Mon.Not.R.Astron.Soc.000,1–10(2007) Printed2February2008 (MNLATEXstylefilev2.2) Modelling the dynamical evolution of the Bootes dwarf spheroidal galaxy 1 ⋆ 2 1 1 1 M. Fellhauer , M.I. Wilkinson , N.W. Evans , V. Belokurov , M.J. Irwin , 8 1 1 3 G. Gilmore , D.B. Zucker , J.T. Kleyna 0 0 1InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,CambridgeCB30HA,UK 2 2Dept.ofPhysicsandAstronomy,UniversityofLeicester,UniversityRoad,LeicesterLE17RH,UK 3InstituteforAstronomy,2680WoodlawnDrive,Honolulu,HI,96822,USA n a J 2February2008 7 1 ] ABSTRACT h We investigate a wide range of possible evolutionary histories for the recently discovered p Bootesdwarfspheroidalgalaxy,aMilkyWaysatellite.BymeansofN-bodysimulationswe - o follow the evolution of possible progenitor galaxies of Bootes for a variety of orbits in the r gravitational potential of the Milky Way. The progenitors considered cover the range from t dark-matter-freestar clusters to massive, dark-matter dominated outcomes of cosmological s a simulations. For each type of progenitorand orbitwe comparethe observablepropertiesof [ the remnantafter 10 Gyr with those of Bootes observed today. Our study suggests that the progenitor of Bootes must have been, and remains now, dark matter dominated. In general 1 v ourmodelsareunabletoreproducetheobservedhighvelocitydispersioninBooteswithout 7 darkmatter.Ourmodelsdonotsupporttime-dependenttidaleffectsasamechanismableto 5 inflatesignificantlytheinternalvelocitydispersion.Asnoneofourinitiallysphericalmodels 6 isabletoreproducetheelongationofBootes,ourresultssuggestthattheprogenitorofBootes 2 mayhavehadsomeintrinsicflattening.AlthoughthefocusofthepresentpaperistheBootes 1. dwarf spheroidal, these models may be of generalrelevance to understandingthe structure, 0 stabilityanddarkmattercontentofalldwarfspheroidalgalaxies. 8 Key words: galaxies: dwarfs — galaxies: individual: Bootes — galaxies: kinematics and 0 : dynamics—galaxies:evolution—methods:N-bodysimulations v i X r a 1 INTRODUCTION ofnewlow-luminosityMilkyWaysatellites(Willmanetal.2005; Belokurovetal. 2006; Zuckeretal. 2006; Belokurovetal. 2007; ThedwarfsatellitegalaxiesoftheMilkyWayhaveattractedcon- Walshetal. 2007). These objects probe a previously unexplored siderable interest in recent years due to their high apparent mass regimeforgalaxies,extendingthefaintendofthegalaxyluminos- tolightratios,whichsuggestthepresenceofconsiderablequanti- ity function by almost four magnitudes. As Gilmoreetal. (2007) tiesofdarkmatter(DM:Aaronson1983;Mateo1998;Kleynaetal. discuss,thesenewobjectsalsoextendtofaintermagnitudestheap- 2001).GiventheapparentabsenceofdynamicallysignificantDM parent bi-modality inthe sizedistribution of low-luminosity stel- inglobularstarclusters,thedwarfspheroidalgalaxies(dSphs)are lar systems, with dSphs exhibiting core radii which are always particularlyvaluableforDMstudiesastheyarethesmalleststellar more than a factor of four larger than the half-light radii of the systemsknowntocontainDM(Gilmoreetal.2007).N-bodysim- mostextendedstarclusters.GiventhatallthedSphsbrighterthan ulationsofgalaxyformationinaΛCDMcosmologypredictthata galaxy liketheMilkyWayshould be surrounded byseveral hun- MV = −8 show evidence of DM, while star clusters appear to bepurelystellarsystems,understandingthephysicaloriginofthis dred low-mass satellite halos (e.g. Mooreetal. 