ebook img

Modelling the Hidden Magnetic Field of Low-Mass Stars PDF

3.7 MB·
by  P. Lang
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modelling the Hidden Magnetic Field of Low-Mass Stars

Mon.Not.R.Astron.Soc.000,1–11(2014) Printed21January2014 (MNLATEXstylefilev2.2) Modelling the Hidden Magnetic Field of Low-Mass Stars P. Lang1∗, M. Jardine1, J. Morin2,3,4, J-F. Donati5, S. Jeffers2,6, A. A. Vidotto1, R. Fares1 1.SUPA,SchoolofPhysics&Astronomy,UniversityofStAndrews,NorthHaugh,StAndrews,KY169SS,UK 2.Institutfu¨rAstrophysik,Friedrich-Hund-platz1,370777Go¨ttingen 3.DublinInstituteforAdvancedStudies,SchoolofCosmicPhysics,31FitzwilliamPlace,Dublin2,Ireland 4 4.LUPM,UniversitéMontpellier2,CNRS,PlaceEugèneBataillon,34095,Montpellier,France 1 5.IRAP-UMR5277,CNR&Univ.deToulouse,14Av.E.Belin,F-31400Toulouse,France 0 6.UniversityofUtrecht,P.O.Box80000,3508TA,Utrecht,TheNetherlands 2 n a J Accepted2014January14.Received2014January9;inoriginalform2013August26 8 1 ABSTRACT ] R Zeeman-Dopplerimagingisaspectropolarimetrictechniquethatisusedtomapthelarge- S scalesurfacemagneticfieldsofstars.Thesemapsinturnareusedtostudythestructureofthe . h stars’coronaeandwinds.Thismethod,however,missesanysmall-scalemagneticfluxwhose p polarisation signatures cancel out. Measurements of Zeeman broadening show that a large - percentageofthesurfacemagneticfluxmaybeneglectedinthisway.Inthispaperweassess o r the impact of this ‘missing flux’ on the predicted coronal structure and the possible rates of t spindownduetothestellarwind.Todothiswecreateamodelforthesmall-scalefieldand s a add this to the Zeeman-Doppler maps of the magnetic fields of a sample of 12 M dwarfs. [ We extrapolate this combined field and determine the structure of a hydrostatic, isothermal corona. The addition of small-scale surface field produces a carpet of low-lying magnetic 1 v loopsthatcoversmostofthesurface,includingthestellarequivalentofsolar‘coronalholes’ 5 wherethelarge-scalefieldisopenedupbythestellarwindandhencewouldbeX-raydark.We 4 showthatthetrendoftheX-rayemissionmeasurewithrotationrate(theso-called‘activity- 5 rotationrelation’)isunaffectedbytheadditionofsmall-scalefield,whenscaledwithrespect 4 tothelarge-scalefieldofeachstar.Theadditionofsmall-scalefieldincreasesthesurfaceflux; . however, the large-scale open flux that governs the loss of mass and angular momentum in 1 0 thewindremainsunaffected.Weconcludethatspin-downtimesandmasslossratescalculated 4 fromsurfacemagnetogramsareunlikelytobesignificantlyinfluencedbytheneglectofsmall- 1 scalefield. : v Keywords: stars:magneticfield,stars:low-mass,stars:coronae,stars:activity,X-rays:stars i X r a 1 INTRODUCTION anypotentialorganismsontheseplanets.Thismakesitvitaltoin- vestigatehowthestructureandevolutionofthemagneticfield,both Mdwarfs,muchsmaller,dimmerandcoolerthanstarslikeourSun, large-scaleandsmall-scale,canaffectcoronalproperties. arebyfarthemostcommontypeofstarinourgalaxy.Thestudy ofthesestarshasremainedlimitedduetotheirfaintnessandinthe Time-resolvedspectropolarimetricobservationsofastarcan pastitwaspresumedthatMdwarfswereunlikelytohostdetectable be analysed by means of Zeeman Doppler Imaging (ZDI, Semel habitableplanets.Morerecentlyhowever,theadvantagesofsearch- 1989,Donatietal.2006)inordertoreconstructamapofthevec- ing for habitable planets around M dwarfs have been recognised. tormagneticfieldonthestellarsurface.ZDIreliesonthefactthat Forexample,thehabitablezoneiscloserandsoitiseasiertofind duetothecombinationofthepropertiesoftheZeemaneffecte.g., planetsbyradialvelocitysearches.Despitetheadvantagesofde- rotation-induced Doppler and rotational modulation, a strong re- tectingplanetsaroundthesestars,Mdwarfshavebeenshowntobe lation exists between the distribution of the magnetic field at the extremely magnetically active which may have significant effects surfaceofastarandtherotationalevolutionofpolarisationinspec- onanyplanetarysystem.Forexample,intensemagneticfields,stel- trallinesduringastellarrotation.However,severallimitationsex- larflares,UVandX-rayemissionandthepowerfulstellarwinds ist:inparticular,withthesolutionbeingnon-unique,amaximum (Vidottoetal.2013)mayaffectplanetaryatmospheresaswellas