ebook img

Models for Assessing the Male Annihilation of Bactrocera spp. With Methyl Eugenol Baits PDF

16 Pages·2013·0.98 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Models for Assessing the Male Annihilation of Bactrocera spp. With Methyl Eugenol Baits

ECOLOGYANDPOPULATIONBIOLOGY Models for Assessing the Male Annihilation of Bactrocera spp. With Methyl Eugenol Baits HUGHJ.BARCLAY1,2ANDJORGEHENDRICHS3 Ann.Entomol.Soc.Am.107(1):81Ð96(2014);DOI:http://dx.doi.org/10.1603/AN13046 ABSTRACT Modelswerepresentedthatdescribetheattractionandkillingattoxicbaitsortrapsof D o adultmalesandfemalesofaninsectpestspecies.Thesemodelswereusedtotesttheeffectsofthe w n following factors on ease of control: female monogamy versus polygamy, attraction of only males lo versusbothsexes,initiatingmatingbeforeversusafterrespondingtobaits/traps,theabilityofmales ad e tomatemanytimeseachdayversusonlyonceperday,andtheexistenceofatimelagofseveraldays d before females can mate versus mating immediately after emergence. The models indicated that fro m matingbeforetrappingortheabilityofmalestomatemanytimeseachdaywillprobablyrenderthis h controlmethodineffective.Theotherfactorstested(matinghabitandspeciÞcsofattraction)hadlittle ttp effectontheefÞciencyoftrappingmalesasacontrolmethod.Wethenincludedagestructureand s arefractoryperiodforvirginfemalesbeforetheycanmate.ThemodelswerethenmadespeciÞcto ://a c Bactroceradorsalis(Hendel)(Diptera:Tephritidae)byusingparametervaluesderivedfromtheliterature. ad Theresultsofthemodelsimplythattheattractionandkillingoflargenumbersofmalesisratherineffective em tosuppresspopulations.However,thecombinationofattractingbothmalesandfemalescanbemore ic .o effectivethanattractingeithersexalone.Theincreasedattractionoffemalestomethyleugenolbaitsthat u p hasbeenobservedwiththedecliningpresenceofmalesduringMaleAnnihilationTechniquecampaigns .c o mayexplainthereportedeffectivenessagainstinvasiveBactrocerapestspecies. m /a e KEYWORDS Bactrocera,maleannihilationtechnique,methyleugenol,fruitßy sa /a rtic le -a Methyl eugenol (ME) is a powerful attractant for tance(Steineretal.1965,Ushioetal.1982,Koyama bs males of many tropical tephritid fruit ßy species et al. 1984, Cunningham 1989b, Anonymous 1991, tra c (Drew1974,1989;WhiteandElsonÐHarris1992;Tan Nakamorietal.1991,Malavasietal.2000).Itisalso t/1 andNishida2012).Thisstrongattractant,alsocalled routinely used to eliminate at an early stage, the 0 7 parapheromone (i.e., a chemical that behaves like a recurringincipientoutbreaksofintroducedBactro- /1 /8 pheromonebyattractingonesex,butisnotproduced cera spp. ßies into mainland United States (Cun- 1 by the insects themselves; Cunningham 1989a), has ninghamandSuda1985)andalsoinAustralia,Japan, /77 1 beenusedsincethe1950sforpurposesofmonitoring andelsewhere(Hancocketal.2000,Seewooruthun 7 3 andcontrol(SteinerandLee1955,Cunninghamand et al. 2000, Ohno et al. 2009). In northÐeastern b y Suda 1986). Nevertheless, as even a few surviving Brazil,alongtheborderwithFrenchGuyana,Bac- g multiple-matingmalescanfertilizemanyfemales,the troceracarambolae(DrewandHancock1994)con- ue s realdamagecausedbyovipositingfemalesisnotsig- tainmenteffortsbyMATcontinueonapermanent t o niÞcantly reduced unless ME baits or traps are sys- basistopreventestablishmentofthispest(Godoy n 0 tematicallyappliedatalargeroperationalscale.Only 2006).Permanentcontainmenteffortsarealsoon- 5 A suchanapproachonanarea-widebasiswilleliminate goinginIsraelattheborderwithGazaandEgyptto p mostmalestobeabletodeprivefemalesofmatesand prevent establishment of Bactrocera zonata (Saun- ril 2 thusreducefruitinfestation(Steineretal.1970,Cun- ders)andinnorthernSouthAfrica(Manrakhanet 0 1 ningham1989b).ThisMaleAnnihilationTechnique al. 2012) near Zimbabwe to prevent the establish- 9 (MAT) has been used to suppress (Balasubrama- mentofBactrocerainvadens(Drewetal.2005). niam et al. 1972, Qureshi et al. 1981, Vargas et al. Relevant previous modeling focused on the in- 2010)oreventoeradicateestablishedpopulations herentdensitydependenceofmaleannihilationby of ME-responding fruit ßies of economic impor- using pheromone attractants (MAT; Barclay and vandenDriessche1983)andmasstrapping(Barclay 1(Retired)PaciÞcForestryCentre,CanadianForestService,506 1984).Inaddition,Itoˆetal.(1989)developedaMAT W.BurnsideRoad,Victoria,BC,CanadaV8Z1M5. modelandHorngandPlant(1993)simulatedthelek 2Correspondingauthor,currentaddress:928OldEsquimaltRd., mating system and its impact on MAT. Here we Victoria,BC,CanadaV9A4X3(e-mail:[email protected]). investigate the area-wide implementation of MAT 3InsectPestControlSection,JointFAO/IAEADivisionofNuclear byusingMEasthesolesuppressionmeasureforthe TechniquesinFoodandAgriculture,InternationalAtomicEnergy Agency,Wagramerstrasse5,P.O.Box100,A-1400Vienna,Austria. controlofahypotheticalME-respondingpestspecies. 0013-8746/14/0081Ð0096$04.00/0(cid:2)2014EntomologicalSocietyofAmerica 82 ANNALSOFTHEENTOMOLOGICALSOCIETYOFAMERICA Vol.107,no.1 WethenmaketheparametervaluesspeciÞctoBac- Also,ifmalescanalwaysinseminateallfemales,then troceradorsalis(Hendel).Thisispartoneofalarger thedistinctionbetweenmonogamyandpolygamydis- study,withparttwo(Barclayetal.2014)studyingthe appearsinthiscontext. simultaneousapplicationofMATandsterilereleases. MalesLimitedtoOneMatingPerDay TheModelsandResults In reality, males are limited in their mating fre- Allthemodelscontainedinthisarticlehavedaily quency and may have either an extended period of reproductionandmostinvolvecaptureatMEbaits/ mating with one female or a refractory period after traps.Mostalsoinvolve,andrelyon,alimitationon matingbeforetheycanmateagain.Herewepresent howoftenmalescanmateinagivenperiod;mostof amodiÞcationoftheaforementionedmodelbyusing the models assume that males can mate once per MEasbait.Wetreatthecasesinwhichonlymalesare day,andwillmatewhenevertheopportunityexists. attracted,aswellaswhenbothsexesareattractedto D the ME baits/traps. In Bactrocera spp., females are ow MalesCanMateUnlimitedTimesEachDay attracted in reduced proportion to males (Shelly nlo 2010). We also treat the cases in which females are a d Amodelinwhichadultinsectsareattracteddailyby monogamous and also in which females are polyga- ed food,otherodors,orothersourcesofattractionatbaits/ mous; although males of Bactrocera spp. are polyga- fro trapswaspresentedbyBarclay(1987);whentheinsects mous,rematinginfemalesthathavealreadymatedis m h feedontoxicbaitorarecaughtintraps,theyarekilled. infrequent.Ifmalescanmateonlyonceperdaybe- ttp Thismodelassumesthatcaptureoccursbeforemating causeoftheshortcourtshipperiodandlongmating s and that males are capable of unlimited mating fre- timeinthesespecies,thenthereisthepossibilityof ://a c quency,andthatallvirginfemalesmateontheirÞrstday. restrictingmatingofvirginfemalesbyreducingmales a d V (cid:3)a F in sufÞcient numbers through baiting/trapping such em t(cid:2)1 t(cid:4)k thatnotallavailablefemaleswillbecomematedona ic Ft(cid:2)1 (cid:2) syVt (cid:3) syFt givenday.Ifbothsexesaretrapped,itismoredifÞcult .oup Mt(cid:2)1 (cid:2) a Ft(cid:4)k (cid:3) szMt [1] ffoewremrafleemsatolesli,mbuittffeemwaelrefemmatailnegs,wbiellclaauysefetwheerreegagrse, .com whereF,V,andM arethenumbersofadultmated sothereissomecompensation.Theparentmodelhere /a (i.e., ferttilizted) femtales, virgin females, and males, isthatinEquation1withy(cid:3)z(cid:3)1.0. esa respectively,attimet;sandaaredailysurvivorship Ifmalescanmateonlyonceperday,thentherewill /a andfertility,respectively,andkisthedevelopmental be several sets of equations, depending on whether rtic le periodindaysfromovipositiontoadultemergence. females are monogamous or polygamous, whether -a Further,thefertility,a,isassumedtoincludepreadult only males or both sexes are attracted to the baits/ bs survivorship.Ageclassesarenotexplicitlymodeled, traps,whethertrappingoccursbeforeoraftermating, tra c butbothFandMareassumedtocontainpotentially and whether males outnumber receptive females at t/1 aninÞnitenumberofadultageclasses,withallbutthe mating time or whether they are outnumbered by 07 Þrstfewbeingclosetozero.Inaddition,yandzare receptivefemales.Whethermalesoutnumberrecep- /1 /8 proportions representing the daily survivorships of tivefemaleswilldependontherelativesusceptibilities 1 matedandvirginfemales(y),andofmales(z),after to capture at baits/traps of the different population /77 1 someofthemvisitthebaitsortraps;therefore,yand componentsaswellasthetimingofvisitingthebaits/ 7 3 zaretheproportionsofthosepopulationcomponents traps.Ifmalesvisitandarekilledatbaits/trapsbefore b y thatdonotvisitanddieatthebaits/trapseachday. mating,thenitispossiblethatreceptivefemalesout- g ThismodelhasonepositiveequilibriumconÞguration numbermalesatmatingtime(maledeÞcit).Ifmales ue s ofsizesofthethreecomponents(F,V,andM),andit mate Þrst and then visit the baits/traps, males will t o is obtained by dropping time subscripts and solving probablyoutnumberreceptivevirginfemalesatmat- n 0 theresultingthreesimultaneousequations;theequi- ingtime(maleexcess),astheratesofrecruitmentof 5 A librium is neutrally stable. The value of y that will bothareidenticalunlessthesexratioatadultemer- p achievethisequilibrium(calledthecriticalvalueofy, genceisdifferentfromone-to-one.Hereweassume ril 2 y*)isgivenby: that virgin females and mated females are equally 0 1 attractedtobaits/traps,atadailyrateof1(cid:4)y.Wewill 9 y*(cid:3)1/s(a(cid:2)1) [2] treat the two conditions in which attraction to the Notethatzdoesnotenterintothiscondition,mean- baits/trapsoccursbeforematingsothatreceptivefe- ingthatzhasnoeffectonthefemaleequilibrium,but malesoutnumbermales,andalsoinwhichattraction onlyonthatofthemales.Ify(cid:5)y*,thenthepopulation occursaftermating,sothatatmating,malesoutnum- collapses,whereasify(cid:6)y*,thepopulationgrowsin berreceptivefemales.Inaddition,wewillassumethat anunlimitedmanner.Ifmalescanalwaysinseminate allvirginswillmateassoonastheyhavetheoppor- allthevirginfemales,regardlessoftheirrelativenum- tunity (day 1 if males are in excess of receptive fe- bers, then z has no effect, except on the size of the males). malepopulationrelativetothefemaleswhenatequi- FemaleMonogamy.Hereweassumethatonlyvir- librium,andthepopulationcannotbecontrolledby gin females mate and that mated females will not deploymentofbaits/trapsifonlymalesareattracted. remate. January2014 BARCLAYANDHENDRICHS:MODELOFMATFORCONTROLLINGBactrocera 83 Table1. Equationsforthemodelsinvolvinglimitedmalematingfrequency Trappingbeforemating Trappingaftermating Onlymalesattractedtotraps:Femalemonogamy Vt(cid:2)1(cid:3)aFt(cid:4)k(cid:2)sVt(cid:7)1(cid:4)zMt/Vt(cid:8)(cid:3)aFt(cid:4)k(cid:2)sVt(cid:4)szMt Ft(cid:2)1(cid:3)sVt(cid:7)zMt/Vt(cid:8)(cid:2)sFt(cid:3)szMt(cid:2)sFt Nocontrolpossiblehere Mt(cid:2)1(cid:3)aFt(cid:4)k(cid:2)szMt Onlymalesattractedtotraps:femalepolygamy Vt(cid:2)1(cid:3)aFt(cid:4)k(cid:2)sVt(cid:7)1(cid:4)zMt/(Vt(cid:2)Ft)(cid:8) Vt(cid:2)1(cid:3)aFt(cid:4)k(cid:2)sVt(cid:7)1(cid:4)Mt/(Vt(cid:2)Ft)(cid:8) Ft(cid:2)1(cid:3)sVt(cid:7)zMt/(Vt(cid:2)Ft)(cid:8)(cid:2)sFt Ft(cid:2)1(cid:3)sVt(cid:7)Mt/(Vt(cid:2)Ft)(cid:8)(cid:2)sFt Mt(cid:2)1(cid:3)aFt(cid:4)k(cid:2)szMt Mt(cid:2)1(cid:3)aFt(cid:4)k(cid:2)szMt Bothsexesareattractedtotraps: Femalemonogamy Vt(cid:2)1(cid:3)aFt(cid:4)k(cid:2)syVt(cid:7)1(cid:4)zMt/yVt(cid:8) Ft(cid:2)1(cid:3)syVt(cid:7)zMt/yVt(cid:8)(cid:2)syFt Nocontrolpossiblehere D FeMmta(cid:2)le1p(cid:3)olyagFamt(cid:4)yk(cid:2)szMt own VFMttt(cid:2)(cid:2)(cid:2)111(cid:3)(cid:3)(cid:3)saayVFFttt(cid:4)(cid:7)(cid:4)zMkk(cid:2)t(cid:2)/(sysyzVVMtt(cid:2)t(cid:7)1y(cid:4)Ft)zM(cid:8)(cid:2)t/(syyVFtt(cid:2)yFt)(cid:8) VFMttt(cid:2)(cid:2)(cid:2)111(cid:3)(cid:3)(cid:3)saayVFFttt(cid:4)(cid:4)(cid:7)Mkkt/(cid:2)(cid:2)(VssyztMV(cid:2)ttF(cid:7)1t)(cid:4)(cid:8)(cid:2)Mst/y(FVtt(cid:2)Ft)(cid:8) loaded Ifonlymalesareattractedtothetraps,thenmalesareindeÞcit,limitingfemalemating.ThetermszMt/VtandzMt/(Vt(cid:2)Ft)representthe from proportionoffemalesthatmateondaytbecauseofmalelimitation. h ttp OnlyMalesAreAttractedtotheBaits/Traps. Ifmalesarefewerinnumberthanvirginfemales, s thentheconditionforanequilibriumtoexististhat ://a 1.Trappingbeforemating(maledeÞcit):Theequa- asz(cid:3)(1(cid:4)sz)(1(cid:4)sy)andtheequilibriumis: cad tionsforthiscaseareshowninTable1.Thecondition e forapositiveequilibriumtoexististhat:asz(cid:3)(1(cid:4)sz) V (cid:2) F[aÐ(1(cid:4)sy)]/(1(cid:4)sy),M (cid:2) aF/(1(cid:4)sz) mic (1 (cid:4) s) and the equilibrium is at V (cid:3) F [a Ð (1 (cid:4) .o Thisyieldsacriticalvalueforzof: u