ebook img

Models of black hole disks with self-gravity and non-constant angular momentum PDF

98 Pages·2014·3.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Models of black hole disks with self-gravity and non-constant angular momentum

Aristotle University of Thessaloniki M.Sc. Thesis Models of black hole disks with self-gravity and non-constant angular momentum Author: Supervisor: Christos Vourellis Prof. Nikolaos Stergioulas A thesis submitted in fulfilment of the requirements for the degree of Master in Science in Computational Physics in the Department of Physics October 2014 ARISTOTLE UNIVERSITY OF THESSALONIKI Abstract Faculty of Sciences Department of Physics Master in Science in Computational Physics Models of black hole disks with self-gravity and non-constant angular momentum by Christos Vourellis We construct the first numerical models of general relativistic, self-gravitating accretion tori around black holes with a non-constant specific angular momentum distribution. The models are axisymmetric and stationary and the specific angular momentum in- creases outwards as a power law. This generalizes previous cases, where only constant specificangularmomentumwasconsideredorwherethemodelswerenotself-gravitating. Thenon-constancyofspecificangularmomentumwasshowntostabilizethediskagainst the axisymmetric runaway instability while self-gravity was neglected. We are thus par- ticularly interested in models that are massive and form an inner cusp. As a first application, we study the existence of equilibrium models in a restricted region of the parameter space and show that self-gravitating massive tori lie on a different surface of equilibrium models, that features an overlap in mass. Acknowledgements I want to thank my advisor for giving me the change to work in such an advanced and competitive scientific field and for his constant encouragement and support throughout the whole project. I also want to thank the professors of the masters program for their efforts to teach me and my colleagues as much as they could ... iii Contents Abstract ii Acknowledgements iii Contents iv List of Figures vi List of Tables ix 1 Introduction 1 2 Theoretical Background 3 2.1 Tori in equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Non Constant specific angular momentum . . . . . . . . . . . . . . . . . . 8 2.3 Self-gravitating equilibrium disks . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Torus properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Numerical method and various tori cases. 18 3.1 Numerical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Detailed approach to the constructed models . . . . . . . . . . . . . . . . 21 3.2.1 Unstable models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.1.1 Totally unstable configurations. . . . . . . . . . . . . . . 21 3.2.1.2 Configurations between the totally unstable limit and the cusp. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.2 Models at the cusp limit . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.3 Beyond the cusp limit . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.4 Models at the W = 0 limit. . . . . . . . . . . . . . . . . . . . . 40 peak 3.2.5 Approaching the upper limit . . . . . . . . . . . . . . . . . . . . . 44 3.2.6 The upper limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4 The parameter space of equilibrium models 54 4.1 The subspace for the specific angular momentum parameters KAJS = 0.2 EOS and rAJS = 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 out 4.2 The subspace for the specific angular momentum parameters KAJS = 0.2 EOS and rAJS = 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 out iv Contents v 4.3 The subspace of the specific angular momentum parameters for KAJS = EOS 0.3 and rAJS = 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 out 4.4 The subspace of the specific angular momentum parameters for KAJS = EOS 0.3 and rAJS = 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 out 5 Conclusions and comments 80 List of Figures 3.1 The effective gravitational potential for an unstable torus. . . . . . . . . . 22 3.2 The isopotential contours of an unstable torus. . . . . . . . . . . . . . . . 23 3.3 The four metric functions of an unstable torus in comparison with the ones in the AJS torus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 The effective potential of a torus between the totally unstable and cusp limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.5 Theisopotentialcontoursofatorusbetweenthetotallyunstableandcusp limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.6 The four metric functions for a torus between the totally unstable and the cusp limits in comparison with the ones in the AJS torus. . . . . . . . 30 3.7 The effective potential of a torus filling exactly its Roche lobe. . . . . . . 31 3.8 The isopotential contours of a torus filling exactly its Roche lobe. . . . . . 32 3.9 The four metric functions for a torus in the cusp limit in comparison with the ones in the AJS torus. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.10 The effective potential of a torus beyond the cusp limit. . . . . . . . . . . 36 3.11 The isopotential contours of a torus beyond the cusp limit. . . . . . . . . 37 3.12 The fourmetric functionsfor atorus beyondthe cusplimit incomparison with the ones in the AJS torus. . . . . . . . . . . . . . . . . . . . . . . . . 39 3.13 The effective potential of a torus in the W = 0 limit. . . . . . . . . . . 40 peak 3.14 The isopotential countours of a torus in the W = 0 limit. . . . . . . . 41 peak 3.15 The four metric functions for a torus at the W = 0 limit.. . . . . . . . 43 peak 3.16 The effective potential of a torus approaching the upper limit. . . . . . . . 44 3.17 The isopotential contours of a torus approaching the upper limit. . . . . . 45 3.18 Thefourmetricfunctionsforatorusapproachingtheupperincomparison with the ones in the AJS torus. . . . . . . . . . . . . . . . . . . . . . . . . 