1999). The small sizedifference mayhave implicationsfor our knowledge of DM. numberofknowndSphsinthevicinityoftheMilkyWayhasoften Itisthereforeofparticularimportancetodeterminewhetherornot beencitedasaproblemforΛCDMandmanyattemptshavebeen thenewlydiscoveredsatellitesdisplayevidenceofDM.Thegoal presentedintheliteraturetoexplainwhythenumbersofsatellites ofthispaperistoinvestigatewhetherthecurrentobservationaldata whichformedstarsmightbemuchlowerthanthetotalnumberof foroneofthesenewlyidentifiedsatellitescanbeusedtoconstrain substructures. itsDMcontent. Thepasttwoyearshavewitnessedthediscoveryofaplethora Belokurovetal.(2006)reportedthediscoveryofafaintdwarf galaxy in the constellation of Bootes. The object was discovered ⋆ Email:[email protected],[email protected],[email protected] duringasystematicsearchforover-densitiesofstarsinthemagni- 2 Fellhaueretal. tuderange16 6 r 6 22intheSloanDigitalSkySurvey(SDSS havebeendetected(Bailin&Ford2007).Basedontheequivalent Yorketal. 2000). The morphology of the stellar iso-density con- widths of the Mg lines in the spectra of their seven Boo mem- toursbasedontheSDSSdatasuggestedthatthesystemwasquite bers, Mun˜ozetal. (2006) estimated the metallicity of the system irregularwithsomehintsofthepresenceofinternalsubstructure, to be [Fe/H] 2.5, which would make Boo the most metal- ≈ − possiblyindicatingthattheobjectwasintheprocessoftidaldisrup- poorMilkyWaydwarfspheroidaldiscoveredtodate.Martinetal. tion.Theaimofthispaperistotestthishypothesisandconstrain (2007) found a somewhat higher metallicity of [Fe/H] 2.1 ≈ − thepropertiesofpotentialprogenitorsofthissystem. based on the equivalent widths of the CaII near-infrared triplet The investigation of the evolution of the dSph galaxies (CaT)linesfromalargersampleof19stars.Theoriginofthedis- around the Milky Way by means of N-body simulations has a crepancy between these two measurements is unclear, but could longhistory.Manyauthors(e.g.Johnston,Sigurdsson&Hernquist berelated tothe difference inthecalibration of the empirical es- 1999; Johnston,Choi&Guhathakurta 2002; Mayeretal. 2002; timatorsfor [Fe/H]from theMg and Caline-widths. Prior tothe Readetal.2006)trytomodel theinitialcosmological haloswith workofBataggliaetal.2007, neither ofthesemeasureswascal- orwithout theluminouscomponent inside, followtheir evolution ibrated below [Fe/H] 2 (Rutledge et al. 1997; see also the ∼ − andcomparethefinalresultswiththepopulationofdSphgalaxies discussion in Koch et al. 2007). Battaglia et al. 2007 compared of the Milky Way. Mostly these studies focused on the more lu- abundancesderivedfromhighresolutionspectrawithabundances minousdwarfs, whichweretheonlyknown satellitesprior tothe forthesamestarsderivedfromlowresolutionspectraoftheCaT recent discoveries. In this paper we follow a different approach. andshowedthat,althoughtheCaTcalibrationholdsuntilatleast WeuseN-bodysimulationstoinvestigatetheevolutionofpossible [Fe/H] = 2.5,offsetsofderived[Fe/H]of 0.2dexcanoc- − ≈ ± progenitorsofBootes(henceforthBoo).Ourgoalistounderstand curdependingonhowthemeasurementandcalibrationofthelow thepresent-daypropertiesofBooandtodeterminewhetherthese resolutionspectraisdone.However,despitethedifferenceinthese canbeusedtoconstraintheDMcontentofthissatelliteandofits estimatestherobustimplicationisthatthestarsinBooarebothold progenitor.In 2wedescribetheobservedpropertiesofBoo. 3 andmetal-poor. § § summarisestheinitialconditionsforourmodels. 4presentsthe InFig.1,wepresentnewstellariso-densitycontoursbasedon § resultsof our simulationsfor arange of possible progenitors and deeper photometric data obtained with SuprimeCam mounted on Galactocentricorbits.Finally,in 5weassesstherelativemeritsof theSubarutelescope.IncontrasttotheSDSScontours,theSubaru § thevariousmodelsanddescribethefollow-upobservationswhich datasuggestthatBoohasaregularinternalmorphology,although arerequiredtodistinguishbetweenthem. some internal substructure may still be present (see Fig. 1). We notehowever,thatsomeofthedistortionseenintheinnercontours isduetothepresenceofaverybrightstarinthefieldofview.Itis 2 OBSERVEDPROPERTIESOFBOO thuspossiblethattheinternalmorphologyofBooisquiteregular. Bothsetsofcontours exhibitelongation alonganaxisof roughly The Bootes dSph is currently located at (Belokurovetal. 