a way to crudely account for the effects of e log10Re=log10σ+0.2((cid:104)µ(cid:105)e−20.09). (15) seeing.Intotal,wegenerate11623pairsofforegroundandback- ground galaxies which satisfy these conditions. The ellipticity of We assign a typical error of 0.03dex in logσ and 0.02dex in thebackgroundgalaxyisrandomlydrawnfromtheaxisratiodistri- log R . The scatter in the fundamental plane is quite small, on 10 e butionasgiveninChoietal.(2007)(seetheirFig.13).Thelensed theorderof≈0.08,andmaybemostlyduetomeasurementerrors. background galaxy images are obtained using the lens equation. Thefollowinganalysesarebasedonthissample,althoughweap- 3 http://dls.physics.ucdavis.edu:8080/etc43work/servlets/LsstEtc.html plyafurthercutintheisophoteshapeanalysis(seebelow). (cid:13)c 2011RAS,MNRAS000,000–000 4 Mao,WangandSmith Figure3.Theprobabilitydensitydistributionoftheeffectiveradiiofthe Figure2.Theopticaldepth,τ,asafunctionoftheredshift,zs.Thecross- backgroundellipticalgalaxies,allatredshift0.6.Atthisredshift,1arcsec sectionformoderatelensingistakenastheareabetween1θEto10θE. correspondsto4.7h−1kpc. 3 RESULTS 3.1 Opticaldepth InFig.2,wepresenttheopticaldepthasafunctionofredshift.In thisexercise,wetakethemoderatelensingcross-sectionforeach galaxyasθ to10θ (correspondingtoµ=2and1.1).Notsurpris- E E inglytheopticaldepthincreaseswithincreasingredshift,reflecting thefactthatthenumberofinterveninggalaxiesincreasesformore distant background sources. The optical depth is about 0.0029 at z = 0.5,0.016atz = 1.0,and0.062atz = 2.0.Theopticaldepth ofaveragedoverallthebackgroundsourcesisabout0.0254.This probabilitywillscalelinearlywiththecross-sectionweadopt.For example, if the we take the cross-section from 2θ to 5θ (corre- E E spondingtoµ = 1.5and1.2)thentheprobabilitywillbereduced byafactorofroughly5toabout0.005.Theprecisechoiceofcross- sectionwilldependonthedepth,seeingetc.ofobservations. Wehavealsocalculatedthemagnificationbias(Turneretal. 1984),whichcanbelargeformultiply-imagedquasarsorgalaxies. Inourcase,wefindthemagnificationbiastobemodest,onlyabout 1.16.Themagnificationbiasissmallbecausethemagnificationin ourcaseisbydefinitionmodest. Aswehavementionedin§2.5,theredshiftofthebackground Figure4.TheprobabilitydensitydistributionoftheangularEinsteinradius sources is truncated at z = 2.0. With this limitation, the surface θE ofthesimulatedlensingcases. number density of early-type galaxies is about 10 per square ar- cmin.ForLSST,itwillcarryoutasurveyof20000deg2ofthesky, andabout700millionellipticalgalaxieswillbedetected.InFig.3, theobservedonefromtheCLASSsurvey,eventhoughthesource wepresentthedistributionoftheeffectiveradiusofthebackground andlensdistributionstherearesomewhatdifferent(seeFig.11in elliptical galaxy sources. The number of elliptical galaxies drops Browneetal.2003). steeply for larger effective radii. About 54.1% of the background sources have effective radii larger than 0.