s)]/(1(cid:4)s),M(cid:3)aF/(1(cid:4)sz),whereasFisundeter- p mined. This equilibrium is neutrally stable because if z*(cid:3)(1(cid:4)sy)/[as(cid:2)s(1(cid:4)sy)] [4] .co m eachofthepopulationcomponents(V,F,andM)was The relationship between z and y at equilibrium is /a multipliedbythesamepositivefactor,theequilibrium showninFig.1A;thereisanalmostlinearrelationship esa wouldpersistbutthepopulationwouldnotreturntoits betweenmaleandfemaletrappingsurvivorshipsuch /a previoussize.TheequationsforFandMcanbesolved that the two do not interact much and are almost rtic simultaneouslyatequilibriumtoyieldacriticalvaluefor le additive. -a z,z*,of: Ifmalesareinexcessofvirginfemalesbecauseof bs z*(cid:3)(1(cid:4)s)/[as(cid:2)s(1(cid:4)s)] [3] the trapping of females, all virgin females become trac matedandtheequationsarethesameasinEquation t/1 Thisvalueofz,calledthecriticalvalue(z*),separates 1,andthebaiting/trappingofmalesdoesnotassistthe 07 successfromfailureandistheupperlimitonthepro- controlprogram. /1 portionofmalesthatdoesnothavetodieatbaits/traps 2.Trappingaftermating:Inthiscase,allthevirgins /81 everydaytocontrolthepopulation.Inthiscase,males aremated,asthetrappinghasnotyetbeeneffective /77 havetobefewerthanvirginfemalesatequilibriumfor whentheymate,sothatthecriticaltrappingrateisthe 17 thecontrolmethodtohaveanyeffect,sothereisonly sameasthatgiveninEquation2:y*(cid:3)1/s(a(cid:2)1),so 3 b onesetofequationsrepresentingmaledeÞcit.Ifz(cid:5)z*, thatkillingmalesdoesnotassistthecontrolprogram y g thenthepopulationwillgoextinct;ifz(cid:6)z*,thenun- and simply reduces the male population, but not ue limitedpopulationincreaseoccurs.Ifmalesareinexcess enoughtobeofanycontrolvalue. st o ofvirginfemales,thenallthevirginsbecomematedand Separating the Two Cases of Male Deficit and Male n nocontrolisimposedonthepopulation. Excess. Weneedawaytodetermineifreceptivefe- 05 2.Trappingaftermating:Inthiscase,allmalesthat malesoutnumbermalesorifmalesoutnumberrecep- Ap hinagv,eaenmdebregceaduosneathneygniuvmenbedrasyoafremaavlaeislaabnledffoermmalaets- ctiovnetfreomliasleimsptooskendo.wThhioswcasnmbaellfzoumnudstbbyesubbefsotirteutainnyg ril 20 1 emerging are the same (unless the sex ratio is not y(cid:3)1/s(a(cid:2)1)intoEquation4,byusingequilibrium 9 one-to-one), then all virgins become mated and no values.Simplifying,thevalueofzforwhich,atequi- controlispossible.Theequationsforthiscasearethe librium,malesareequalinnumbertovirginfemales sameasthoseinEquation1withy(cid:3)1. (thisvalueofziscalledtheseparatrix,separatingmale excessfrommaledeÞcitthatseparatesthevalidityof MalesandFemalesAttractedtotheBaits/Traps. thetwosetsofequations)isz: e 1.Trappingbeforemating:Inthiscase,thereisthe z (cid:3)1/s(a(cid:2)2) [5] possibility that males could be either in excess (i.e., e males (cid:6) virgin females) or deÞcit (i.e., virgin fe- This value is independent of either V or M and males (cid:6) males) and still control the population by assumesthatyisatthecriticalvalue,y*.Ifzislessthan meansoftrappingoffemales.Theequationsforboth the critical value, z*, then the population will be casesaregiveninTable1. driventoextinction.Also,ifz(cid:5)z,thenneitherfemale e 84 ANNALSOFTHEENTOMOLOGICALSOCIETYOFAMERICA Vol.107,no.1 OnlyMalesAttractedtotheBaits/Traps. 1.Trappingbeforemating:Theequationsareshown inTable1.Thereisaneutrallystableequilibriumat V(cid:3)aF(1(cid:4)sz)/(1(cid:4)s);M(cid:3)aF/(1(cid:4)sz),andthis yieldsacriticalvalueforzof: z*(cid:3)(1(cid:4)s)/as [6] whichisonlyslightlylargerthanwithfemalemonog- amy, as virgin females are competing with remating females for males; thus, control is slightly easier if femalesarepolygamous. 2.Trappingaftermating:Contrarytothesituation D withfemalemonogamy,thereappearstobeapossi- o w bilitythatmalesmaybefewerthanvirginandmated n femalescombined,eveniftrappingoccursaftermat- lo a ing.ThisleadstotheequationsshowninTable1,and de sthz)e/re(1is(cid:4)asn)e(u1tr(cid:2)allys(cid:4)stasbzl)eaenqduiMlib(cid:3)riuamF/a(t1V(cid:4)(cid:3)sz)a.FT(h1es(cid:4)e d from equationsyieldV(cid:2)F(cid:3)aF/(1(cid:4)s).Ifmalesaretobe h lessthanfemales(allfemales,astheyarepolygamous), ttp s tahFe/n(1M(cid:4)(cid:5)s)V,(cid:2)whFi,cwhhreicdhuccaenstboeswzr(cid:5)ittes,naansdaFth/i(s1is(cid:4)alswz)ay(cid:5)s ://ac a trueforpositiveM,V,F,s,andz((cid:5)1).Thus,inthecase de offemalepolygamy,capturingonlymalesmightyield m ic controlwhentrappingoccursbeforemating.However, .o u thevalueofthecriticalrateforzis: p .c z*(cid:3)[(1(cid:2)s)(1(cid:4)s)(cid:4)as]/s(1(cid:4)s) [7] om Fig.1. Isoclinesofcapturelevelsofmalesandfemales at methyl eugenol (ME) baits/traps that will result in andthisisonlypositiveforas(cid:5)(1(cid:4)s)(1(cid:2)s).From /ae s pffbeeoemmtpwuaalleleeaesstnioaorutnehtneeaultitsmmruarbicnvetiaervtdomiortansolh,esiasups.cssThuohmbfeaimcnitugasrl/vetthesraas(tpszhsa)oapnawrndotdphthoefaerittmnirotaeenlcreeaoscpft(ttiiyohv)nee, tEa(o1sq(cid:6)bu(cid:4)ea1tsei)(cid:4)onn(cid:5)cso,1asu,osnw(cid:5)ttheear1neto(cid:4)dthteiisns2t,chnwraaittthiuticchraehel,cisasoysnaswttreraiomtnhlgriteashtonoenosrelteyqlpivukaieiraralbeymlseeetvhftoeearrrt a/article-a thatis,proportionsoftheirpopulationsthatdonothave b to visit and die at the baits/traps each day to achieve valuesthepopulationwouldbeonthebrinkofcol- stra populationelimination.Withsomefemaleattractiontothe lapseevenwithoutcontrol. c baits/traps,therequiredcapturerateforeliminationofthe t/1 population is uniformly less than with male attraction MalesandFemalesAttractedtotheBaits/Traps. 07 /1 alone.Parametersaandsaremeandailyfertility,prorated 1.Trappingbeforemating:FormaledeÞcit,wehave /8 by the preadult survivorship, and daily survivorship of 1 the equations shown in Table 1, and yield a critical /7 adults,respectively.(A):Femalesaremonogamous;(B): 7 valueforzof: 1 Femalesarepolygamous. 7 3 z*(cid:3)(1(cid:4)sy)/as [8] b y g Therelationshipbetweenz*andyisshowninFig.1B. u normalecaptureneedstobeasefÞcientaseitherone e Formaleexcess,wehavethesameequationsasinEqua- s a1c(cid:4)tinsg.Hinoiwsoelavteiro,ni.tIctacnanalbsoesbheoswhnowthnatthzea,t(cid:6)aszm*iufsatsb(cid:6)e tio2n.1T,raanpdptihnegcaafpteturrmeaotfinmga:leHsehraesangoaeinff,emctaolensccoanntrboel. t on 0 (cid:6)1(cid:4)sforthepopulationtosurvivewithoutcontrol, eithergreaterorlessinnumberthanfemales,because 5 A bsoiotlhoagtictahlerienqeuqiureamliteynztse.