2006; constant RAwithanhint ofanS-shapeinthecontours- wewill Siegel2006) usethislaterwhenchoosingpossibleorbitalpathsforBoo. RA = 14h00m06s (1) Dec = +14◦30′00′′ (2) D⊙ = 62 3kpc (3) ± 3 SETUP After correcting for unresolved and faint stars, Belokurovetal. (2006) calculated that the total luminosity of Boo is MV,tot = Basedontheobserveddatadiscussedin 1,therearefourplausible 5.8 mag. Taking a conservative stellar mass-to-light ratio of assumptionswhichwecanmakeinorder§tofindpossibleorbitsand − M/L = 2 this translates into a total luminous mass of 3.7 progenitorsofBoo: 104M⊙. × Mun˜ozetal.(2006)estimatedthebulkradialvelocityandline (i) Theiso-densitycontoursofBooareelongatedapproximately ofsightvelocitydispersionofBootobe inthedirectionofconstantRAandappeartoshowthe(S-shaped) on-setoftidaltails.Thetail-likefeaturesconstrainthesizeofthe vrad,⊙ = +95.6±3.4kms−1 (4) luminousobjectandmaybeusedtodeterminetheprojectedorbital σlos = 6.6 2.3kms−1 (5) path. ± (ii) The measured line-of-sight velocity dispersion is of order based on a sample of seven stars. More recently, Martinetal. 7 kms−1, which constrains the total mass of the object at the (2007)obtainedasampleof30Boomembersandestimatedthese presentepoch. parameterstobe (iii) Thescale-length(half-lightradius)oftheluminousmatter vrad,⊙ = +99.9 2.1kms−1 (6) is approximately 13′ (corresponding to 230 pc at the distance of ± σlos = 6.5+−21..04kms−1 (7) 2B8oom)aagnadrctsheec−ce2n.tral surface brightness is of the order of µ0 = ingoodagreementwiththeearliervalue.Atpresentnopropermo- (iv) TheinternalsubstructureseeninthecontoursofFig.1isnot tiondeterminationforBooisavailable. real,butinsteadislikelytobeanartifactofthesparsephotometric Belokurovetal. (2006) compared the colour-magnitude dia- data. gramofBoowiththatoftheold,metal-poor([Fe/H] 2.3)glob- ∼− ular cluster M92 and concluded that Boo isdominated by a stel- InchoosingthepropertiesofourBooprogenitorsbelow,we lar population similar to that of M92, although slightly younger willmakeuseofsomeoralloftheseassumptions.Weemphasise and more metal poor. No evidence of young or intermediate age thattheseareassumptionsforthepresentanalysis,andtheirvalid- populations in Boo has yet been found and no traces of HI gas ityisamenabletofutureobservationaltest. ModellingBoo 3 Table1.ThesampleofthepossibleorbitsofBoosimulatedinthisstudy. Thefirsttwocolumnsgivethepropermotionsoftheorbit(theradialveloc- ityatthepresentlocationofBooisassumedtobe100kms−1inallcases). Thethirdandfourthcolumngivetheperi-andapogalacticondistancesand thelastcolumngivestheeccentricityoftheorbit. name µα µδ Rperi Rapo e [masyr−1] [masyr−1] [kpc] [kpc] (1) -0.53 -0.62 1.8 66.2 0.95 (2) -0.54 -0.70 4.7 66.2 0.87 (3) -0.58 -0.90 14.8 67.2 0.64 (4) -0.63 -1.20 36.9 76.7 0.35 (5) -0.66 -1.40 48.8 104.3 0.36 Galactic Centre than the object while the trailing arm should be moredistant(seee.g.Combesetal.1999).InFig.1,theGalactic Centreliesapproximatelyinthedirectionofthelowerleftcornerof thefigurewhichmotivatesourassumptionregardingthedirection Figure1.ContoursoftheBootesdwarfsatelliteconstructedfromastellar ofmotion. isoplethmapofobjectsselectedtooccupythemainlocusofBoomembers With the present-epoch radial velocity and projected path intheCMD.Contoursstartat2σabovethebackgroundinstepsof2σ.The