(cid:48)(cid:48)7, the median free-air 3.2 Isophotaldistortions seeing at the site of LSST. Under this criterion, we estimate that thereareabout9.5millionmoderategalaxylensingcasesthatwill Surface photometry is performed on the simulated lensed images beobservedbyLSSTtothesingle-visitdepth(m =24.7mag). of the background elliptical galaxy by utilizing the IRAF task r ThepredictedangularEinsteinradiusisshowninFig.4.As ELLIPSE(Jedrzejewski1987).WhenrunningtheELLIPSEonthe can be seen, the distribution peaks around 0.8 arcsec and has an lensed images, the geometric centre, elllipticy and position angle extendedtailouttolargerseparations.Thedistributionissimilarto areallallowedtovaryfreely,withalogarithmicstepof0.05inthe (cid:13)c 2011RAS,MNRAS000,000–000 ModerateGalaxy-GalaxyLensing 5 Figure 6. The probability density distributions of the apparent isophotal axisratio(q),positionangle(ϕ,inunitsofdegrees)forthegalaxyshownin Fig.1. R1/4 law(Haoetal.2006;Grahametal.2005).Inthesameplot, thesedistributionsforseparationsbetween2.(cid:48)(cid:48)0and6.(cid:48)(cid:48)0andbe- tween2.(cid:48)(cid:48)0and10.(cid:48)(cid:48)0arealsoshown.Asexpected,forbackground sourceswithsmallerseparationsfromthelenscentre,thedistribu- Figure5.CoefficientsoftheFourierseriesa3/a,a4/a,b3/aandb4/aob- tionsofthecoefficientsarebroaderbecausethelensingeffectsare tainedbytheIRAFtaskELLIPSEforthegalaxyshowninFig.1.Thehori- strongerinsuchcases.Noticethatintheaboveanalysis,werequire zontallineineachpanelindicatesthevalueforaperfectellipse. 2r >1.5R ,thisconditionreducesthepairofgalaxiesfrom11623 s 50 to9094. semi-majoraxis.Theisophotesofthelensedimagescanbemea- Both the a /a and b /a distributions show large deviations 3 3 suredindifferentways.HerewepresenttheoutputofthetaskEL- from those of normal elliptical galaxies as studied by Hao et al. LIPSE.Adetaileddescriptionofthesemeasurementscanbefound (2006).ThisisfurtherillustratedinFig.8,hereweplotthetwo- inHaoetal.(2006),weonlyrepeattheessentialshere.Theinten- dimensionaldistributionsofthesetwoquantitiesratherthanashis- sityalongtheellipseisexpandedinFourierseries togramsfromprojection.Wecanseethattheunlensedgalaxiesare (cid:88) mostlyatthecentre,whilethelensedgalaxiesclearlyshowmuch I(θ)=I + (A cosnθ+B sinnθ), (18) 0 n n larger scatters than the unlensed ones. Thus they can be used as where I istheintensityaveragedovertheellipse,and A and B effectiveindicatorswhethermoderategravitationallensinghasoc- 0 n n arethehigherorderFouriercoefficients.Ifanisophoteisaperfect curredinapair. ellipse,thenallthecoefficients,(A ,B ),n = 1,···,∞willbeex- n n actlyzero.Wewillusetwoquantitiesa andb extensively,which n n arerelatedtotheELLIPSEoutputsA andB by 3.3 Fundamentalplane n n a A Gravitationallensingpreservesthesurfacebrightnessofthesource n = n, (19) a γa becauseofLiouville’stheorem,butchangestheapparentsolidan- gleofasource.Followingthis,anaturalexpectationisthatthefun- whereγ=dI/dRisthelocalradialintensitygradient,andaisthe damentalplaneofbackgroundellipticalsourcesshouldbeaffected semi-majoraxislength. bymoderategravitationallensing. ForthegalaxyshowninFig.1,thecoefficientsoftheFourier Toobtainthelensedandunlensedeffectiveradiiandsurface series a /a,a /a,b /a and b /a as a function of the semi-major 3 4 3 4 brightness,R andR ,wefitthesurfacebrightnessprofileofthe axisradiusareshowninFig.5.Thehorizontallineineachpanelis e,L e