entropy criterion has to be used, and due to the mutual cancella- tionofpolarisedsignalsoriginatingfromneighbouringregionsof oppositepolarities,themapshavealimitedspatialresolutionand, ∗ E-mail:[email protected] therefore,systematicallymissmagneticfluxcorrespondingtomag- (cid:13)c 2014RAS 2 P.Langetal neticfieldsorganisedonsmallspatialscales.Theactualresolution ismostlydrivenbytherotationalvelocityofthestarprojectedon theobserver’sline-of-sight(vsini):thehigherthevsini,thehigher theresolution.Inaddition,fortheinclinationofthestellarrotation axiswithrespecttotheline-of-sightdifferingfrom90◦,apartof thestarisnevervisible.Therefore,inthatregionthereisnocon- straintonthemagneticfield,exceptthatgloballyithastosatisfy thenull-divergenceconstraint. Studies based on spectropolarimetric observations and ZDI haveprovidedthefirstinformationonthestructureofthesurface magnetic fields of M dwarfs. In particular, partly-convective M Figure1.Radialmagneticsurfacemapforthemodelofsmallscalefield dwarfshavebeenshowntohostlarge-scalemagneticfieldswhich covering62%ofthestellarsurface.|Bmax|is500Gwithanunsignedsurface arenon-axisymmetricandfeatureastrongtoroidalcomponent(Do- fluxvalueφsurface≈1024Mx. natietal.2008),whereasthoseclosetothelimitoffull-convection havebeenshowntohostmuchstrongerlarge-scalefielddominated byamainlyaxisymmetricpoloidalcomponent(e.g.,Donatietal. were created using the Doppler imaging code ‘Doppler Tomog- 2006,Morinetal.2008,Morinetal.2008).However,thesestud- raphy of Stars’ (DoTS) and all spots were modelled, following iesdonotconstrainthesmall-scalefieldcomponentofthemagnetic Solanki (1999), with circular umbral areas and a ratio of umbral fieldsoflow-massstars.Inparallel,studiesbasedontheanalysisof topenumbralareaof1:3. theZeemanbroadeninginunpolarisedspectroscopyprovidecom- We use the spot brightness to allocate field strengths to the plementaryinformation:themeasureofthedisc-averagedmagnetic centreoftheactiveregionsandallowthefieldstrengthtofall-offin fieldincludingthecontributionsofboththelarge-scaleandsmall- aGaussian-likedistribution,totheedgeofeachspot,i.e., scalecomponents.Reiners&Basri(2009)compiledmeasurements of mean magnetic flux from Stokes I (total intensity) and Stokes Bsrs= ΣBmax e−x22 , (1) V (thefractionaldegreeofcircularpolarisation)parametersfora brightness selection of partially-convective and fully-convective M dwarfs. where Bss represents the field strength in the small-scale field, r They find that the fraction of magnetic flux visible in Stokes V Σbrightness isthespotbrightness,Bmax isthearbitrarilychosenmax- is a small percentage of the total flux measured in Stokes I. This imum field strength, and x is the distance from the centre of the meansthatalargeportionofthemagneticfluxstoredinmagnetic spot.Wenoteherethatahigherspotbrightnessindicatesalower fieldsisinvisibletoStokesV.Onepossibleexplanationisthatthe fieldstrengthvalue. majorityofmagneticfluxonMdwarfsisgroupedintosmallstruc- Weimposeaconditionthatthesmall-scalefieldmustbesmall turesdistributedoverthestellarsurface,wheredifferentpolarities enough not to be detected in ZDI i.e., invisible in Stokes V. The cancel each other out in Stokes V. More specifically, Reiners & typical area over which the circular polarisation cancels out e.g., Basri(2009)findthatalthoughforthelower-massfully-convective theareaoverwhichthesignedmagneticfluxcancelsorthetypi- stars,themeanmagneticfluxdoesnotsignificantlydifferfrompar- caldistancebetweentwospotsofoppositepolarities,corresponds tiallyconvectivestars(Reiners&Basri2007),thefractionofthe toabout12◦,forarapidlyrotatingstarwithvsini ≈40km/se.g., totalmagneticfluxdetectedinStokesVisdifferentforpartially- V374Peg.Thisconditionmeansthatanyactiveregionmusthave convectiveandfully-convectivestars:6%and14%respectively. adiameterlessthanthetypicalZDIresolutioni.e.,<5◦.Oursyn- The aim of this paper is to determine the influence that this theticmapsassumespotswithradii(cid:54)1◦. small scale field might have on the stellar coronae. We create a Toensurethesmall-scalefieldisevenlydistributed overthe modelforsmall-scalefieldandaddittothereconstructedsurface