fixed,weuseasimplepointmassintegratortodeterminethefor- photometricdatawereobtainedusingSuprimeCammountedontheSubaru ward and backward (in time) orbits for given pairs of assumed telescope.Thestraight(red)lineshowsapossibleprojectedorbitalpathof proper motions. Orbits which move along the assumed projected Boo. path are regarded as possible orbits of Boo. In Table 1 we give a selection of such orbits. They span a wide range of perigalac- 3.1 GalacticPotential tica,apogalacticaandeccentricitiesandincludeorbitswhichhave verycloseapproachestotheGalacticCentreaswellasorbitswhich Inourstudy,wemodeltheGalacticpotentialanalyticallyusinga spendmostoftheirtimeintheouterMilkyWayhalo.Thus,despite logarithmichalooftheform restrictingourmodelstotheorbitalpathimpliedbyassumption(i) Φ = 1v2ln r2+d2 , (8) we arestill able toaccess the whole parameter space of possible halo 2 0 eccentricities,peri- and apogalactic distances, even if assumption (cid:0) (cid:1) withv0 = 186kms−1andd= 12kpc.Ourchoiceofaspherical (i)turnsouttobewrong. Wechooseorbit(4)fromTable1asthestandardoneforour haloratherthanaprolateoroblatemodelismotivatedbyourrecent simulations. This choice is more or less arbitrary and is justified studyofthetidaltailsoftheSagittariusdSph,whichshowedthatin onlybythefactthatitnotinanysenseanextremalorbit:itneither theregionprobedbythedebrisfromSagittarius,thegravitational getsveryclosetotheGalacticCentrenorisitanorbitwithalarge potential has to be close to spherical (Fellhaueretal. 2006). We apogalacticon.Italsohasamoderateeccentricity. modelthediscasaMiyamoto-Nagaipotential(Miyamoto&Nagai We also run models for orbit (3), which has an eccentricity 1975)oftheform more similar to the eccentricities of sub-halos seen in cosmolog- GM Φ (R,z) = d , (9) ical simulations (e.g. Ghignaetal. 1998) and one extreme model disc − R2+ b+√z2+c2 2 choosingorbit(2). q Inourstudy,thesimulationtimeiskeptfixedat10Gyr.This (cid:0) (cid:1) withMd = 1011 M⊙,b = 6.5kpcandc = 0.26kpc(whereR choice is asarbitrary as thechoice of orbit. It islikely that there and z are cylindrical coordinates). The bulge is represented by a isatrade-offbetweenthechoiceofsimulationtimeandthechoice Hernquist(1990)potential of orbit. For example, placing an object on an orbit with a close perigalacticonbutonlyashortsimulationtimecouldleadtoasim- GM Φ (r) = b, (10) ilarremnantsystemasthatproducedbyaprogenitorfartheroutin bulge −r+a thehalobutwhoseevolutionwasfollowedforalongertime.How- usingMb =3.4 1010M⊙anda=0.7kpc. ever,whilethiswouldaddanotherdimensiontothe(alreadyvast) × parameter-space of this problem, it would not affect our general conclusionsaboutthepropertiesofplausibleprogenitors. 3.2 PossibleOrbits Asastartingpoint,wetaketheradialvelocityofBooatitspresent 3.3 PossibleProgenitors position to be v = 100 kms−1 and its distance from the sun rad to be D⊙ = 60 kpc. We use assumption (i) above to constrain In order to determine the range of plausible progenitors for the theprojectedorbitalpathnearthesatellite.Furthermore,theshape satellite,wemust now havea closer look at the properties of the ofthestellardistributionnear theon-setof theputativetidaltails Boo dwarf at the present epoch. If our assumption (i) regarding suggests that the direction of motion along this path is likely to an interpretation of the morphology of the outer iso-density con- befromthetopofFig.1tothebottom.Itiswell-establishedthat toursastheon-setoftidaltailsiscorrect,thiswouldimplyanap- the tidal tailsof a disturbed stellar system lie close tothe orbital proximate tidal radius for Boo of about 250 pc. In our analytical pathofthesystemandthattheleadingarmshouldbeclosertothe