(cid:6)z*issatisÞedasaresultof bceopthtivseexteosmaraetinbge.ingtrappedandallfemalesarere- pril 2 0 Equation5canalsobederivedbylettingyV(cid:3)zM 1 9 andlettingy(cid:3)1/s(a(cid:2)1)andthensolvingforz.As ThecaseofmaledeÞcitisshowninTable1and yieldsaneutrallystableequilibriumat: both males and females visit the baits/traps before mating,thenumbersatmatingarereducedfromVto V(cid:3)aF(1(cid:4)sz)/(1(cid:4)sy)(1(cid:2)sy(cid:4)sz) yVandMtozMforfemalesandmales,respectively.If and z(cid:6)1/s(a(cid:2)2),thenmalesplaynopartincontrolling thepopulation.Ifz(cid:5)1/s(a(cid:2)2),thenthetrappingof M(cid:3)aF/(1(cid:4)sz) femalesdoesnotneedtobeasintenseasifmaleswere Thecriticalvalueofzisat: notbeingtrapped(Fig.1A). z*(cid:3)[(1(cid:2)sy)(1(cid:4)sy)(cid:4)asy]/s(1(cid:4)sy) [9] FemalePolygamy.Hereweassumethatbothvirgin andmatedfemaleswillmatedailywhenevertheop- whichispositiveforasy(cid:5)(1(cid:2)sy)(1(cid:4)sy),which portunityexists. againissatisÞedforonlyarelativelynarrowinterval January2014 BARCLAYANDHENDRICHS:MODELOFMATFORCONTROLLINGBactrocera 85 Table2. Equationsforthemodelsinvolvinglimitedmalematingfrequency Somematingbeforetrapping Multiplemalematingperday Vi(cid:2)1(cid:3)aFi(cid:4)k(cid:2)sVi(cid:7)1(cid:4)(q(1(cid:4)z)Mi(cid:2)zMi)/Vi(cid:8) Vi(cid:2)1(cid:3)aFi(cid:4)k(cid:2)sVi(cid:7)1(cid:4)nzMi/Vi(cid:8) Fi(cid:2)1(cid:3)sVi(cid:7)(q(1(cid:4)z)Mi(cid:2)zMi)/Vi(cid:8)(cid:2)sFi Fi(cid:2)1(cid:3)sVi(cid:7)nzMi/Vi(cid:8)(cid:2)sFi(cid:3)snzMi(cid:2)sFi Mi(cid:2)1(cid:3)aFi(cid:4)k(cid:2)szMi Mi(cid:2)1(cid:3)aFi(cid:4)k(cid:2)szMi VirginfemalescannotmateimmediatelyonadultemergenceÑFemalemonogamy Attractionofonlymales;maledeÞcit V(cid:3)aF(cid:2)asF(cid:2)as2F(cid:2)...(cid:2)as(cid:4)(cid:4)1F(cid:2)as(cid:4)F(cid:7)1.0(cid:4)zM/as(cid:4)F(cid:8)(cid:2)as(cid:4)F(cid:7)1.0(cid:4)zM/as(cid:4)F(cid:8)/(1(cid:4)s) F(cid:3)as(cid:4)F(cid:7)zM/as(cid:4)F(cid:8)(cid:2)sF M(cid:3)aF(cid:2)szM Attractionofbothmalesandfemales MaledeÞcit V(cid:3)aF(cid:2)aF(sy)(cid:2)aF(sy)2(cid:2)...(cid:2)asF(sy)(cid:4)(cid:7)1.0(cid:4)zM/aF(sy)(cid:4)(cid:8)(cid:2)as(cid:4)F(cid:7)1.0(cid:4)zM/as(cid:4)F(cid:8)/(1(cid:4)s) F(cid:3)aF(sy)(cid:4)(cid:7)zM/aF(sy)(cid:4)(cid:8)(cid:2)syF D M(cid:3)aF(cid:2)szM o w Maleexcess n V(cid:3)aF(cid:2)aF(sy)(cid:2)aF(sy)2(cid:2)aF(sy)3(cid:2)...(cid:2)aF(sy)(cid:4)(cid:4)1(cid:3)aF(cid:7)1(cid:4)(sy)(cid:4)(cid:8)/(1(cid:4)sy) lo F(cid:3)aF(sy)(cid:4)(cid:2)syF ad M(cid:3)aF(cid:2)szM ed fro Threespecialcasesaremodeled:1)somemalesmatebeforetrappingandsomeaftertrapping,2)malescanmatemultipletimesperday, m 3)virginfemalesrequireamaturationtimebeforemating. h ttp tarbaocvtiengy*an(cid:3)d1k/isl(liang(cid:2)o1n)ly, tfheemcarlietsic.aTlhvuaslu,ecownhtreonl abty- kgiivlliendgqea(cid:3)ch[(d1a(cid:4)y)s.)(E1q(cid:4)uastzio)n(cid:4)1a1szc]a/nas(b1e(cid:4)sozl)v,eadndfothreqn, s://a c usingMEbaits/trapsiscompatiblewithtrappingafter themaximumvalueofqisgivenby: ad e mating for a restricted range of control parameters, m whichrequiresthattheattractionoffemalestotheME qm(cid:3)(1(cid:4)s)/as [12] ic.o sourcesisfairlyeffective.Thecaseofmaleexcessdoes u p notyieldcontrol. Inanumericalexampleusinga(cid:3)10ands(cid:3)0.9,we .co SeparatingtheTwoCasesofMaleDeficitandMale Þndthatq*(cid:3)0.1/9.0(cid:9)0.011.Thisisidenticaltothree m Excess.TheequationsformaledeÞcitaboveimplythat decimals with the value of z* (when q (cid:3) 0) given /ae stMhme(cid:3)asleleatsFwt/vo(a1lg-uisveze)osfaztnrd(cid:3)apFpyi(cid:2)n(cid:3)gVf1o/(cid:3)rs(waahF(cid:2)i/c(h11t)r(cid:4),aapsnpydi)n.tghEoiqsfumisatatilhneegs pqmrae(lvpeisroouapstolybr.taiFoitinsg/utmrraeapt2siAn)gsahnbodewfozsrt(ehsueartivtnritavecartlaiocontfi/omcnaabpleetustwraeefteeonrf sa/article contributestopopulationcontrol.Thus,theseparatrix baiting/trapping) for four values of the trapping of -ab isgivenbyze: femaleswhenfemalesaremonogamous;Fig.2Bshows stra ze(cid:3)y*(cid:3)1/s(a(cid:2)1) [10] tThheesfaomuervinatlueerascotfiotnrafpoprinthgeocfafseemoaflefesmarael:e1p)onlyognaem,2y). ct/10 asinEquation2.Thus,thetrappingoffemalesmustbe one-thirdofthedifferencebetween1.0andthecrit- 7/1 sufÞcient to eliminate the population alone in the ical value (y*), 3) two-thirds of the difference be- /8 equilibriumsituation.Inthetransientsituation,both tween1.0andthecriticalvalue(y*),andthecritical 1/7 malesandfemalesmaycontributetopopulationcon- 7 value,y*.Itisclearthatifbothfactorsareoperating, 1 troloreliminationbyimposingexcessmortalityover theconstraintsonthecontrolsystemaremorestrin- 73 thatrequiredforanequilibriumtobemaintained. b gentthanifallbaiting/trappingoccursbeforemating. y SomeMatingOccursBeforeCaptureofMalesand g ThisshowsthatforMEbaits/trapstobeeffectivein u SitomseeemAsftelirk.eTlyhisthsiattuasotimonemmaaytianpgpraonxdimtarateppreinaglitmy,aays canondtkroillllimngusatnbiensceocntspidoeprualbalteio,nan,tdheifrmatoereofthatatnraactfieown est on occur together, as mating normally occurs at dusk, malesmatebeforevisitingtheMEsources,themethod 05 althoughmostmaletrappingoccursthroughouttheday appears likely to fail. However, if females are also A beforemating.Inthiscase,therewillbeamixtureofthe p equationsshowninTable1andEquation1.Assumethat attractedandkilled,thesituationismoreoptimistic.In ril 2 a proportion q of the (1 (cid:4) z)M males that visit the fact,thisappearstooccurandcanbesigniÞcantÑitis 01 theso-called“pseudomale”responsebyfemaleswhen 9 baits/trapswillmatebeforebeingattractedtotheseME males are rare and females are old and virgin (see sources,whereasaproportion(1(cid:4)q)visitthebaits/ Nakagawaetal.(1970)andMcInnisetal.