entiresurfaceofthestar,wekeepthespotcoverageconstant.We, radialmapsforastellarsampleof12MDwarfs(Donatietal.2008; therefore,findthatanappropriateparametertovaryinthemodelis Morinetal.2008)thatspanthefully-convectiveboundary.Bycom- Bmax.TakingintoaccountthemagnitudeofthefielddetectedinZDI parisonwiththeobservedlarge-scalemagneticfieldstructure,we foroursampleofpartly-convectiveandfullyconvectiveMDwarfs, investigatetheeffectthissmall-scalefieldhasonthegeometryof we (1) fix the value of Bmax to be either ±500G or ±1000G; and the extrapolated 3D magnetic field and subsequent coronal prop- (2)setthevalueofBmax suchthatthelarge-scalefieldcontributes erties,suchasopenflux,coronalextent,X-rayemissionmeasure betweenapproximately6%and14%ofthetotalfieldrespectively, andcoronaldensity.Weapproachthisintwoways:(1)byincor- asindicatedinReiners&Basri(2009).Thevaluesfortheaverage poratingsmall-scalefieldthathasthesamesurfacedistributionand radialfluxineachcasecanbefoundinTable(2). magnitudeontoeachstarinthesample;and(2)usingtheresultsof The surface magnetic radial map for the small-scale field is Reiners&Basri(2009),weaddinapercentageamountofsmall- showninFig.(1)wherethespotdistributioncoversapproximately scalefieldsuchthatthelarge-scalefieldcontributesonly6%and 62% of a model star. Fig. (1) represents the case where Bmax = 14% of the total magnetic field, for the partially-convective and 500G.Thesimulatedmagneticradialmapsforthesmall-scalefield fully-convectivestarswithinthesamplerespectively. are added to the reconstructed radial maps obtained through ZDI andnewsurfacemapswithbothlarge-scaleandsmall-scalefield arecreatedforeachMdwarfi.e.,B =Bss+Bls. Total r r 2 MODELLINGANDINCORPORATINGTHE SMALL-SCALEFIELD 2.2 TheCoronalField 2.1 TheSurfaceField The magnetic field is extrapolated above the stellar surface us- To create small-scale field on the stellar surface we use the syn- ingthepotential-fieldsourcesurface(PFSS)method(Altschuler& thesised spot brightness maps of Barnes et al. (2011). The spots Newkirk1969),wherethemagneticfieldisassumedtobecurrent- (cid:13)c 2014RAS,MNRAS000,1–11 000 3 Dwarfs,109−1012cm−3(Nessetal.2002,2004).Typicalvaluesfor logκ=[−5:−7] We assume that the pressure varies along each field line ac- cordingto (cid:82) g·Bds p= poe |B| , (5) asdescribedbyJardineetal.(2002)andGregoryetal.(2006).Ex- pandingthe(dimensionless)componentofgravityalongthefield line(g·B),wehave  (cid:16) (cid:17)  Figure2.3Dcoronalextrapolationofthesmall-scalefieldshowninFig. p=κB2oexp(cid:90) −rφ2g +φcrsin(cid:113)2Bθ2B+rB+2(+φcBr2sinθcosθ)Bθds ,(6) 1.Coloursarescaledtothemaximumandminimumvaluesofthesurface r θ φ radialmagneticfieldcomponent. Wherer=R/R andtheratiosofcentrifugal(φ )andgravitational (cid:63) c (φ )tothermalenergyaregivenby g (cid:32) (cid:33) (ωR )2 free (∇× B = 0) and divergence free (∇· B = 0). In a format φc=me k T(cid:63) (7) B similartoJardineetal.(1999)thecomponentsforthecoronalmag- (cid:32) (cid:33) neticfieldaredeterminedfromthesolutiontoLaplace’sequation φ =m GM(cid:63) , (8) ∇2ψ=0,whereψisthescalarpotential: g e R(cid:63)kBT (cid:88)N (cid:88)l whereR(cid:63)isthestellarradius,M(cid:63)isthestellarmass,ωisthestellar B =− [la rl−1−(l+1)b r−(l+2)]P (cosθ)eimφ (2) rotation rate, k is the Boltzmann constant,G is the gravitational r lm lm lm B l=1 m=1 constantandmeistheelectronmass. Toensurethatonlyregionsoftheclosedstellarcoronacon- (cid:88)N (cid:88)l d B =− [a rl−1+b r−(l+2)] P (cosθ)eimφ (3) tributetowardstheemissionmeasure,thegaspressurealongopen θ lm lm dθ lm l=1 m=1 field lines is taken to be zero. In addition to this, if there is any over-pressure along the designated closed loops i.e. gas pressure B =−(cid:88)N (cid:88)l [a rl−1+b r−(l+2)]P (cosθ) im eimφ (4) (p=2nekT)(cid:62)magneticpressure(pB = B2/2µ),thenthepressure φ lm lm lm sinθ atthatgridpointisalsosettozero. l=1 m=1 Assumingthegasisopticallythin,theX-rayemissionmea- with B,B ,B representing the radial, meridional and azimuthal r θ φ surevarieswithdensity,i.e. componentsofthemagneticfield,respectively,P representsthe lm (cid:90) associatedLegendrepolynomials,almandblmaretheamplitudesof EM(r)= n2dV . (9) e thesphericalharmonics,listhesphericalharmonicdegree,misthe orderorazimuthalnumberandr=R/R(cid:63). Thetemperature(T=2×106K),sourcesurface(Rss=2.5R∗) Toextrapolatethe3Dcoronalfieldanddeterminetheampli- and constant of proportionality κ (10−6) are kept constant in this tudeofthesphericalharmonics,almandblm,weapplytwobound- paper(formoredetailsseeLangetal.