modeloftheMilkyWay,theenclosedmass(MMW)atadistance 4 Fellhaueretal. DGC 60 kpcisroughly 6 1011 M⊙.UsingtheJacobi limit larargumentappliestoourmodelsC1andC2,inwhichweadopt ≈ × for a satellite on a circular orbit (Binney&Tremaine 1987, their amoreelaborate,two-component representationofadarkmatter- eq.7-84): dominatedsatellite.WeuseaHernquist(1990)profile: rtidal = (cid:16)3MMsMatW(cid:17)31 DGC (11) ρH(r) = M2πHrrsc(r+1rsc)3 (14) we find that the mass within the tidal radius of Boo is approxi- torepresenttheluminousmatter(whereMH isthetotalluminous mately 7×104 M⊙, comparable to theobserved luminous mass massandrscisthescale-length)embeddedinahalooftheform in Boo. While one should not over-interpret the closeness of the agreementgiventhecrudenessoftheaboveestimates,thissuggests ρNFW(r) = ρ0r 1+rs r 2, (15) thatitispossibletofindprogenitorsforBoowhichdonotrequire rs that Boo be dark matter dominated. However, such models must (cid:0) (cid:1) (Navarro,Frenk&White1996,henceforthNFW)whereρ0 isthe also be consistent with the observed internal velocity dispersion, characteristicdensityandrs isthescale-length.Duetothesignif- whichprovidestighterconstraints.Toillustratethiswenowadopt icant amount of massat largeradii inthismodel, such aprogen- aPlummer(1911)modelforthesatellite: itor will not develop tidal tails within the observed field of Boo. ρpl(r) = 43πMRpp3ll (cid:18)1+ Rrp2l(cid:19)−5/2 (12) lrAaersprdionidstumrciboeudttehiloisnBe,tloothnbegeraeetfilooornne.g,Wattheeids.insAvceessntbaiegrifaooterree,twqwuoiereedxsotrtehnmeoteinastiutteibam-lcpsattseetlos- with a Plummer radius (Rpl; which corresponds to the half-light of scenario C (the extended DM scenario): first (C1) a luminous radius)of200pc.Theformula sphereembeddedinaDMhalowiththesamescale-lengthandsec- ondly (C2) a model with a very massive and extended DM halo σ (0) 2.52 Msat[107M⊙] [kms−1] (13) whosescale-lengthislargerthantheextentoftheluminousmatter. los ≈ ×r Rpl[kpc] TheparametersofbothhalosinourCmodelsarebroadlyconsis- yieldsacentralline-of-sightvelocitydispersionforsuchanobject tentwiththeoutcomeoflarge-scalecosmologicalΛCDMsimula- ofonly0.5kms−1.Thisisincleardisagreementwiththemeasured tions: in particular their scale radii and concentrations lie within velocitydispersionofBoo. the(broad)rangeexpectedforcosmologicalhalosofthesemasses With this background, we now explore the possibilities fur- (Jing&Suto2000). ther.Wefirstsearchforadarkmatter-free(Plummermodel) pro- Inordertoinvestigatefurtherthepossiblerelevanceofputa- genitorofBooasourcaseA,toassesshowwellitcanreproduce tivetidaltailsindarkmatter-dominatedmodels,wealsoconsider theobservedmorphology, keepinginmindourexpectationthatit a scenario in which the progenitor of Boo is on a quite extreme willnot beabletoreproduce theobservedvelocitydispersion. In Galactocentricorbit.Inthismodel, thesatelliteisinitiallydeeply this model, the progenitor of Boo is similar to a ’star cluster’ in embeddedinamuchlargerhalo.Toensurethattheluminousmatter thesensethatitcontainsnodarkmatter,butitisunlikeanyknown becomes tidallydistorted,thissystemhas toapproach theGalac- starcluster:itshalf-lightradiusissignificantlylargerthananyob- ticCentresufficientlycloselythatitstidalradiusatperigalacticon served star cluster. It resemblesa dwarf galaxy like atidal dwarf shrinks toabout 200 pc. Tobeconsistent withthe observed high galaxywithoutdarkmattercontent. velocitydispersionofBoo,thetotalmassoftheobjectinteriorto Alternatively,wecanuseEq.13asamassestimatorandcom- thisradiusis1.5 107 M⊙.UsingEq.11andcomputingtheen- × pute the mass of a model witha line-of-sight velocity dispersion closed mass of the