(1994)for trapswithoutmating.Thenamixtureofthetwomodels CeratitiscapitataWied.withthemaleluretrimedlure; willapply.Theequationsformalemonogamyandat- unpublished Þeld observations (Cunningham, tractionofonlymalestobaits/trapsareshowninTable McInnis, and others) for B. dorsalis with ME; and 2.Thecriticalvalueofzatequilibrium,z*,isgivenby: Þeldcagestudies(Bull2010)forBactroceratryoni z*(cid:3)[(1(cid:4)s)(cid:4)asq]/[as(1(cid:4)q)(cid:2)s(1(cid:4)s)] Froggatt). Thus, perhaps, if ME could be used in conjunctionwithafemalelure,attractioncouldbe [11] enhanced and MAT control may be more feasible. Then the largest value of q (q ) compatible with Theotherthreeaforementionedmodelsyieldsim- m controliswhenz(cid:3)0(i.e.,allmalesareattractedand ilarresultsformixedorderoftrappingandmating, 86 ANNALSOFTHEENTOMOLOGICALSOCIETYOFAMERICA Vol.107,no.1 attracted but somehow were not captured at ME sources,thusescapingbeingkilled.Thisissimilarto thesituationinwhichsomemalesmatebeforebeing attracted to the traps inasmuch as they get to mate before dying. In terms of the model, the two are identical, except for the fact that males that escape beingkilledsurviveuntiltheydienaturally,buthaving mated,thisdoesnotaffectthefemalefecunditymuch differentlyfrommalematingbeforevisitingMEbaits/ traps. MalesCapableofMultipleMatingsPerDay D Aspreviouslyshown,ifmaleshaveunlimitedmale ow mating capability and can always inseminate all the nlo receptive females, the population cannot be con- a d trolled by deployment of ME baits/traps unless fe- ed malesarealsocapturedandkilled.Nowassumethat fro eachmaleiscapableofmatingntimesperday.Inthat m h case,theÞrstsetofequationsinTable1canbemod- ttp iÞedtoincludethefactthateachmalecanmatewith s nfemales,sothatthefractionthatmalesrepresentof ://a c the total virgin female population becomes nzM/V a i i d becauseeachmalehereisworthnmalesthatcanonly em mateonceperday.Theconditionforanequilibrium ic toexististhatasnz(cid:3)(1(cid:4)sz)(1(cid:4)s)anditgivenby .ou V* (cid:3) F* [a (cid:4) (1 (cid:4) s)], M* (cid:3) F* (1 (cid:4) s)/snz. The p.c o criticalvalueofz,z*,isgivenby: m /a z*(cid:3)(1(cid:4)s)/s[an(cid:2)1(cid:4)s] [13] e Fig.2. IsoclinesofcapturelevelsofmalesatMEbaits/traps sa thatwillresultinpopulationeliminationwhenaproportion,q, Comparingthiswiththecasewheren(cid:3)1,wenote /a ofinsectsthatvisitthetrapsmatebeforevisitingthetrapsand thatthecriticalvalueforzisamuchlowervaluehere, rtic 1(cid:4)qthatvisitthetrapswithoutmating.(A):Femalesare asnisinthedenominator(inmostcases,(cid:9)1/ntimes le-a ametatocrnhaoctpgiaaomnneoltuorse;tp(hrBee)s:ebFnateitms1/)atrleyasp(cid:3)sar(e1f.up0lo,llsyfogeamtmhaaolteutssh.ueTrrhveieviasfol)nu;or2lf)inemeysa(cid:3)ilne mthaelevaclaupetuorfez*suwrvitivhonrs(cid:3)hip1)m.Tushtubs,etmouacchhielevsescifomntarloels, bstrac 0.67(1.0(cid:4)y*)(cid:2)y*;3)y(cid:3)0.33(1.0(cid:4)y*)(cid:2)y*;and4)y(cid:3)y*, arecapableofmultiplematingseachday,compared t/1 thecriticalvalueoffemalesurvivorshiptoachieveeradication. withmalesmatingonlyonceeachday.Inthiscase,the 07 captureoffemalesismadeevenmoredesirable. /1 /8 andtheequationsforthecriticalmaletrappingrates 1 /7 areshowninTable3. 7 VirginFemalesCannotMateImmediatelyonAdult 1 7 Emergence 3 b SomeMalesEscapeAttraction y In some species, a period of maturation including g u AproportionofmalesmaynotbeattractedtoME, nutritionalfeedingmustoccurbeforevirginfemales e s have fed already on a natural ME source, or were canmateandlayeggsorbeforemalescanmate.This t o n 0 Table3. Modelsshowingthefourcombinationsof1)femalemonogamyversuspolygamy,and2)thetrappingofonlymales(“Trap 5 Males”)versusthetrappingofbothmalesatarate(1(cid:2)z)andfemalesatarate(1(cid:2)y)(“TrapM&F”) A p Model z* z (q ) ril 2 e m 0 Monogamy (1(cid:4)s)/(cid:7)as(cid:2)s(1(cid:4)s)(cid:8) Ð (1(cid:4)s)/as 19 Trapmales Monogamy (1(cid:4)sy)/(cid:7)as(cid:2)s(1(cid:4)sy)(cid:8) 1/s(a(cid:2)2) (1(cid:4)sy)/as TrapM&F Polygamy (1(cid:4)s)/as Ð (1(cid:4)s)/(cid:7)as(cid:4)s(1(cid:4)s)(cid:8) Trapmales Polygamy (1(cid:4)sy)/as 1/s(a(cid:2)1) (1(cid:4)sy)/(cid:7)as(cid:4)s(1(cid:4)sy)(cid:8) TrapM&F Thecriticalsurvivorship(z*)isshownaswellasthesurvivorship(z)thatcausesmalestobeequaltoavailablefemalesatequilibriumand e themaximumproportionofcases(q )inwhichmatingoccursbeforecaptureforcontroltobepossible.Thetwocasesoftrappingonlymales m donotyieldanyvaluesforwhichmalesequalavailablefemalesatequilibrium,asthemalesmustbelessthantheavailablefemalesatequilibrium. January2014 BARCLAYANDHENDRICHS:MODELOFMATFORCONTROLLINGBactrocera 87 sof0.7and0.9,aswellasvaluesof(cid:4)rangingfrom1to 10.Figure3showsthatcriticalsurvivorshipfromtrap- pingincreaseswiththedelayinmating,indicatingthat controlbecomeseasierasthedelayinmatingbecomes longer.Also,wecansolveforthevalueofzatwhich malesequalsreceptivefemales.Itisfoundbyequating zMandy(sy)(cid:4)(cid:4)1aF,sozaF/(1(cid:4)sz)(cid:3)(sy)(cid:4)aF/s, giving: z (cid:3)(sy)(cid:4)/s[1(cid:2)(sy)(cid:4)] [16] e We can see that when (cid:4)(cid:3) 1 and y (cid:3) y*, we get z (cid:3)1/s(a(cid:2)2),asaforementioned.FormaledeÞcit, e wegettheequationsshowninTable2,andfromthe D o secondtwoequationsweobtainthecriticalvalueofz, w n z*,of: lo a Fig.3. Effectsofamatinglaginfemales(horizontalaxis) z*(cid:3)(1(cid:4)sy)/[as(cid:2)s(1(cid:4)sy)] [17] de d osunrvtihveorvshaliupe(voefryti*c,althaexisc)r.itTichaelfvoaulruecufrovresfesmhoawlevtaralupepsinogf whichisthesameaswithonlyatimelagof1day.This fro m y*forfourcombinationsoftheparametersaands,being5.0 illustratesthefactthataÞxedamountofmalemor- h and10.0foraand0.7and0.9fors. talityisrequiredtobringthepopulationtoitsunstable ttp canbemodeledbyintroducingatimelagintoEqua- eTqhueilmibirniiummu,mwhvealtuheeroffesmuravleivmorasthinipgriseqdueilraeydedtooarlnloowt. s://ac tion1,withy(cid:3)z(cid:3)1.0,suchthatthevirginfemales thepopulationtosurviveisgivenby(s(cid:4)(cid:4)1(cid:3)(1(cid:4) ad e ofage(cid:4)willmateifmalesareavailable.Theparent s)/as),whereasEquation17givestheamountofsur- m modelwithnotrappingthenbecomes: vivorshipaftertrappingtoachievetheequilibrium.As ic.o (cid:4)increases,eventuallyavalueisreachedatwhichthe u p V(cid:3)aF(cid:2)asF(cid:2)s2aF(cid:2)s3aF(cid:2)...