ebook img

Models and games PDF

381 Pages·2011·2.39 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Models and games

This page intentionally left blank CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 132 EditorialBoard B.BOLLOBÁS, W.FULTON, A.KATOK, F.KIRWAN, P.SARNAK, B.SIMON, B.TOTARO ModelsandGames Thisgentleintroductiontologicandmodeltheoryisbasedonasystematicuseofthree importantgamesinlogic:theSemanticGame,theEhrenfeucht–FraïsséGame,andthe ModelExistenceGame.Thethirdgamehasnotbeenisolatedintheliteraturebefore, butitunderliestheconceptsofBethtableauxandconsistencyproperties. JoukoVäänänenshowsthatthesegamesarecloselyrelatedand,inturn,governthe threeinterrelatedconceptsoflogic:truth,elementaryequivalence,andproof.Allthree methodsaredevelopednotonlyforfirst-orderlogic, butalsoforinfinitarylogicand generalizedquantifiers.Alongtheway,theauthoralsoprovescompletenesstheorems for many logics, including the cofinality quantifier logic of Shelah, a fully compact extensionoffirst-orderlogic. Withover500exercises,thisbookisidealforgraduatecourses,coveringthebasic materialaswellasmoreadvancedapplications. JoukoVäänänenisaProfessorofMathematicsattheUniversityofHelsinki, anda ProfessorofMathematicalLogicandFoundationsofMathematicsattheUniversityof Amsterdam. CAMBRIDGESTUDIESINADVANCEDMATHEMATICS EditorialBoard: B.Bollobás,W.Fulton,A.Katok,F.Kirwan,P.Sarnak,B.Simon,B.Totaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress. Foracompleteserieslisting,visit:http://www.cambridge.org/series/sSeries.asp?code=CSAM Alreadypublished 84 R.A.BaileyAssociationschemes 85 J.Carlson,S.Müller-Stach&C.PetersPeriodmappingsandperioddomains 86 J.J.Duistermaat&J.A.C.KolkMultidimensionalrealanalysis,I 87 J.J.Duistermaat&J.A.C.KolkMultidimensionalrealanalysis,II 89 M.C.Golumbic&A.N.TrenkTolerancegraphs 90 L.H.HarperGlobalmethodsforcombinatorialisoperimetricproblems 91 I.Moerdijk&J.MrcˇunIntroductiontofoliationsandLiegroupoids 92 J.Kollár,K.E.Smith&A.CortiRationalandnearlyrationalvarieties 93 D.ApplebaumLévyprocessesandstochasticcalculus(1stEdition) 94 B.ConradModularformsandtheRamanujanconjecture 95 M.SchechterAnintroductiontononlinearanalysis 96 R.CarterLiealgebrasoffiniteandaffinetype 97 H.L.Montgomery&R.C.VaughanMultiplicativenumbertheory,I 98 I.ChavelRiemanniangeometry(2ndEdition) 99 D.GoldfeldAutomorphicformsandL-functionsforthegroupGL(n,R) 100 M.B.Marcus&J.RosenMarkovprocesses,Gaussianprocesses,andlocaltimes 101 P.Gille&T.SzamuelyCentralsimplealgebrasandGaloiscohomology 102 J.BertoinRandomfragmentationandcoagulationprocesses 103 E.FrenkelLanglandscorrespondenceforloopgroups 104 A.Ambrosetti&A.MalchiodiNonlinearanalysisandsemilinearellipticproblems 105 T.Tao&V.H.VuAdditivecombinatorics 106 E.B.DaviesLinearoperatorsandtheirspectra 107 K.KodairaComplexanalysis 108 T.Ceccherini-Silberstein,F.Scarabotti&F.TolliHarmonicanalysisonfinitegroups 109 H.GeigesAnintroductiontocontacttopology 110 J.FarautAnalysisonLiegroups:AnIntroduction 111 E.ParkComplextopologicalK-theory 112 D.W.StroockPartialdifferentialequationsforprobabilists 113 A.Kirillov,JrAnintroductiontoLiegroupsandLiealgebras 114 F.Gesztesyetal.Solitonequationsandtheiralgebro-geometricsolutions,II 115 E.deFaria&W.deMeloMathematicaltoolsforone-dimensionaldynamics 