Galaxy using the integrated forms of Eqs. 8– of7kms−1andascale-lengthof200pc.Thiscalculationyieldsa 10weseethatinthiscasetheperigalacticonof Boo’sorbitmust totalmassof1.5 107M⊙.InsertingthisvalueintoEq.11wefind be about 5 kpc. During the perigalactic approach, the outer halo × thatthetidalradiusofBooatitscurrentlocationwouldbe1.2kpc of Boo willbecome unbound and even theluminous part will be (or1o).AlthoughthisismuchlargerthantheapparentsizeofBoo, tidallyshocked,developingtidaltails.Asitmovestolargerradii, giventhelowsurfacebrightnessofthesystemitispossiblethatthe thetidalradiusexpandstoitsmuchlargervalueatthepresentepoch stellar distribution extends significantly further than the contours andtheresidualouterhalo,whichdidnothavetimetoescape,be- ofFig.1mightsuggest.Wethereforesearchforapossibleprogen- comesboundagain.WecallthisourcaseD(orDarkMatter&tails itor using a single-component Plummer model as our case B, or model).Forthismodelweuseorbit(2)fromTable1. mass-follows-lightmodel.Wenotethatifthismodeliscorrect,it Since our goal is a general analysis of possible histories of wouldmeanthattheelongationofthestellariso-densitycontours the Boo dSph galaxy, our parameter-space survey also included isintrinsictoBooratherthanbeingtheon-setoftidaltails.Wedo modelsinwhich thesatelliteisnow inthefinalstages of disrup- notattempttoreproducethiselongationinoursimulations,asthis tion and dissolution. In order to be so strongly affected by tides, wouldaddtwomoredimensions(anglesoftheinitialorientation) suchmodelsarenecessarilyoflowerinitialmassthanthemodels tothespaceoffreeparametersinwhichwearesearchingforapro- whichretainsignificantmassuntillatetimes.Wefoundthatsuch genitor,without changing our conclusions significantly.Although modelscouldnotreproducetheobservedhighvelocitydispersion inthismodeltheelongationisnottidallyinduced,wenevertheless while simultaneously satisfying the constraint of the scale-length useorbit(4)forthissimulationtoeasecomparisonwithour’star- being13arcminutes(assumptioniii).Thisconclusionholdsusing cluster’ model. As we discuss below, the results are qualitatively eithersingle-component Plummermodelsortwo-component, ini- similarforaprogenitorsystemplacedonmoreextremeorbits.Ina tiallydarkmatter-dominatedmodelsasprogenitors.Thatis,models moregeneralsenseourmodelBcouldberegardedasacoredhalo whicharenotdarkmatterdominatedbutaretidallydisruptingare modelwiththeluminouscomponenthavingthesamescale-length not,ingeneral,abletoreproducetheobservedvelocitydispersion asthehalo. measuredinBoo.Thisconclusionisofmoregeneralrelevancefor Morefundamentally,thereisnoapriorireasonwhythestel- ourunderstandingofthedarkmattercontentofdSphgalaxies. lardistributionshouldextendtothephysicaltidalradius.Asimi- Thisaddsweighttoourassumptionthattheinternalphotomet- ModellingBoo 5 ricsubstructureinBooisnotreal.Whileinternalsubstructureisa possiblesignatureoftidaldisruption,itisrapidlyerasedintheinte- riorofamassive,boundsystem(seee.gFellhauer&Kroupa2005) except incertaincircumstances (seee.g.Kleynaetal. 2003).The failureofdisruptingmodelstoreproducethevelocitydispersionof Boo suggests that theobserved substructures areeither kinemati- callyverycold,orareduetonoiseinthephotometricdataset.It alsomeansthatthevisibleelongationofBooisintrinsictothepro- genitorofBooandnottidallyinduced.RegardingthepossibleS- shapeofthecontoursitcanonlybespeculatedthataninitiallyflat- tenedsystem,whichisatleastpartlyrotationallysupported,might feelatidallyinduced torquewhich bendsthecontours intoanS- shape, even though the progenitor is deeply embedded in a DM halo (see e.g. Mayeretal. 