(cid:2)s(cid:4)(cid:4)1aF respondingfemalepopulationisreducedtothesame .c o sizeasthemalepopulationrequiredforcontrol. m (cid:2) aF[1(cid:4)s(cid:4)]/(1(cid:4)s) Thetwocasesforfemalepolygamyaresomewhat /ae s F (cid:2) s(cid:4)aF(cid:2)sy F morecomplicated,butthecriticalvaluesofzare: a/a M (cid:2) aF(cid:2)s M [14] z*(cid:3)(1(cid:4)sy)[y(cid:2)a(sy)(cid:4)(cid:4)1] rtic le Forthismodel,populationpersistencerequiresthat /{s(1(cid:4)sy)[y(cid:2)a(sy)(cid:4)(cid:4)1](cid:2)a2(sy)(cid:4)} [18] -ab as(cid:4)(cid:6)1(cid:4)s. fortheattractionofbothsexes,andthesameequation stra attWracetÞiornstocfoonnsildyemrtahleesctaosethoeffbeamitsa/letrmaposnaongdamexyteanndd wiItnhysu(cid:3)mm1aforyr,thaetaimttreaclatigoninoffeomnlaylemmalaetsi.ng assists ct/10 7 themtoincludedelayedmating.ThisisamaledeÞcit controlbytrappingfemalesbuthaslittleornoeffect /1 casebecausemaleexcesscannotcontrolthepopula- /8 oncontrolbytrappingofmales.Thispresumablyre- 1 tionwhenfemalesarenotattractedtothetraps.The ßectstheneedtoreducethemalestoalevelthatwill /77 equationsareshowninTable2,andtheequilibrium 1 reducereproducingfemalestoadegreethatwillnot 7 equationsforFandMtogetheryieldthecriticalvalue 3 allow one-for-one replacement of individuals in the b ofz,z*,forcontrol: y population,andthislevel(ofmales)willnotdepend g z*(cid:3)(1(cid:4)s)/[as(cid:2)s(1(cid:4)s)], on how many females die from other causes before ue s mating;thecriticallevelisdeterminedbytheavailable t o thesameaswithnodelay(Equation3)inmating. males,notbythevariouscausesofdeathofthefemales n Forthecaseofattractionofbothmalesandfemales thatdonotgettoreproducesuccessfully.Thismodel 05 tobaits/traps,wehavethetwopossibilities:maleex- isfurtherdevelopedintheage-structuredmodellater Ap cessormaledeÞcit.Theequationsformaleexcessat inthetext. ril 2 equilibrium are also shown in Table 2 and give the 0 equilibriumconditions:V(cid:2)F(cid:3)aF/(1(cid:4)sy). 19 FromtheequationforFweget(1(cid:4)sy)(cid:3)a(sy)(cid:4) ConclusionsFromtheSimpleModels giving: ReferringtoTable3andFig.1,itisseenthatthe a(sy)(cid:4)(cid:2)sy(cid:4)1(cid:3)0 [15] trapping of both sexes is more efÞcient than trap- pingonlymales.Thisisbecausethecriticalvalueof Thus,maletrappingplaysnopartincontrolofthe male survivorship for control (z*) can be greater populationifmalesareinexcessofreceptivefemales. when also some females are captured than when When(cid:4)(cid:3)1,wehavetheEquation1,andEquation15 only males are trapped. Also, the technique works reducestoy*(cid:3)1/s(a(cid:2)1),aspreviously.Ingeneral, somewhatmoreeffectivelyonspeciesinwhichfe- thismodelisnotanalyticallysolvableforyfortimelags malesarepolygamousthanonmonogamousspecies, (cid:6)2 d. Figure 3 shows numerical solutions for y* in asvirginandrematingfemaleshavetocompetefor Equation15forvaluesofaof5and10andvaluesof the declining number of males. In addition, the 88 ANNALSOFTHEENTOMOLOGICALSOCIETYOFAMERICA Vol.107,no.1 Table4. Age-structuredpopequationsshowingeggs(E),larvae(L),pupae(P),virginfemales(V),matedfemales(F),andmales(M) Preadultstages Eggstages Larvalstages Pupalstages E1,t(cid:2)1(cid:3)(cid:10)kfFi,tmxhx L1,t(cid:2)1(cid:3)Eke,t P1,t(cid:2)1(cid:3)qklLkl,t Ei(cid:2)1,t(cid:2)1(cid:3)Ei,t Li(cid:2)1,t(cid:2)1(cid:3)qiL Pi(cid:2)1,t(cid:2)1(cid:3)wPi,t Eke,t(cid:2)1(cid:3)Eke(cid:4)1,t Lkl,t(cid:2)1(cid:3)qLkl(cid:4)1,t Pkp,t(cid:2)1(cid:3)wPkp(cid:4)1,t Adultstages Virginfemales Matedfemales Males V1,t(cid:2)1(cid:3)wkpPkp,t F1,t(cid:2)1(cid:3)(cid:11)kv(cid:4)1siykv(cid:4)1V1,t M1,t(cid:2)1(cid:3)wkpPkp,t Vi(cid:2)1,t(cid:2)1(cid:3)siyVi,t Fi(cid:2)1,t(cid:2)1(cid:3)siyFi,t Mi(cid:2)1,t(cid:2)1(cid:3)sizMi,t Vkv,t(cid:2)1(cid:3)Skv(cid:4)1yVkv(cid:4)1,t Fkf,t(cid:2)1(cid:3)Skf(cid:4)1yFkf(cid:4)1,t Mkm,t(cid:2)1(cid:3)Skm(cid:4)1zMkm(cid:4)1,t D Thevariableswithsubscriptsioccurfrom1totheirrespectiveupperlimitsminusone. o w x,aEni,dtihstihsethneuhmabtcehraobfileitgygosfinegaggseocflaagsesiclaatsstixm.Aeltsoan,Ldt,hPes,uVm,foFre,agngdagMecalarsest1heisatdaukletnnufrmobmer1stionkafg;emcxlaissstihaettfiemcuentd(iitnydoafyasd).uPltaraagmeectlearsss nlo x i,t i,t i,t i,t i,t a ke,kl,kp,kv,kf,andkmarethemaximumnumbersofdaysoccupiedbyeggs,larvae,pupae,virginfemales,matedfemales,andmales,respectively. d Parametersqandwarelarvalandpupaldailysurvivorship;sisthenaturaldailysurvivorshipofmalesandfemales;andyandzarethe ed survivorshipsoffemalesandmales,respectively,afterdailyvisitstotheMEbaits/traps. fro m h constraintsonwhethermaletrappingoccursbefore dynamic form, they are cumbersome and have too ttp oraftermatingarelessstringentwhenfemalesare many parameter values to easily deal with. We will s alsotrappedandarepolygamous.Thus,speciesthat develop the equations in equilibrium form as a pre- ://a c arepolygamousandinwhichfemalesrespondtoME cursortothelife-tabletreatmentofB.dorsalisdonein a d aremostamenabletobeingcontrolledbyMEtrap- alatersection.Welaterusetheequilibriumtoderive em ping. If female mating is delayed as a result of re- criticalvaluesofz,z*,andofy,y*,thesurvivorshipsof ic quiredmaturation,thenreductionofthemalepop- malesandfemales,respectively,afterdailyattractionto .ou p ulationtothesmallerreceptivefemalecohortwill sourcesbaitedwithME.Muchofthemessinessofthe .c o beevenmoredifÞcultthanifmatingisimmediate equationsdisappearsintheequilibriumformulation;in- m onadultemergence;however,controlbyattraction deed,thewholeeffectofthepreadultcomponentscan /a e offemalesbecomeseasierasaresultofthedelayin bereducedtoonenumber:preadultsurvivorship(here s a mating, because natural mortality during the mat- labeled(cid:3)),whichmeasurestheproportionofeggsthat /a urationperiodreducesthesizeofthefemalepop- surviveuntiltheyemergeasadults.Wealsoneedmean rtic ulation, and thus effectively also the total fertility dailyfertility((cid:5)),called“meanfertileeggsperßy-day” le-a rate. Nevertheless, the success of this control byCarey(1989),and(cid:5)is: bs methoddependsontherebeinglittlematingbefore tra trappingeachday.Mostofthemodelsindicatethat (cid:4)(cid:3)(cid:10)lxmxhx/(cid:10)lx [19] ct/1 mating before trapping will probably render this 0 7 controlmethodineffective. wherel isthesurvivorshipfromagextoagex(cid:2)1, /1 x /8 m is the fecundity of age class x, and h is the 1 AnAge-StructuredVersionoftheModel haxtchability of eggs laid by age class x aduxlts. The /771 order of events implicit in the equations for this 7 3 VirginBactrocerafemalesareanautogenous,requir- modelis:overnightmortality,morningoviposition, b y ingproteinbeforetheybecomereceptivetomating, andeveningmating.Inaddition,theorderoftrap- g andthisrequiressometimetoobtain(DrewandYuval ping and mating is important here, as has been ue s 2000).Toaccommodatethisfeatureeasily,weneedan demonstratedinthesimplermodelspreviously,so t o age-structuredmodelinwhichatleastthevirginfe- theorderadoptedfortheage-classmodelswillbe n 0 malesneedtobetalliedbyageclassuntilanappro- trappingÞrst,andthenmating. 