ebook img

Models and Solutions of Resource Allocation Problems based on Integer Linear and Nonlinear ... PDF

108 Pages·2016·1.52 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Models and Solutions of Resource Allocation Problems based on Integer Linear and Nonlinear ...

Alma Mater Studiorum - Universita` di Bologna DOTTORATO DI RICERCA IN Automatica e Ricerca Operativa Ciclo XXVIII Settoreconcorsualediafferenza: 01/A6-RICERCAOPERATIVA Settorescientificodisciplinare: MAT/09-RICERCAOPERATIVA Models and Solutions of Resource Allocation Problems based on Integer Linear and Nonlinear Programming Presentata da: Dimitri Thomopulos Coordinatore Dottorato Relatore Prof. Daniele Vigo Prof. Enrico Malaguti Correlatore Prof. Andrea Lodi Esame finale anno 2016 Contents 1 Introduction 1 1.1 On Resource Allocation Problems . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Applied Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Thesis Methodological Outline . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.1 Two-Dimensional Guillotine Cutting Problem . . . . . . . . . . . 6 1.4.2 Mid-Term Hydro Scheduling Problem . . . . . . . . . . . . . . . 7 2 Two-Dimensional Guillotine Cutting Problem 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Families of cutting problems. . . . . . . . . . . . . . . . . . . . . 12 2.1.2 Structure of general guillotine cuts. . . . . . . . . . . . . . . . . . 13 2.1.3 Literature review. . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.4 Contribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 MIP modeling of guillotine cuts . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Definition of the cut position set . . . . . . . . . . . . . . . . . . 20 2.2.2 Model extensions: Cutting Stock problem and Strip Packing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 An effective solution procedure for the PP-G2KP Model . . . . . . . . . 27 2.3.1 Variable pricing procedures . . . . . . . . . . . . . . . . . . . . . 27 2.4 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.1 Lower bound (feasible solution) computation . . . . . . . . . . . 32 2.4.2 Iterative Variable Pricing . . . . . . . . . . . . . . . . . . . . . . 34 2.4.3 Models size and reductions . . . . . . . . . . . . . . . . . . . . . 36 2.4.4 Overall solution procedure . . . . . . . . . . . . . . . . . . . . . . 41 2.4.5 Comparison with state-of-the-art approaches . . . . . . . . . . . 46 2.4.6 Relevance of guillotine cuts . . . . . . . . . . . . . . . . . . . . . 48 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3 Mid-Term Hydro Scheduling Problem 51 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.1 Mid-term hydro scheduling . . . . . . . . . . . . . . . . . . . . . 54 3.1.2 Choice of the objective function . . . . . . . . . . . . . . . . . . . 55 3.2 Decomposition algorithm for nonlinear (CCP) . . . . . . . . . . . . . . . 56 3.2.1 Overview of the approach . . . . . . . . . . . . . . . . . . . . . . 58 3.2.2 Separation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.3 Termination of the Branch-and-Cut algorithm . . . . . . . . . . . 62 3.2.4 Comparison with generalized Benders cuts . . . . . . . . . . . . . 64 3.3 (CCP) for mid-term hydro scheduling . . . . . . . . . . . . . . . . . . . 66 3.3.1 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.1.1 Electricity generation function . . . . . . . . . . . . . . 68 3.3.1.2 Demand and price function . . . . . . . . . . . . . . . . 69 3.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.4.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . 71 3.4.2 Computational performance . . . . . . . . . . . . . . . . . . . . . 73 3.4.3 Quadratic electricity generation function . . . . . . . . . . . . . . 80 3.4.4 The effect of α on the profit . . . . . . . . . . . . . . . . . . . . . 84 3.4.5 Other solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Bibliography 91 Keywords • Two-dimensional Cutting Problems • Guillotine Knapsack Problems • Chance Constrained Programming • Exact Algorithms • Integer Linear Programming • Nonlinear Programming • Pricing • Stochastic Programming • Computational Experiments Ai miei Genitori, mio Fratello, i miei Amici, i miei Nonni e in particolar modo a mio Nonno Dimitris Acknowledgements I want to express my deeply-felt thanks to my thesis advisors, Professors Enrico Malaguti and Andrea Lodi, for their warm encouragement, thoughtful guidance. I also want to express my gratitude to Dr.Valentina Cacchiani for her continuous support and sound advice. Lastly, I wish to thank Professor Daniele Vigo and Professor Giacomo Nannicini.

Description:
1.4.1 Two-Dimensional Guillotine Cutting Problem . 6 . Integer Programming IP in short, refers to the class of constrained optimiza- . Not surprisingly Power Generation Scheduling Problems deal with resources worth millions of dollars. (iii) Each cut removes a so-called strip from a panel.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.