(2012)). aryconditions.TheupperconditionisthatattheSourceSurface, R (Schatten et al. 1969), the field opens and is purely radial ss (B = B = 0), while the lower boundary condition imposes the θ φ 3 RESULTS observedradialfield.Wechoosethesolarvalueforthesourcesur- faceat2.5R∗.Thecodeusedtoextrapolatethefieldisamodified 3.1 FieldStructure versionoftheglobaldiffusionmodeldevelopedbyvanBallegooi- With the addition of small-scale field B drops more rapidly with jenetal.(1998). height,closetothestellarsurface.Assuch,wedonotfindanygreat The extrapolated 3D small-scale field is shown in Fig. (2), changeinthelarge-scalefieldstructure.ThisisevidentfromFig. wherethefieldlinesremainclosedandclosetothestellarsurface. (3)whichshowstheradialfieldatboththestellarsurfaceandthe Thisextrapolationdemonstratesthatthesmall-scalefieldproduces sourcesurface.Fig.(3a)&(3c)whichrepresentthelarge-scaleand a‘carpet’oflow-lyingloopsacrossthesurface. large- + small-scale field at the stellar surface respectively, show verydifferenttopologies;however,whenthisisextrapolatedoutto thesourcesurface(Fig.(3b)&(3d))thetopologiesaresimilar.We 2.3 X-rayEmissionModel concludefromthisthatthemagneticpressurefallsoffwithradius The structure of the magnetic field is influenced by the strength morequicklywiththeadditionofsmall-scalefieldleavingonlythe of the surface field and the distribution of plasma. Following the large-scalecomponentsnearthesourcesurface. modelinLangetal.(2012),thedensitystructurecanbeestimated Fig.(4)showsthecoronalmagneticfieldof;(1)thelarge-scale fortheextrapolatedcoronabyassumingtheplasmaishydrostatic field extrapolated from the reconstructed radial maps (left-hand and isothermal and that the gas pressure at the stellar surface is column); and (2) the large- + small-scale field, where the small- proportionaltothemagneticpressure(p =κB2).κisaconstantof scalefieldisscaledaccordingtoReiners&Basri(2009),suchthat o o proportionalityrelatingthebasegaspressure p tomagneticpres- B =6%B ,forpartly-convectiveMdwarfsandB =14%B , o ls Total ls Total sureB throughthemagneticconstant2µ.Thevalueofκischosen forfully-convectiveMdwarfs(right-handcolumn).Acomparison o suchthatthecoronaldensitiesliewithintheobservedrangeforM oftheextrapolationsinboththeleft-andright-handcolumnsfrom (cid:13)c 2014RAS,MNRAS000,1–11 4 P.Langetal (a)Large-scaleradialfieldatstellarsurface (b)Large-scaleradialfieldatsourcesurface (c)Large-+small-scaleradialfieldatstellarsurface (d)Large-+small-scaleradialfieldatsourcesurface Figure3.Upper:Large-scale(ZDI)reconstructedradialfieldmapsforGJ49at(a)thestellarsurface,and(b)thesourcesurface.Lower:ZDI+small-scale radialfieldmapforGJ49at(c)thestellarsurface,and(d)thesourcesurface.Small-scalefieldisscaledaccordingtotheresultsofReiners&Basri(2009) suchthatBls=6%BTotal,forpartly-convectiveMdwarfs. Fig.(4)showthelocationofcoronalholeswherethestellarwind For comparison with our previous work (Lang et al. 2012) isemittedandtheangleofthemagneticdipoleaxisfromtherota- conducted on the field visible only to ZDI, we keep the model tionpoleremainlargelyunchangedonthemajorityofthestarsin parameters e.g., the temperature (T = 2×106K), source surface thesample.However,theextrapolationsofDTVir,OTSerandEQ (R =2.5R )andκ=10−6,constant.Keepingκconstantresultsin ss ∗ PegAshowsmallchangesinthestructureoftheclosedlarge-scale anincreaseinpressureandcoronaldensityduetotheincreasein field. thesurfaceflux.Thecoronaldensities(showninTable1)nowlie atthehigherendoftheacceptedrange:109−1012cm−3(Nessetal. 2002,2004),asopposedtotheirpreviousvalueswhichwereatthe 3.2 Activity-RotationRelation lowerend.Thevalueofκcouldbealteredinsuchawaytoreduce thecoronaldensitiesbacktothevaluescalculatedfortheZDImaps TheX-rayluminosityhasbeenshowntocorrelatewellwitheither andinturnreducethemagnitudeoftheX-rayemissionmeasure. rotationalvelocityorRossbynumberRo(theratioofthestellarro- tationperiod,P,totheconvectiveturnovertime,τ )(e.g.,Pizzolato ComparisonoftheresultsofFig.