5 A priatetimehaselapsedforthemtoacquireproteinand Theequilibriumvaluesofeggsarefoundbydrop- p becomereceptive.B.dorsalisfemalesfromstrainsthat ping the time subscript, t; the remaining subscripts ril 2 havebeen,forgenerations,undermass-rearingcon- denote age. There is no mortality shown in the egg 0 1 ditionsinthelaboratoryrequireabout6dafteremer- stage,astheonlyeggsweconsiderarethosethatwill 9 gencebeforetheyarereceptivetomating,andthisis hatch.ThesymbolsinTable5areasfollows:keisthe under ideal nutritional and temperature conditions numberofdaysrequiredforegghatch;klandkpare (Vargasetal.1984);inthewild,virginfemalesmay thenumberofdaysforlarvalandpupaldevelopment, sometimesrequireupto29dforsexualmaturation. respectively;kv,kf,andkmarethelifespansforvirgin Thisallowsmuchmoremortalitytooccurthanifthey females,matedfemales,andmales,respectively.The wereimmediatelyreceptiveonemergence.Theage- subscriptTdenotesthetotalforthelifestageand(cid:10)(kf) structuredequationsforthepreadultandadultstages denotesthesumfromi(cid:3)1tokfoftheexpressionto are shown in Table 4. These equations are entirely therightofthesummationsign,i.e.,F m h,and(cid:5)is i i i i density-independent. They allow for age-dependent theproductm h (thefecundityandegghatchability i i survivorshipoflarvaeandpupaeandage-dependent ofadultsofageclassi).Thesumistakenoverthekf fecundity and survivorship of adults. In their fully matedfemaleageclasses.Theequilibriumforlarvae January2014 BARCLAYANDHENDRICHS:MODELOFMATFORCONTROLLINGBactrocera 89 Table5. Equilibriumvaluesofthevariablesinthefullage-structuredmodel,showingeggs(E),larvae(L),pupae(P),virginfemales (V),matedfemales(F),andmales(M) Eggs:E (cid:3)E (cid:2)E (cid:2)E (cid:2)...(cid:2)E (cid:3)keE,(cid:3)ke(cid:10)(kf)F m h (cid:3)ke(cid:10)(kf)(cid:5)F Larvae:TL (cid:3)1L (cid:2)2q L3(cid:2)q q L k(cid:2)e ...(cid:2)(1(cid:11)(kl(cid:4)1)q)Li (cid:3)i(1i (cid:2)q (cid:2)q qi (cid:2)i ...(cid:2)((cid:11)(kl(cid:4)1)q)L (cid:3)(1(cid:2)q (cid:2)q q (cid:2)...(cid:2) (cid:11)(kl(cid:4)1T)q)E1 1 1 1 2 1 i 1 1 1 2 i 1 1 1 2 Pupae:P (cid:3)iP (cid:2)kew P (cid:2)w w P (cid:2)...(cid:2)((cid:11)(kp(cid:4)1)w)P (cid:3)(1(cid:2)w (cid:2)w w (cid:2)...(cid:2)(cid:11)(kp(cid:4)1)w)P (cid:3)(1(cid:2)w (cid:2)w w (cid:2)...(cid:2) (cid:11)(kp(cid:4)T1)w1)q L1 1(cid:3)(1(cid:2)1 w2 (cid:2)1 w w (cid:2)...(cid:2)(cid:11)(kp(cid:4)i 1)1w)((cid:11)(kf)q1)E1. 2 i 1 1 1 2 Virginfemalesi:Vkl(cid:3)kVl (cid:2)V (cid:2)1V (cid:2)1...2(cid:2)V (cid:3)(1(cid:2)sy(cid:2)si sy2(cid:2)siss kye3(cid:2)...(cid:2)ykv(cid:4)1(cid:11)(kv(cid:4)1)s)V (cid:3)(1(cid:2)sy(cid:2)ssy2(cid:2) sss y3(cid:2)...(cid:2)T ykv1(cid:4)1(cid:11)2(kv(cid:4)31)s)((cid:11)(kp)kvw)P 1 12 123 i 1 1 12 (cid:3)(112(cid:2)3sy(cid:2)ssy2(cid:2)sss y3(cid:2)...(cid:2)i ykv(cid:4)1(cid:11)(ikv(cid:4)11)s)(cid:6)E Matedfem1ales:1F2(cid:3)F 1(cid:2)2F3 (cid:2)F (cid:2)...(cid:2)F (cid:3)(1(cid:2)syi(cid:2)sskey2(cid:2)ss s y3(cid:2)...(cid:2)ykf(cid:4)1(cid:11)(kf(cid:4)1)s)F (cid:3)(1(cid:2)sy(cid:2)ssTy2(cid:2)1...(cid:2)2ykf(cid:4)31(cid:11)(kf(cid:4)1)kfs)(ykv(cid:11)(1kv)s)(cid:6)12E 12 3 i 1 Males:M1(cid:3)M1(cid:2)2 M (cid:2)M (cid:2)...(cid:2)M (cid:3)(1i(cid:2)sz(cid:2)ssiz2(cid:2)ksess z3(cid:2)...(cid:2)zkm(cid:4)1(cid:11)(km(cid:4)1)s)M (cid:3)(1(cid:2)sTy(cid:2)s1sy2(cid:2)2sss3z3(cid:2)...(cid:2)kzm(km(cid:4)1)(cid:11)1(km(cid:4)11)2s)(cid:6)E123 i 1 1 12 123 i ke D kvT;ih.ee.,n(cid:10)o(tkavt)io(cid:11)n(hkve)resii(cid:3)sso(1m(cid:2)ewsh1yat(cid:2)nosn1ss2tya2nd(cid:2)arsd1,s2asn3dy3(cid:10)(cid:2)(kv.).(.(cid:11)(cid:2)(kyvk)vsi(cid:11))(m[seuapin]skvt)hsei)s,uamndofsitmhielaprlryodfourcttshoefoatdhuelrtpsouprvcivoomrsphoinpesnfrtos.mi(cid:3)1toi(cid:3) ownlo (cid:6)iEsi(cid:6)is(cid:3)th(e(cid:11)n(ukmp)bweir)o(f(cid:11)eg(kgls)iqni)a.geclassi;mxisthefecundityofadultageclassx,andhxisthehatchabilityofeggsofageclassx.Theparameter aded fro isshowninTable5andinvolvesthelarvalsurvivorship showrecruitsandthenextthreeshowtotalsatequi- m q,beingthesurvivorshipfromstageitostagei(cid:2)1. librium.Also,femalesdonotmateuntildaykvoftheir h i LT (cid:2) (1(cid:2)q1(cid:2)q1q2(cid:2)...(cid:2)(cid:11)(kl(cid:4)1)qi)Eke. lifeMaasleasdiunltEs.xcessofReceptiveFemales. ttps://a c paWrameeatsesrusmdeoanoctovnasrtya.nItnteadmdpiteiroantu,(cid:11)re(kslo(cid:4)t1h)aqt itshtehsee V1(cid:3)(cid:6)(cid:5)FT ade i m rspiirmgohidtlauorcfltythfreomproid(cid:3)uc1ttsoigknl.(cid:4)Th1eoefquthileiberxiupmresfosiropnutpoatehies F1(cid:3)skvyMV1(cid:3)kv(cid:3)(cid:6)y(cid:5)kvFVT1(cid:11)(kv)si [21] ic.oup.c PT (cid:2) (1(cid:2)w1(cid:2)w1w2(cid:2)...(cid:2)(cid:11)(kp(cid:4)1)wi)((cid:11)(kl)qi)Eke VT(cid:3)V1(cid:10)(kv(cid:4)1)yj(cid:11)(j)si om/a as P1 (cid:3) qkl Lkl and also Lkl (cid:3) L1 (cid:11)(kl (cid:4) 1) qi. The FT (cid:2) F1(cid:10)(kf(cid:4)1)yj(cid:11)(j)si esa 1prpoudpuacltsa,g(cid:11)e(cklpa(cid:4)ss1e)swani,dantdhe(cid:11)k(lkll)aqrviaarleagtaekcelnasosvees.rAkpls(cid:4)o, MT (cid:2) M1(cid:10)(km(cid:4)1)zj(cid:11)(j)si [22] /artic thetotalpreadultsurvivorship,(cid:3),is: 1,kInf(cid:4)thi1s,coarskem,th(cid:4)e1suimnsEaqrueattiaoknen22f,roanmdjth(cid:3)e0ptroodkuvc(cid:4)ts le-ab (cid:3)(cid:3)((cid:11)(kp)wi)((cid:11)(kl)qi) [20] aretakenfromi(cid:3)0toj,withs0(cid:3)1.0.Theseequations stra femThaleese(qFu)il,ibanridamfoarletost(aMl v)iragriensfimemilaalrelyst(hVe)s,ummasteodf fcoalnlobwes:solved numerically for y* by substitution as ct/10 7 theirindividualageclassesuptotheirmaximumval- FT(cid:3)(cid:10)(kf(cid:4)1)yj(cid:11)(j)siF1(cid:3)((cid:10)(kf(cid:4)1)yj(cid:11)(j)si)((cid:11)(vk)yjsi)V1 /1/8 suteasg.eTbheefsoereeqhuailticbhriinaga,reexaclleipnttfeorrmtshoefeEgkges,,thwehliacshteagreg (cid:2) (cid:12)(cid:10)(kf(cid:4)1)yj(cid:11)(j)si)((cid:11)(kv)yjsi)(cid:6)(cid:5)FT. 1/77 TinhetesermesquoaftiFoTn,stahsesutmotealthnautmalbleadruolftamgeatseadrefeemquaalellsy. Cexapnrceeslsliionngethqeuaftaecdtotros1F.T0othnaetitchaenrbseidseorlveesudltnsuimnearn- 173 b attractedtotraps/baits;ifthisisnotthecase,thenthe icallyfory.Thisexpressionis: y g pfarcotdoursctysioanfdthzeicianndibvieduchalanaggeed-dteop(cid:11)enydie,notrs(cid:11)urzvii,vtohre- (cid:6)(cid:5)((cid:10)(kf(cid:4)1)yj(cid:11)(j)si)((cid:11)(kv)yjsi)(cid:3)1.0 [23] uest o shipsinthesameformulationsastheadultsurvivor- Life-TableEquivalence.Wecanrelatethistostan- n 0 ships, s. The