lensedimagesofbackgroundellipticalgalaxieswiththeR1/4 law. thevalueforaperfectellipse.Noticethatbotha /aandb /ashow 3 3 Inthismodel,wefixthecentreofthegalaxy,afterwhichthereare significantdeviationsfromtheisophotesofaperfectellipse. four remaining free parameters, {I ,R ,ϕ,q}. The χ2 function is Forthesamegalaxy,wepresentthedistributionoftheappar- e e givenby entisophotalaxisratioq,positionangleϕinFig.6,.Thehorizontal line presents the ellipticity (position angle) before lensing. There (cid:88)Np (I −I )2 are some small but systematic changes in these two quantities of χ2(Ie,Re,ϕ,q)= iσ2 i,0 . (20) afewpercentfortheexampleshownhere.Thea /aandb /apa- i=1 i,0 4 4 rametersdescribewhetheranellipticalgalaxyisdiskyorboxy,but where N is the number of pixels of the lensed image. I is the p i,0 wedidnotincorporatetheseintoourimagesimulations.Insteadwe photon number in the ith pixel, σ is the Poisson noise σ = (cid:112) i,0 i,0 choosetofocusonthea3/aandb3/aparameters. Ii,0. The degree of freedom is Ndof = Np −4. We use the rou- InFig.7,wepresentthedistributionofthecoefficientsofthe tinegsl multimin fminimizer nmsimplexintheGNUScientificLi- Fourierseriesa3/a,a4/a,b3/aandb4/aforcaseswherethesepa- brary4 tofindtheχ2 minimumandobtaintheeffectiveradius;the rationsbetweentheforegroundgalaxyandbackgroundgalaxyare meansurfacebrightnessisthenobtainedbyaveragingthesurface betweenθE+Re,s ≈ 2.(cid:48)(cid:48)0and10.(cid:48)(cid:48)0,whereRe,s istheeffectivera- brightnesswithinRe. diusforthesource.Foreachgalaxy,thesecoefficientsarethemean Fig.9 shows the distribution of differences in effective radii valuewithintheregionbetween2r and1.5R ,wherer ≈0.(cid:48)(cid:48)7is s 50 s themedianseeingradiusandR isthePetrosianhalf-lightradius. 50 ForSDSS,R50 = 0.71Re forearly-typegalaxiesdescribedbythe 4 http://www.gnu.org/software/gsl/ (cid:13)c 2011RAS,MNRAS000,000–000 6 Mao,WangandSmith Figure 7. The probability density distributions of the coefficients of the Figure 9. The probability density distribution of differences in effective Fourier series a3/a,a4/a,b3/a and b4/a obtained by the IRAF task radii between the lensed and unlensed sources in our simulated sample. ELLIPSE.Theblacksolidhistogramineachpanelshowsthedistribution Noticethesystematicshifttoalargereffectiveradius. ofthecoefficientsforanearbysampleofearly-typegalaxiesfromHaoet al.(2006).Thegreenlineisformoderatelylensedgalaxypairswithinsep- arationbetween2to6arcsecwhiletheredsolidlineisforgalaxiesfrom2 to10arcsec. Figure10.Theprobabilitydensitydistributionofdifferencesinmeansur- face brightness within effective radius between the lensed and unlensed sourcesinoursimulatedsample. Figure8.Thescatteredplotforthesimulatedgalaxypairsintheplanea3/a vs.b3/a.Thereddotsareforunlensedgalaxieswhiletheblackonesarefor meansurfacebrightnesseswithintheeffectiveradiusbetweenthe lensedones.Intotal,thereare9094pairsofgalaxies. lensed and unlensed sources, defined as ∆(cid:104)µ(cid:105) = (cid:104)µ(cid:105) − (cid:104)µ(cid:105) , e e,L e where (cid:104)µ(cid:105) and (cid:104)µ(cid:105) are the mean surface brightness within the e,L e lensed and unlensed effective radius of the lensed images. The