(5)andFig.(6)indicatethat c et al. 2003a,b; Jeffries et al. 2011); in general, L /L increases theadditionofthesamesmall-scalefieldtoeachstarremovesthe X bol and then saturates (L /L ≈ 10−3; (Delfosse et al. 1998)) with activity-rotationrelation;however,scalingthesmall-scalefieldto increasingrotationratXe.Tbhoilsbehaviourisattributedtocoronalsat- the large-scale, e.g., Bls = 6%BTotal, for the partly-convective M uration(Vilhu&Walter1987;Staufferetal.1994)andoccursatRo dwarfs and Bls = 14%BTotal, for the fully convective M dwarfs, ≈0.1.ForasampleofMdwarfs,Langetal.(2012))reproducethe recoverstherelation.Thiswouldsuggestthatthesmall-scalefield saturationoftheX-rayemissionmeasureforthelarge-scalefield hasthesamedependenceonrotationperiodasthelarge-scalefield. detectedthroughZDI.TheseresultsareshowninFigs.(5)and(6) Inourpreviouswork(Langetal.2012),therotationalmod- asblacksymbols. ulation of the X-ray emission measure for the stellar sample did Withtheadditionofsmall-scalefield,thecorrelationbetween not demonstrate any trend with Rossby number and could not be theX-rayemissionmeasureandRossbynumberchangesdepend- used as an indicator of field topology due to too many contribut- ingontheamountofsmall-scalefluxadded.Forcase(1),shown ingfactorse.g.,theangleofstellarinclinationandtheangleofthe inFig.(5),theriseandsaturationoftheX-rayemissionmeasure magneticdipoleaxisfromtherotationpole.Wefindthatwiththe isnotasprominentwiththeadditionof500Gofsmall-scaleflux additionofsmall-scalefield,bothwiththesamesurfacedistribu- (red symbols) and is no longer evident for 1000G of small-scale tionandmagnitude,andscaledwithrespecttothelarge-scalefield, flux(bluesymbols).Thismeansthataddingthesamesurfacedis- thisisstillthecase. tributionofsmall-scalefieldtoeachstardestroystherelationship With the addition of small-scale field, the magnitude of the between magnetic flux and Rossby number. If we now consider rotation modulation of the X-ray Emission Measure changes for case(2)whereB = 6%B ,forthepartly-convectiveMdwarfs eachstarasaresultofchangesinsurfacefieldstrength(SeeTable ls Total and B = 14%B ,forthefullyconvectiveMdwarfsshownin (1)). For OT Ser, an early-M Dwarf, the change in the rotational ls Total Fig.(6)theriseandsaturationoftheX-rayemissionwithRossby modulationbetweenthelarge-scalefieldandtheadditionofsmall- numberisonceagainapparent.ThemagnitudeoftheX-rayemis- scalefluxisnearly30%,whereasforGJ49,alsoanearly-Mdwarf, sionhasincreasedbyapproximately5ordersofmagnitudedueto thechangeinthemodulationis1%.Sincewedonotfindanygreat theincreaseinflux(Table1). changeinthelarge-scalefieldstructurewiththeadditionofsmall- (cid:13)c 2014RAS,MNRAS000,1–11 000 5 (a)GJ182(07):0.75M(cid:12); Large-scale (b)Large-+small-scalefield field (c) DT Vir (08): 0.59M(cid:12); Large-scale (d)Large-+small-scalefield field (e) DS Leo (08): 0.58M(cid:12); Large-scale (f)Large-+small-scalefield field (g) GJ 49 (07) : 0.57M(cid:12); Large-scale (h)Large-+small-scalefield field Figure4.Column(1)showsthe3DcoronalextrapolationforthereconstructedsurfaceradialmapsforoursampleofMdwarfs.Column(2)istheextrapolation forcase(2)withthecombinationofthesmall-scalefieldscaledwithrespecttothelarge-scalefielde.g.,Bls =6%BTotal,forthepartly-convectiveMdwarfs andBls=14%BTotal,forthefullyconvectiveMdwarfs. (cid:13)c 2014RAS,MNRAS000,1–11 6 P.Langetal (a) OT Ser (08): 0.55M(cid:12); Large-scale (b)Large-+small-scalefield field (c)CEBoo(08):0.48M(cid:12); Large-scale (d)Large-+small-scalefield field (e)ADLeo(07):0.42M(cid:12); Large-scale (f)Large-+small-scalefield field (g)EQPegA(06):0.39M(cid:12); Large-scale (h)Large-+small-scalefield field Figure4–continued (cid:13)c 2014RAS,MNRAS000,1–11 000 7 (a) EV Lac (06): 0.32M(cid:12); Large-scale (b)Large-+small-scalefield field (c)YZCMi(07):0.31M(cid:12); Large-scale (d)Large-+small-scalefield field (e)V374Peg(05/06):0.28M(cid:12); Large- (f)Large-+small-scalefield scalefield (g)EQPegB(06):0.25M(cid:12); Large-scale (h)Large-+small-scalefield field Figure4–continued (cid:13)c 2014RAS,MNRAS000,1–11 8 P.Langetal Table1.ResultsforthecoronalpropertiesforthesampleofMdwarfs.Thepredictedvaluesforthelogarithmicemissionmeasure(bothmagnitude,logEM, androtationalmodulation,RotMod)andlogarithmiccoronaldensity,logne,fortheobservedlarge-scalefield,arefromLangetal.