116 D.ApplebaumLévyprocessesandstochasticcalculus(2ndEdition) 117 T.SzamuelyGaloisgroupsandfundamentalgroups 118 G.W.Anderson,A.Guionnet&O.ZeitouniAnintroductiontorandommatrices 119 C.Perez-Garcia&W.H.SchikhofLocallyconvexspacesovernon-Archimedeanvaluedfields 120 P.K.Friz&N.B.VictoirMultidimensionalstochasticprocessesasroughpaths 121 T.Ceccherini-Silberstein,F.Scarabotti&F.TolliRepresentationtheoryofthesymmetricgroups 122 S.Kalikow&R.McCutcheonAnoutlineofergodictheory 123 G.F.Lawler&V.LimicRandomwalk:Amodernintroduction 124 K.Lux&H.PahlingsRepresentationsofgroups 125 K.S.Kedlayap-adicdifferentialequations 126 R.Beals&R.WongSpecialfunctions 127 E.deFaria&W.deMeloMathematicalaspectsofquantumfieldtheory 128 A.TerrasZetafunctionsofgraphs 129 D.Goldfeld&J.HundleyAutomorphicrepresentationsandL-functionsforthegenerallinear group,I 130 D.Goldfeld&J.HundleyAutomorphicrepresentationsandL-functionsforthegenerallinear group,II 131 DavidA.CravenThetheoryoffusionsystems Models and Games JOUKO VÄÄNÄNEN UniversityofHelsinki UniversityofAmsterdam cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,SãoPaulo,Delhi,Tokyo,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521518123 ©J.Väänänen2011 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2011 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcatalogrecordforthispublicationisavailablefromtheBritishLibrary ISBN978-0-521-51812-3Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. ToJuliette Contents Preface pagexi 1 Introduction 1 2 PreliminariesandNotation 3 2.1 FiniteSequences 3 2.2 Equipollence 5 2.3 Countablesets 6 2.4 Ordinals 7 2.5 Cardinals 9 2.6 AxiomofChoice 10 2.7 HistoricalRemarksandReferences 11 Exercises 11 3 Games 14 3.1 Introduction 14 3.2 Two-PersonGamesofPerfectInformation 14 3.3 TheMathematicalConceptofGame 20 3.4 GamePositions 21 3.5 InfiniteGames 24 3.6 HistoricalRemarksandReferences 28 Exercises 28 4 Graphs 35 4.1 Introduction 35 4.2 First-OrderLanguageofGraphs 35 4.3 TheEhrenfeucht–Fra¨ısse´ GameonGraphs 38 4.4 Ehrenfeucht–Fra¨ısse´ GamesandElementaryEquivalence 43 4.5 HistoricalRemarksandReferences 48 Exercises 49 viii Contents 5 Models 53 5.1 Introduction 53 5.2 BasicConcepts 54 5.3 Substructures 62 5.4 Back-and-ForthSets 63 5.5 TheEhrenfeucht–Fra¨ısse´ Game 65 5.6 Back-and-ForthSequences 69 5.7 HistoricalRemarksandReferences 71 Exercises 71 6 First-OrderLogic 79 6.1 Introduction 79 6.2 BasicConcepts 79 6.3 CharacterizingElementaryEquivalence 81 6.4 TheLo¨wenheim–SkolemTheorem 85 6.5 TheSemanticGame 93 6.6 TheModelExistenceGame 98 6.7 Applications 102 6.8 Interpolation 107 6.9 UncountableVocabularies 113 6.10 Ultraproducts 119 6.11 HistoricalRemarksandReferences 125 Exercises 126 7 InfinitaryLogic 139 7.1 Introduction 139 7.2 PreliminaryExamples 139 7.3 TheDynamicEhrenfeucht–Fra¨ısse´ Game 144 7.4 SyntaxandSemanticsofInfinitaryLogic 157 7.5 HistoricalRemarksandReferences 170 Exercises 171 8 ModelTheoryofInfinitaryLogic 176 8.1 Introduction 176 8.2 Lo¨wenheim–SkolemTheoremforL 176 ∞ω 8.3 ModelTheoryofL 179 ω1ω 8.4 LargeModels 184 8.5 ModelTheoryofL 191 κ+ω 8.6 GameLogic 201 8.7 HistoricalRemarksandReferences 222 Exercises 223

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.