betweenthelensedandunlensedsources,definedas∆log yR = meanandmediandifferencesare−0.0003and−0.0003,whichare 10 e log R −log R .Themeanandmedianvaluesof∆log R are muchsmallerthanthosefortheeffectiveradius,i.e.,gravitational 10 e,L 10 e 10 e 0.03and0.03respectively.Thesevalueswilldependonthesepara- lensingdoesnotaffectthemeansurfacebrightnesswithintheef- tionrangewetakeforthegalaxypair,herewehaveselectedpairs fectiveradius. withseparationsbetween∼2to10arcsec. Thefundamentalplaneofthelensedellipticalgalaxiesispre- Similarly,Fig.10showsthedistributionofdifferencesinthe sentedinFig.11.Theblacksolidlineshowsthefundamentalplane (cid:13)c 2011RAS,MNRAS000,000–000 ModerateGalaxy-GalaxyLensing 7 Figure11.Fundamentalplaneofthelensedellipticalgalaxies.Theblack Figure12.Kormendyrelationoftheellipticalgalaxies.Theblackdashed solidlineshowsthefundamentalplaneforthebackgroundellipticalgalax- line shows the Kormendy relation of the unlensed background elliptical ies.Thereddotsareforthelensedellipticalgalaxieswiththebestregression galaxies(blackdots).Thereddashedlinepresentstherelationofthelensed lineshowsasthereddashedline.Thelensgalaxiesareatredshiftzl =0.3 ellipticalgalaxies(reddots).Inthisfigure,thelensgalaxiesareatredshift andthesourcegalaxiesatzs=0.6. z=0.3andthesourcegalaxiesatz=0.6. used to produce the background elliptical galaxies (black dots) while the red symbols present the lensed elliptical galaxies. The WealsoexploretheoffsetsintheKormendyrelationandfun- bestregressionlineforthelensedsampleisshownasthedashed damentalplaneofthelensedellipticalgalaxies,andattributethese redline.Onaverageanupwardoffsetofabout0.03isintroduced tothemagnificationeffectoftheeffectiveradii,whilethemeansur- bygravitationallensing. face brightnesses within the radii are nearly unaffected. The sys- tematic offsets are on the order of 0.03 in logR . To observe the e shiftinthefundamentalplane,weneedtodeterminethevelocity 3.4 Kormendyrelation dispersionspectroscopicallywhilefortheKormendyrelation,we Toderivethesystematicshiftsinthefundamentalplane,inprinci- only need the source redshift (e.g., from photometric redshift) to pleweneedtomeasurethevelocitydispersionfromspectroscopic obtainthephysicaleffectiveradius,sotheobservationaldemandis observations. This will be very time consuming given the large somewhatlower. number of early-type galaxies available from LSST. However, it Forstronglensing,itispossibletomodelanindividuallensto iseasiertomeasuretheKormendy(1977)relationbetweenthesur- extractinformationaboutthelens.Formoderatelensing,thiswill face brightness and effective radius, which can be obtained from bedifficult,anditsapplicationwillbemostlystatistical.Sincethe imagingdataandanapproximatephotometricredshift.InFig.12, scatterinthefundamentalplaneissmall(0.08inlog10Re),a0.03 weshowtheKormendyrelation,ofthelensedandunlensedellip- shiftcaninprinciplebedetecedwithafewthousandgalaxies.For tical galaxies. On average, an upward offset of about 0.03 in the theMonteCarlosimulationswediscussedin§2,wefirstfittheun- KormendyRelationisseeninFig.11.Asmightbeexpected,this lensedsamplewithalinearmodelandthenrenormalisetheerror