(2012).Thelogarithmic emissionmeasure(bothmagnitude,logEM,androtationalmodulation,RotMod)andlogarithmiccoronaldensity,logneforthesimulatedlarge-scale+small scalefieldatBmax=500GandBmax=1000GaswellasforBls=6%BTotalforpartly-convectivestarsandBls=14%BTotalforfullyconvectivestars,arefrom thiswork. Large-scale +500G +1000G +% Star SpType logEM RotMod logne logEM RotMod logne logEM RotMod logne logEM RotMod logne (cm−3) % (cm−3) cm−3 % (cm−3) cm−3 % (cm−3) cm−3 % (cm−3) GJ182 M0.5 50.3 12 8.6 51.2 31 9.2 52.1 31 9.8 55.4 25 11.0 DTVir M0.5 50.9 3 9.3 50.4 21 9.1 51.6 10 9.8 54.8 20 11.3 DSLeo M0 48.4 10 7.9 49.9 30 9.1 50.8 43 9.9 53.6 18 10.7 GJ49 M1.5 46.8 18 7.1 50.0 24 9.2 50.9 26 9.8 52.0 19 9.9 OTSer M1.5 50.7 49 9.2 50.8 24 9.3 51.6 13 9.8 54.2 20 11.3 CEBoo M2.5 49.5 2 8.5 50.2 4 9.2 51.3 10 9.7 54.9 20 11.4 ADLeo M3 50.2 3 8.9 50.6 0.4 9.4 50.6 0.4 9.4 54.5 10 11.7 EQPegA M3.5 51.4 51 9.7 51.5 44 9.7 51.8 48 10.0 54.9 27 12.0 EVLac M3.5 52.0 12 10.1 52.1 4 10.2 52.2 10 10.3 55.4 6 12.2 YZCMi M4 50.2 10 10.3 52.4 10 10.4 52.4 9 10.4 55.7 28 12.1 V374Peg M4 52.6 27 10.3 52.9 22 10.4 52.8 24 10.4 56.6 22 12.4 EQPegB M4.5 51.1 14 9.6 51.3 12 9.8 51.6 21 10.1 54.3 22 11.8 Figure 5. X-ray Emission Measure as a function of Rossby number for Figure6.X-rayEmissionMeasureasafunctionofRossbynumberforboth boththelarge-scalefield(blacksymbols)andthesimulatedsmall-scale+ thelarge-scalefield(blacksymbols)andthesimulatedsmall-scale+large- lSayrmgeb-oslcsa:leasfiteerldisk(Bsmraexpr=es5e0n0tGparretdlysycmonbvoelcst,ivBemadxw=ar1fs0,00MG>blu0e.4syMm(cid:12)b,oalns)d. sdcwaalerffis,elMd(>pu0rp.4leMs(cid:12)y,mabnodlsd)i.amSyomnbdorles:praessteernitskfuslrlyepcroensevnetctpivaretldywcaornfvs,ecMtiv(cid:54)e diamondrepresentfullyconvectivedwarfs,M(cid:54)0.4M(cid:12). 0.4M(cid:12). maystillbeacarpetofsmall-scalefield,whichcouldcontributeto scalefield,thechangeinthemagnitudeoftherotationalmodulation poweringthestellarwind(e.g.,Nishizukaetal.(2011)). couldbearesultofthesmall-scalefieldproducinglow-lyingsmall Thestellarwindisresponsibleforangularmomentumlossand closedfieldregionswhichcarpetthestellarsurfaceincludingthe influencesthestellarspindowntime.Toinvestigatetheeffectthe areaswherethelarge-scalefieldisopen. small-scalefieldhasontheoverallcoronalstructure,weexamine bothitsinfluenceonthetotalmagneticfluxatthesurfaceofthestar andalsothetotalopenflux.Weanalysethegeometryofthefield 3.3 OpenFluxandSpinDown bypredictingandcomparingtheopenfluxtoobservedsurfaceflux CoronalstructureisimportantasitdeterminestheX-rayemission valuesobtainedfromtheoverallcombinationofland m modes, fromregionsofclosedmagneticfieldbutalsoareaswherethemag- (cid:82) Φ R2 |B(R ,θ,φ)|dΩ nlaertgice-fiscealdleismoapgenneatincdfitehledss,tetlhlaerrwaningdefoofrmfiesl.dFsotrresntagrtshwspitrhesweenatkoenr ΦSOurpfeance = Rs2∗s(cid:82) |Brr(R∗ss,θ,φ)|dΩ , (10) thestarhasbeenalteredbytheadditionofsmall-scalefield.This haslittleeffectonthegeometryofthelarge-scalefield(Fig.4).The whereΩisthesolidangle.Wenotethisgivesalowerlimittothe trueopenfluxasonsomefieldlinesthegaspressuremayexceed dipoleaxisandthelocationandextentoftheopenfieldregionsare themagneticpressure. largelyunchanged.Thisistobeexpectedasthesmall-scalefieldis Addinginsmall-scalefieldincreasesthesurfaceflux.Fig.(7a) distributedaxisymmetricallyoverthesurfacesoithasnopreferred showsthisincreaseexpressedas direction.Thissuggeststhatthelatitudesfromwhichastellarwind couldbelaunchedwouldnotbeaffectedbythepresenceofsmall- ∆φ = (φSurface)large+small −1 . (11) scalefield.Withinregionswherethelarge-scalefieldisopenthere Surface (φ ) Surface large (cid:13)c 2014RAS,MNRAS000,1–11 000 9 a) b) Figure7.Thepercentagechangein(a)thesurfacefluxand(b)theopenfluxasafunctionoftheobservedsurfaceflux,duetotheadditionofsmall-scalefield. SymbolsareasofFig5. andonlyasinglefluxestimateispossible.Assumingthatallofthe surfacefluxiscontainedinonesinglemode,forexampleadipole, canhoweverleadtoanoverestimateoftheamountofopenflux.As discussedinLangetal.