48 3.19 The effective potential of the torus just before the location of maximum density reaches the outer edge of the torus. . . . . . . . . . . . . . . . . . 49 3.20 Theisopotentialcontoursofthetorusjustbeforethelocationofmaximum density reaches the outer edge of the torus. . . . . . . . . . . . . . . . . . 50 3.21 The four metric functions for a torus just before the location of maximum density reaches the outer edge of the torus. . . . . . . . . . . . . . . . . . 53 4.1 The subspace of the specific angular momentum parameters for KAJS = EOS 0.2 and rAJS = 39 models. (a) for the initial trial values of the constant out k, (b) for the rescaled values. . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2 The effective potential for the cases presented in Figures 4.1 for tori with KAJS = 0.2 and rAJS = 39. . . . . . . . . . . . . . . . . . . . . . . . . . . 57 EOS out vi List of Figures vii 4.3 The dependence of the torus mass from the (input and rescaled) specific angular momentum parameters for KAJS = 0.2 and rAJS = 39. (a) is for EOS out the initial trial values of the constant k, while (b) is for the rescaled values. 58 4.4 The contour plot of the three-dimensional data. The torus mass as a function of the two specific angular momentum parameters for KAJS = EOS 0.2 and rAJS = 39 models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 out 4.5 The parametric plot showing the dependence of the specific angular mo- mentum constant from the torus mass and the critical torus mass for different values of slope q, for KAJS = 0.2 and rAJS = 39 . . . . . . . . . . 60 EOS out 4.6 The subspace of models for the specific angular momentum parameters for KAJS = 0.2 and rAJS = 60. (a) is for the initial trial values of the EOS out constant k, while (b) is for the rescaled values. . . . . . . . . . . . . . . . 63 4.7 The effective potential for the cases presented in Figures 4.6 for tori with KAJS = 0.2 and rAJS = 60. . . . . . . . . . . . . . . . . . . . . . . . . . . 64 EOS out 4.8 The dependence of the torus mass on the (input and rescaled) specific angular momentum parameters for KAJS = 0.2 and rAJS = 60. (a) is for EOS out the initial trial values of the constant k, while (b) is for the rescaled values. 65 4.9 The torus mass as a function of the two specific angular momentum pa- rameters for KAJS = 0.2 and rAJS = 60 models. . . . . . . . . . . . . . . . 66 EOS out 4.10 Parametric plot showing the dependence of the specific angular momen- tum constant from the torus mass and the critical torus mass for different values of slope q, for KAJS = 0.2 and rAJS = 60. . . . . . . . . . . . . . . 67 EOS out 4.11 The subspace of the specific angular momentum parameters for KAJS = EOS 0.3 and rAJS = 39 models. (a) is for the initial trial values of the constant out k, while (b) is for the rescaled values.. . . . . . . . . . . . . . . . . . . . . 69 4.12 TheeffectivepotentialforthecasespresentedinFigures4.11fortoriwith KAJS = 0.3 and rAJS = 39. . . . . . . . . . . . . . . . . . . . . . . . . . . 70 EOS out 4.13 The dependence of the torus mass from the (input and rescaled) specific angular momentum parameters for KAJS = 0.3 and rAJS = 39. (a) is for EOS out the initial trial values of the constant k, while (b) is for the rescaled values. 71 4.14 Thecontourplotofthethree-dimensionaldataforKAJS = 0.3andrAJS = EOS out 39. The torus mass is shown as a function of the two specific angular momentum parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.15 Parametric plot showing the dependence of the specific angular momen- tum constant from the torus mass and the critical torus mass for different values of exponent q, for KAJS = 0.3 and rAJS = 39. . . . . . . . . . . . . 73 EOS out 4.16 The subspace of the specific angular momentum parameters for KAJS = EOS 0.3 and rAJS = 60. (a) is for the initial trial values of the constant k, out while (b) is for the rescaled values. . . . . . . . . . . . . . . . . . . . . . . 75 4.17 TheeffectivepotentialforthecasespresentedinFigures4.16fortoriwith KAJS = 0.3 and rAJS = 60. . . . . . . . . . . . . . . . . . . . . . . . . . . 76 EOS out 4.18 The dependence of the torus mass on the (input and rescaled) specific angular momentum parameters for KAJS = 0.3 and rAJS = 60. (a) is for EOS out the initial trial values of the constant k, while (4.18b) is for the rescaled values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.19 Contour plot of the three-dimensional data showing in figure 4.3. The color scale corresponds to the torus mass. . . . . . . . . . . . . . . . . . . 78 List of Figures viii 4.20 Parametric plot showing the dependence of the specific angular momen- tum constant from the torus mass and the critical torus mass M for cr overlap, for different values of exponent q, for KAJS = 0.3 and rAJS = 60. 79 EOS out 5.1 The changes in the outer radius for the higher values of the torus mass. . 82 5.2 The changes in the equation of state constant for the higher values of the torus mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 List of Tables 3.1 Detailed information about the representative model of an unstable torus. 22 3.2 Detailed information about the torus between the totally unstable stable and the cusp limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Detailed information about the torus in the cusp limit. . . . . . . . . . . . 33 3.4 Detailed information about the torus beyond the cusp limit. . . . . . . . . 37 3.5 Detailed information about the torus at the W = 0 limit. . . . . . . . 41 peak 3.6 Detailed information about the torus approaching the upper limit. . . . . 46 3.7 Detailedinformationaboutthetorusjustbeforethelocationofmaximum density reaches the outer edge of the torus. . . . . . . . . . . . . . . . . . 51 5.1 The minimum, mean and maximum value of the torus mass which causes the overlap in mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 ix

Description:
ture of the gas in the disk and cause it to emit X-ray radiation. Radiation In 2011 Stergioulas [7, 8] adopted the compactified grid present by Cook,.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.