shiftissimilartothatinthefundamentalplane.Thisoffsetismuch barssothatthetotalχ2perdegreeoffreedomisunity.Wethenfit smallerthanthescatterorthogonaltotheKormendyrelation(about thesamemodeltothelensedsample.Iftherewerenosystematic 0.166)andthescatterinthedirectionoflogR (about0.182). shifts,thentheresultingχ2 shouldfollowroughlyanormaldistri- e butionwithmeanequaltoχ2 =N =N−2andadispersionof √ mean dof σ = 2N ,whereNisthenumberofpairsofgalaxies.Anysig- χ dof nificantdeviationwillindicatethenooffsetmodelisunsatisfactory. 4 CONCLUSIONANDDISCUSSION Foroursimulatedsample,wefindtheχ2forthenooffsetmodelis In this paper we have investigated the moderate lensing of back- significantlyhigherthanthisexpectation,andtheexcessχ2 above groundellipticalgalaxiesbyinterveningellipticalgalaxies.Wefind χ2 isontheorderof4.2σ and6.6σ for1600and5000pairs mean χ χ thetheopticaldepthformoderatelensingisontheorderof∼1%. ofgalaxies.FortheKormendyrelation,thecorrespondingsignif- We have also performed image simulations based on the design icancelevelsare3.4σ and6.3σ ,somewhatlowerthanthatin chi chi specificationsofLSSTandobtainedrealisticlensedimagesofthe thefundamentalplane,whichisnotsurprisinggiventhelargerscat- backgroundellipticalgalaxies.Thedistortionsofthelensedimages tersinthisrelation. havebeenquantifiedwiththeIRAFtaskELLIPSE.Wefindmoder- Inpractice,therewillbeseveralcomplicationssincethelens atelylensedgalaxiescanbepotentiallydifferentiatedfromnormal andsourceredshiftsmayonlybeavailablephotometrically.How- galaxiesasoutliersinthecoefficientsofa /a,b /aetc. ever,iftherearenosystematicerrors,wecaninprinciplebinthe 3 3 (cid:13)c 2011RAS,MNRAS000,000–000 8 Mao,WangandSmith backgroundgalaxies,andstackthemtofindthesystematicoffset Hao,C.N.,Mao,S.,Deng,Z.G.,Xia,X.Y.&WuHong2006, inthefundamentalplaneandKormendyrelationasafunctionof MNRAS,370,1339 separation,whichinturnprovidesstrongconstraintsontheaver- HoggD.W.1999,arXiv:9905116 ageprofilesofgalaxiesatlargeradii.Thiscomplementstheweak JedrzejewskiR.I.,1987,MNRAS,226,747 galaxy-galaxymethodusingshear. KayserR.,RefsdalS.,StabellR.,1986,A&A,166,36 Atredshift0.3,themedianEinsteinradiusisaround0.83arc- KeetonC.R.,KochanekC.S.,1998,ApJ,495,157 sec(correspondingtoabout2.6h−1kpc),andmoderatelensingcan KomatsuE.etal.,2009,ApJs,180,330 probe to ∼ 5θ , about 13.2h−1kpc. This is an interesting radius, Koopmans,L.V.E.,etal.2009,ApJ,703,L51 E since it may be close to the regime where the density slope may KormendyJ.,1977,ApJ,218,333 bechangingfromisothermal(ρ∝r−2,Koopmans2009)tosteeper LiL.X.,OstrikerJ.P.,2002,ApJ,566,652 profiles(r−3):foragalactic-sizedhalowithvirialradiusofr =200 LoebA.,PeeblesP.J.E.,2003,ApJ,589,29 v kpcandaconcentrationparameterofc=10,theradiuswherethe McMaster, Biretta, et al. 2008, WFPC2 Instrument Handbook, densityslopechangesmaybearoundr /c=20kpc. Version10.0(Baltimore:STScI) v Although the results presented here are promising, there are NavarroJ.F.,FrenkC.S.