(2012),theopenfluxforanysinglemode issimplyrelatedtothesurfacefluxas: Φ (2l+1)(Rss)l+1 Open = R∗ . (13) ΦSurface l+(l+1)(RRs∗s)2l+1 Figure (8) shows that when small-scale field is added there is an increaseinsurfacefluxbutthepredictedopenfluxisstillatleastan orderofmagnitudesmallerthanitwouldbehadweonlyconsidered thedipolemodes.Therefore,theangularmomentumloss,J˙,dueto thestellarwind,whichisdeterminedbytheamountofopenflux i.e.aWeber-Davismodel(Weber&Davis1967),givenby J˙∝Φ2 , (14) Open Figure8.Comparisonofthemagnitudeoftheminimumpredictedopen is influenced by the topology of the field and would be overesti- fluxasafunctionoftheobservedsurfacefluxwithandwithoutsmall-scale mated by at least 2 orders of magnitude. This is also true for the field.Thedashedlineshowsthepredictedopenfluxofapuredipole.Four starswhichspanthespectralrangeofoursamplehavebeenchosentoshow masslossrate, thatwhenproducingamodelforthestellarcoronaarangeoflandmmodes M˙ ∝Φ , (15) mustbeconsideredtoreproducethecorrectcoronalstructure.Symbolsare Open asofFig5. whichcouldbeoverestimatedbyanorderofmagnitudeifthetopol- ogyisover-simplified.Weconcludefromthisresultthatwhenpro- ducingamodelforthestellarcorona,orthestellarwind,arangeof Thefractionalincreaseinsurfacefluxisclearlygreatestforthose landmmodesmustbeconsideredtoreproducethecorrect,more starswhoselarge-scalesurfacefluxislowest. complex,coronalstructure. The addition of the small-scale field also results in a slight change(10%to40%)intheopenflux(Fig.7b)butshowsnopref- erence between partly-convective and fully-convective stars.. The 4 SUMMARY fractionfortheopenfluxisgivenby We have created a model for small-scale field using synthesised ∆φ = (φOpen)large+small −1 . (12) spot distribution maps. We allocate field strengths in a Gaussian Open (φ ) Open large distribution from the centre of the spot by either (1) fixing the This result is in keeping with the increase in surface flux, value of B to be either ±500G or ±1000G; or (2) setting the max whichwouldincreasethemagneticpressure(Eq.5).Wenotethat value of B such that the large-scale field contributes only 6% max the magnitude of the open flux is dependent on the chosen value of the total field for partly-convective M dwarfs and 14% of the forthesourcesurface(asR =→∞,Φ →0)buttheeffectof total field for fully-convective M dwarfs, as indicated in Reiners ss Open addinginsmall-scalefieldisthesameforallvaluesofthesource &Basri(2009).Wehaveincorporatedtheradialsurfacemappro- surface.Asthereislittlechangeintheopenfluxwiththeaddition duced by this model into the reconstructed maps of the observed ofsmall-scalefield,wewouldnotexpecttheangularmomentumor radial magnetic field at the stellar surface for a sample of early- masslosstobesignificantlyaffected. to-midMdwarfsandextrapolatedtheir3Dcoronalmagneticfield For many stars a full surface magnetic map is not available usingthePotentialFieldSourceSurfacemethod. (cid:13)c 2014RAS,MNRAS000,1–11 10 P.Langetal Table2.Valuesformass,radius,Rossbynumberand(cid:104)BV(cid:105)(theaveragelarge-scalemagneticfluxderivedfromspectropolarimetricmeasurements),arefrom Donatietal.(2008);Morinetal.(2008).Valuesof (cid:104)BV(cid:105) forGJ182,DTVir,CeBoo,ADLeo,EVLacandYZCMiarefromReiners&Basri(2009),while (cid:104)BI(cid:105) (cid:68) (cid:69) valuesforDSLeo,GJ49,OTSerEQPegA,V374Peg,andEQPegBareestimates(depictedbye)basedonReiners&Basri(2009).Valuesfor Bls r (theaveragelarge-scale[ls]radialflux),(cid:104)Bss(cid:105)(theaveragesmall-scale[ss]flux,scaledwithrespecttothelarge-scalefield)and(cid:104)Bls+ss(cid:105)(theaveragelarge-+ small-scaleflux)aswellasφOpen(theopenflux)andφSurface(thesurfaceflux)valuesarefromthiswork. 