evaluation of these equilibria requires dard life-table symbology by noting that if l is the 5 considerableknowledgeoftheeffectsofageonthe survivorship (i.e., proportion still alive) fromxovipo- Ap varioussurvivorships.Life-tableanalysiswillbeuseful sitiontototalagex,andifthepreadultstagestotale ril 2 inprovidingsomeofthisinformation,butthepreadult days, then the day of emergence of adults is e, and 0 1 survivorshipscanbereplacedbyanoverallmeasure- l (cid:3)(cid:6);also,thesurvivorshipsoftheadultstagesare 9 e mentofpreadultsurvivorship((cid:6)),ifthatisavailable. le(cid:2)1,le(cid:2)2,le(cid:2)3,...etc.Inthesymbologyusedearlier, Inthatcase,theequilibriaaremodiÞed,as(cid:6)(cid:3)((cid:11)(kp) survivorshipoftheadultstagesares forthesurvivor- i r)((cid:11)(kl)q),andsoV (cid:3)M (cid:3)(cid:6)(cid:5)(cid:10)(kf)F,andF (cid:3) shipfromtheithadultagetothei(cid:2)Þrstadultage. Vsui1myskva(cid:11)n(dkvp)isrio.dInucatdsdcitaino1nb,ethee1vaaflouraetmedenwtihoenniedthvearcio1ouns- lTeh(cid:2)us3,(cid:3)le(cid:6)(cid:2)s11(cid:3)s2(cid:6)s3s(cid:3)1(cid:3)s3sl1el(cid:2)e,2le..(cid:2).e2t(cid:3)c.,(cid:6)sos1ths2a,t(cid:3)(cid:6)(cid:10)s2(klfe(cid:4)(cid:2)11), stants are known. The difÞculty comes in trying to (cid:11)(j) s (cid:3) (cid:6)[s (cid:2) s s (cid:2) s s s (cid:2) ... (cid:2) s s ... i 1 1 2 1 2 3 1 2 obtainaclosed-formexpressionfory*andz*. skf(cid:4)1](cid:3)le(cid:2)1(cid:2)le(cid:2)2(cid:2)le(cid:2)3(cid:2)...(cid:2)le(cid:2)1(cid:2)kf(cid:4)1 PopulationEquations.Wecanformulatetheequi- sothatEquation23canbewrittenas: libriumpopulationequationsaswasdoneinEquation (cid:5)((cid:10)(kf)yxl )ykvl (cid:2) (cid:6),where1 (cid:7) x (cid:7) kf 1, with the equations not shown conforming to the e(cid:2)x e(cid:2)kv equationsshowninTable4.TheÞrstthreeequations [24] 90 ANNALSOFTHEENTOMOLOGICALSOCIETYOFAMERICA Vol.107,no.1 Table6. Age-structuredpopequationsshowingearliestageclassandtotalvirginfemales(V andV ),matedfemales(F andF ), 1 T 1 T andmales(M andM ) 1 T Maleexcess MaledeÞcit Recruits V (cid:3)(cid:6)(cid:5)F V (cid:3)(cid:6)(cid:5)F 1 T 1 T F (cid:3)syV (cid:3)skvykvV F (cid:3)szM 1 kv 1 1 T M (cid:3)(cid:6)(cid:5)F M (cid:3)(cid:6)(cid:5)F 1 T 1 T Totals V (cid:3)V (1(cid:4)skvykv)/(1(cid:4)sy) V (cid:3)(1(cid:4)skvykv)/(1(cid:4)sy)V s (cid:2)s (V (cid:4)M)(cid:10)(cid:13)siV T 1 T 1 i kv kv T 1 F (cid:3)F/(1(cid:4)sy) F (cid:3)1/(1(cid:4)sy)F T 1 T 1 M (cid:3)M/(1(cid:4)sz) M (cid:3)1/(1(cid:4)sz)M T 1 T 1 Parameters:sisthenaturaldailysurvivorshipofmalesandfemales,kvisthenumberofdaysforvirginfemalestobereadytomateafter emergence,andyandzarethesurvivorshipsoffemalesandmales,respectively,afterdailyvisitstotheMEbaits/traps.Maleexcess:males D aremorenumerousthanreceptivefemales;maledeÞcit:malesarelessnumerousthanreceptivefemales. o w n lo a andthiscanbesolvednumericallyforyoncethedaily ricifonetalliessurvivorsbydays.Inaddition,ifthere de d surMviavloesrsFheiwpseranTdhaonthReerceppatriavmeeFteemrsalaerseknown. ifsemanaluesp,ptehrenlimthiettsoumthfeorloVnTge(vTiatybloef1a)dbueltcommaeless(a1n(cid:4)d from V1(cid:3)(cid:6)(cid:5)FT sskkvmyzkkvm))//((11(cid:4)(cid:4)ssyz)).anIfdththeeresiusmnofourpMpeTrbliemciot,mtehsen(1th(cid:4)e http s F1(cid:3)skvz MT tshuimsscacsoer,rwesepognetdeinxgpraersesi1o/n(s1f(cid:4)orsyy)ananddz1b/y(1co(cid:4)nsstzr)u.cItn- ://ac a M (cid:3)(cid:6)(cid:5)F [25] ingtheappropriateequationsWiththesesimpliÞca- d 1 T e tions,weobtaintheequilibriumequationsshownin m V (cid:2) V (cid:10)(kv(cid:4)1)yj(cid:11)(j)s (cid:2)s (V (cid:4)M )(cid:10)(cid:13)(cid:11)(j)s V ic T 1 i kv kv T i 1 Table6formalesbeinginexcessofreceptivefemales. .o F (cid:3)F (cid:10)(kf(cid:4)1)yj(cid:11)(j)s HeretheÞrstthreeequations(Table6;MaleExcess) up M T(cid:2) M1 (cid:10)(km(cid:4)1)zj(cid:11)(j)is [26] represent equilibrium recruitment and the last three .com T 1 i representequilibriumtotalsofthethreecomponents:V, /a Thesolutionoftheseequationscanbefoundnu- F,andM.Thisyieldsanequationforthecriticalvalueof e s mericallywhentherelevantcoefÞcientsareknown. ythatwouldholdthepopulationincheck;itappears a/a FromEquations25and26weequate: impossible to solve explicitly, but it can be shown by rtic takingderivativesthatthevalueofy*isapositivefunc- le FT (cid:2) F1((cid:10)(kf(cid:4)1)yj(cid:11)(j)si) tionoftheageofmatingofvirginfemales,kv,andsample -ab (cid:3)(skvzMT)((cid:10)(kf(cid:4)1)yj(cid:11)(j)si) numericalsolutionsareshowninFig.4.Here, stra c (cid:3)(skvz)M1((cid:10)(km(cid:4)1)zj(cid:11)(j)si)((cid:10)(kf(cid:4)1)yj(cid:11)(j)si) (cid:12)skvykv)(cid:6)(cid:5)/(1(cid:4)sy)(cid:3)1 [29] t/1 0 (cid:3)(skvz)((cid:6)(cid:5)FT)((cid:10)(km(cid:4)1)zj(cid:11)(j)si)((cid:10)(kf(cid:4)1)yj(cid:11)(j)si). 7/1 Aobgtaaiinn:wecancancelthefactorsFTonbothsidesto /81/7 7 1 (cid:12)s z)((cid:6)(cid:5))((cid:10)(km(cid:4)1)zj(cid:11)(j)s)((cid:10)(kf(cid:4)1)yj(cid:11)(j)s)(cid:3)1.0 73 kv i i b [27] y g u andsolveforyandznumerically. es By using the equivalence of life-table symbology t o n shownpreviously,Equation27canbewrittenas: 0 5 (cid:5)skvz((cid:10)(km)zxle(cid:2)x)((cid:10)(kf)yxle(cid:2)x)(cid:3)(cid:6) [28] April 2 0 1 where x goes from 1 to km and kf in the two sums. 9 Equation28willbeusedinthecomputationofyand zforB.dorsalislater. Fig.4. IsoclinesoftrappingsurvivorshipoffemalesatME baits/traps using the simpliÞed age-structured model that ReductiontoaSimplerModel will result in control of the population, assuming that a proportionofthefemalesareattractedtosuchbaits/traps TheEquations23and24,aswellas27and28,cannot andthatmalesoutnumberreceptivefemales.Inthissitua- besolvedanalyticallyforyandz,sotogetanapprox- tion, trapping of males does not contribute to population imationtothecriticalvaluesofyandz,wecansimplify control.Valuesofy*areshownfornumbersofdaysdelay theequationsIfadultshaveaconstantprobabilityof (1Ð20)inmatingofvirginfemalesforfourcombinationsof dyingovertime(sothats1(cid:3)s2(cid:3)...(cid:3)si(cid:3)s),then theparametersaands.Adelayinmatingsubstantiallyre- thesurvivorshipcurvewillbeexponential,orgeomet- ducesthecriticalvaluey*requiredforeradication.

Description:
adult males and females of an insect pest species. going in Israel at the border with Gaza and Egypt to 2014 Entomological Society of America
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.