&WhiteS.D.M.,1996,ApJ,462,563 severalpointswhichneedtobeinvestigatedfurtherinthefuture. OguriM.,TaruyaA.,SutoY.,TurnerE.L.,2002,ApJ,568,488 First, we do not fully consider the effects of seeing, as would Oohama, N., Okamura, S., Fukugita, M., Yasuda, N., & Naka- benecessaryinmorerealisticsimulations.However,someofthe mura,O.2009,ApJ,705,245 quantitiesthatweuse,suchastheFouriercomponents(seeFig.7), Press,W.H.,Teukolsky,S.A.,Vetterling,W.T.,&Flannery,B.P. are already averagedover a range of radiiand so the impact will 1992,Cambridge:UniversityPress,—c1992,2nded., besomewhatlimited.Second,whilemanyoftheellipticalgalax- RenziniA.,2006,ARA&A,44,141 iescanbedescribedwellbythedeVaucouleursprofile,othersare SchechterP.,1976,ApJ,203,297 betterdescribedbythemoregeneralSe´rsic(1968)profile.Third, Schneider P., Ehlers J., Falco E. E., 1992, Gravitational Lenses forsimplicityweadoptthesingularisothermallensmodel.Inre- (SpringerVerlag,Berlin) ality, several other models can better describe the lens galaxies. Scodeggio M., Gavazzi G., Belsole E., Pierini D., Boselli A., These include the singular isothermal ellipsoid model (Keeton & 1998,MNRAS,301,1001 Kochanek1998),andtheGNFWmodel(Zhao1996;Chae2002) Shethetal.,2003,ApJ,594,225 whichmaybeparticularlysuitableforstudyingthetransitioninthe Sonnenfeld, A., Bertin, G., & Lombardi, M. 2011, densityprofiles.Inmoredetailedstudieswecouldparameterisethe arXiv:1106.1442 foregroundlensusingthesemodelsandextractthebest-fitparam- TurnerE.L.,1980,ApJ,242,L135 eters with more rigourous statistical methods, such as maximum TurnerE.L.,OstrikerJ.P.,&GottJ.R.,III.1984,ApJ,284,1 likelihoodorBayesiantechniques.Itmaybeparticularinteresting Schneider, P., Kochanek, C. S., & Wambsganss, J. 2006, Gravi- toexplorewhatwecanlearnwithphotometricredshiftsalonefor tationalLensing:Strong,WeakandMicro:,Saas-FeeAdvanced moderategravitationallensingusingMonteCarlosimulations. Courses,Volume33.ISBN978-3-540-30309-1.Springer-Verlag (Berlin) SeitzS.,SagliaR.P.,BenderR.,HoppU.,BelloniP.,ZieglerB., 1998,MNRAS,298,945 ACKNOWLEDGMENTS Sersic, J.-L. 1968, Atlas de Galaxias Australes (Co rdoba: Obs. We thank Drs. Cheng Li, Hu Zhan and Zuhui Fan for helpful Astron.) discussions. JW and SM acknowledge the Chinese Academy of WilliamsL.L.R.,LewisG.F.,1998,MNRAS,294,299 Sciences and NSFC (grants 10821061 and 11033003) for finan- WyitheJ.S.B.,OhS.P.,PindorB.,2010,arXiv:1004.2081v1 cialsupport.MCSacknowledgesfinancialsupportfromthePeking WyitheJ.S.B.,WinnJ.N.,RusinD.,2003,ApJ,583,58 University One Hundred Talent Fund (985) and NSFC grants WyitheJ.S.B.,TurnerE.L.,SpergelD.N.,2001,ApJ,555,504 11043005and11010022(InternationalYoungScientist). Yee,H.K.C.,Ellingson,E.,Bechtold,J.,Carlberg,R.G.,&Cuil- landre,J.-C.1996,AJ,111,1783 ZhaoH.S.,1996,MNRAS,278,488 REFERENCES BarkanaR.1998,ApJ,502,531 Bernardietal.2003a,AJ,125,1849 Bernardietal.2003b,AJ,125,1866 BlantonM.R.etal.,2003,ApJ,592,819 BrowneI.W.A.,etal.2003,MNRAS,341,13 BullockJ.S.etal.,2001,MNRAS,321,559 Chae,K.-H.2002,ApJ,568,500 ChoiY.Y.,ParkC.,&VogeleyM.S.,2007,ApJ,658,884 DavisA.N.,HutererD.&KraussL.M.,2003,344,1029 Futamase,T.,Hattori,M.,&Hamana,T.1998,ApJ,508,L47 Fukugita, M., Futamase, T., & Kasai, M., 1990, MNRAS, 246, P24 Gott,J.R.,Park,M.-G.,&Lee,H.M1989,ApJ,338,1 Graham, A. W., Driver, S. P., Petrosian, V., Conselice, C. J., & Goto,T.2005,ApJ,130,1535 (cid:13)c 2011RAS,MNRAS000,000–000