500G 1000G Star Mass Ro (cid:104)BV(cid:105) (cid:68)Blrs(cid:69) (cid:68)Blrs+ss(cid:69) (cid:68)Blrs+ss(cid:69) (cid:104)(cid:104)BBVI(cid:105)(cid:105) (cid:104)Bss(cid:105) (cid:68)BlRs+ss(cid:69) |βlMs| |βlMs| φlOspen φlOs+pesns φlSsurface φlSsu+rsfsace (M(cid:12)) (10−2) (kG) (kG) (kG) (kG) (%) (kG) (kG) (◦) (◦) 1023Mx 1023Mx 1025Mx 1025Mx GJ182 (07) 0.75 17.4 0.17 0.10 0.19 0.21 6 1.8 1.8 41.1 41.4 2.9 3.3 3.0 4.6 (07) 0.59 9.2 0.15 0.08 0.18 0.20 5 1.5 1.5 83.6 84.0 1.0 1.2 0.1 7.4 DTVir (08) - - 0.15 0.12 0.21 0.22 5 2.3 2.3 20.0 13.0 0.5 1.2 0.1 2.3 (07) 0.58 43.8 0.10 0.04 0.16 0.18 5e 0.75 0.76 41.1 38.8 0.5 0.3 0.05 0.8 DSLeo (08) - - 0.9 0.03 0.16 0.18 5e 0.60 0.3 42.9 42.6 0.3 0.3 0.04 0.6 GJ49 (07) 0.57 56.4 0.3 0.02 0.15 0.18 6e 0.30 0.30 10.9 2.3 0.30 0.30 0.03 0.30 OTSer (08) 0.55 9.70 0.14 0.13 0.19 0.22 6e 1.9 0.8 12.1 12.8 1.0 4.8 0.09 4.0 CEBoo (08) 0.48 35.0 0.10 0.12 0.20 0.23 6 1.8 1.8 7.4 6.3 1.2 1.3 0.1 1.3 (07) 0.42 4.7 0.19 0.21 0.27 0.30 7 2.8 2.9 4.5 4.5 1.5 1.6 0.1 1.6 ADLeo (08) - - 0.18 0.21 0.27 0.29 7 2.8 2.9 7.3 7.3 1.5 1.6 0.1 1.6 EQPegA (06) 0.39 2.0 0.48 0.39 0.42 0.44 10e 3.8 3.8 25.9 25.9 2.4 1.5 0.2 1.7 (06) 0.32 6.8 0.57 0.63 0.66 0.67 13 3.8 3.9 45.8 45.8 2.8 2.4 0.2 1.3 EVLac (07) - - 0.49 0.57 0.59 0.61 13 3.8 3.9 43.2 43.3 2.6 1.7 0.2 0.96 (07) 0.31 4.2 0.56 0.73 0.74 0.76 14 3.8 3.9 24.8 24.8 3.1 2.4 0.3 1.3 YZCMi (08) - - 0.55 0.66 0.69 0.70 14 3.9 4.0 12.1 11.1 3.0 1.8 0.3 0.92 V374Peg (05) 0.28 0.6 0.78 1.0 1.1 1.1 14e 5.9 6.0 9.3 8.0 4.4 2.0 0.4 1.7 EQPegB (06) 0.25 0.5 0.45 0.49 0.51 0.53 14e 3.3 3.4 6.5 6.4 1.7 1.0 0.1 0.8 We have investigated the effect the addition of small-scale REFERENCES field has on the topology of the large-scale magnetic field at the AltschulerM.D.,NewkirkG.,1969,Sol.Phys.,9,131 stellarsurfaceandthestructureoftheextrapolated3Dcorona.By BarnesJ.R.,JeffersS.V.,JonesH.R.A.,2011,MNRAS,412, assuming a hydrostatic, isothermal corona, we have determined 1599 thefollowing: DelfosseX.,ForveilleT.,PerrierC.,MayorM.,1998,A&A,331, 1.Thegeometryofthemagneticfielde.g.,theangleofthedipole 581 axis, overall large-scale structure of the 3D extrapolated corona andlocationofcoronalholeswherethestellarwindisemittedall Donati J.-F., Forveille T., Collier Cameron A., Barnes J. R., remainlargelyunchanged. Delfosse X., Jardine M. M., Valenti J. A., 2006, Science, 311, 2. Addition of the same small-scale field to each star removes 633 the L −Rorelation;however,scalingthesmall-scalefieldtothe Donati J.-F., Howarth I. D., Jardine M. M., Petit P., Catala C., X large-scale (ZDI) field recovers the relation. We conclude from LandstreetJ.D.,BouretJ.-C.,AlecianE.,BarnesJ.R.,Forveille thisthatthesmall-scalefieldhasthesamedependenceonrotation T.,PaletouF.,MansetN.,2006,MNRAS,370,629 periodasthelarge-scalefield. DonatiJ.-F.,MorinJ.,PetitP.,DelfosseX.,ForveilleT.,Aurière 3. The magnitude of the rotational modulation of the X-ray M.,CabanacR.,DintransB.,FaresR.,GastineT.,JardineM.M., emissionmeasurechangeswiththeadditionofmoresurfaceflux; Lignières F., Paletou F., Velez J. C. R., Théado S., 2008, MN- however,notrendwithRossbynumberRoisfound.Thischange RAS,390,545 couldbeduetothecarpetoflow-lyingfield. GregoryS.G.,JardineM.,CollierCameronA.,DonatiJ.-F.,2006, 4.Theadditionofsmall-scalefieldincreasesthesurfaceflux. MNRAS,373,827 5.Andfinally,wefindthatthelarge-scaleopenfluxdoesnotvary JardineM.,BarnesJ.R.,DonatiJ.-F.,CollierCameronA.,1999, greatlywiththeadditionofsmall-scalefield.Thissuggeststhatthe MNRAS,305,L35 masslossrate,theangularmomentumlossandthespindowntime JardineM.,WoodK.,CollierCameronA.,DonatiJ.-F.,Mackay forastar,arenotsignificantlyaffectedbysmall-scaleflux. D.H.,2002,MNRAS,336,1364 JeffriesR.D.,JacksonR.J.,BriggsK.R.,EvansP.A.,PyeJ.P., 2011,MNRAS,411,2099 LangP.,JardineM.,DonatiJ.-F.,MorinJ.,VidottoA.,2012,MN- RAS,424,1077 MorinJ.,DonatiJ.-F.,ForveilleT.,DelfosseX.,DoblerW.,Petit ACKNOWLEDGEMENTS P., Jardine M. M., Collier Cameron A., Albert L., Manset N., PLacknowledgessupportfromanSTFCstudentship.JM,AVand DintransB.,ChabrierG.,ValentiJ.A.,2008,MNRAS,384,77 RF acknowledge support from fellowships of the Alexander von MorinJ.,DonatiJ.-F.,PetitP.,DelfosseX.,ForveilleT.,AlbertL., Humboldtfoundation,theRoyalAstronomicalSocietyandSTFC, AurièreM.,CabanacR.,DintransB.,FaresR.,GastineT.,Jar- respectively.Theauthorswouldliketothanktherefereeforapar- dineM.M.,LignièresF.,PaletouF.,RamirezVelezJ.C.,Théado ticularlythoroughanddetailedreport. S.,2008,MNRAS,390,567 (cid:13)c 2014RAS,MNRAS000,1–11

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.