2001). Given the current sparse nature oftheobservationaldataforBoo,suchaninvestigationisnotwar- rantedinthecontextofthepresentpaper. WealsoinvestigatedamorespeculativescenarioinwhichBoo had a recent encounter with the Sagittarius dwarf galaxy. In the absenceofanobservedpropermotion,itispossibletofindanorbit forBoowhichwouldproducesuchaclosepassagearound340Myr Figure 2. Lagrangian radii of our initial models evolved in isolation to demonstrate their stability. The plot shows the scaled Lagrangian radii ago. The proper motion of Boo in this case would be µ = αcosδ +0.034masyr−1,µ = 1.024masyr−1.However,theremnant (10%..90% ofthe total mass). Theradii are scaled by their initial value δ − andmultipliedbythemass-fractiontheyrepresent.Thisresultsininitially ofBoointhiscaseisnomoresimilartotheobservedobjectthanin equidistant radii independent ofthe choice ofthe initial profile, butalso theotherscenarioswehaveconsideredandsotheextraassumption thattherelativedeviationofthe90%radiusisdisplayedninetimeslarger ofatwo-bodyencounterwithSagittariusisnotwarranted. thanthedeviationofthe10%radius.DottedlineismodelA,solidlineis Forcompleteness,wealsoinvestigatedamoreexoticansatz, modelB,shortdashedlineismodelC1,longdashedlineismodelC2and namely ’star cluster’ models (i.e. models without dark matter) dashed-dottedlinerepresentsmodelD.Theadditionalmodelsonorbit(3) which have a very massive black hole at their centre. As antici- areomittedforclarity. Allmodelsshowaninitial adaptation tothegrid- pated,eveninthemodelswhichcontainedthemostmassiveblack basedtreatment.TheadditionalluminouscomponentforthemodelsC1–D holewhichstillledtoanundisruptedobject(inthiscasethecentral resultsinaslightcontractionoftheinnerpartsoftheDMhalo.Alsoanex- pansionoftheoutermostradius,duetothecut-offradiusisvisible.Butafter black hole wasfive timesmore massive thanthe stellar remnant) thisshortinitialperiodtheradiistayconstantfortherestofthesimulation wecouldnotreproducethehighvelocitydispersion,eventhough time. the black hole-induced velocity dispersion dominated the bulkof theremnant. equation(seee.g.Binney&Tremaine1987) 3.4 Simulations σr2,i(r) = ρi1(r)Zrrc GMrto′2t(r′)ρi(r′)dr′, (16) Themodus operandi of our search for possible progenitors isthe and the Maxwellian approximation (e.g. Hernquist 1993) to gen- eratethevelocities.Itisknown(Kazantzidis,Magorrian&Moore following: 2004)thatthisapproximationleadstoasmallcoreinthecentreand (i) Weadopt apossibleorbitforBoo.Formostofoursimula- a velocity anisotropy in the outer parts, i.e. enhancing the mass- tionsthisisourreferenceorbit(4)fromTable1. lossoftheoutershells.However, wenotetheadditionofalumi- (ii) We use a simple point-mass integration to trace this orbit nous component to our models influences the DMdistribution in backwardsfor10Gyr. theinnerparts,makingthemmoreconcentrated(Kazantzidisetal. (iii) Weinsertthemodelforourpossibleprogenitoratthisstart- 2004).ThisisclearlyvisibleinFig.2andbelowinFig.7.There ingposition.Ineachmodel,eachcomponentofthemodelisrepre- we show that despite we use the Maxwellian approximation our sentedby106particles. DMhaloesarecuspyinthecentreandnotcoredevenafter10Gyr (iv) We simulate the model forward in time until the present of evolution inatidal field.A cored profilewould indeed have a epoch using the particle-mesh code Superbox (Fellhaueretal. moreimpulsiveresponse(duetothelongerinternalcrossingtime) 2000). tothetidsalfieldandhenceforthalargermas-lossalsointheinner (v) We analyse the final model and compare it to the obser- parts,but wedo not seethiseffect inour models. Withregardto vations. If there is a mismatch, we alter the initial properties of theincorrecttreatmentoftheouterpartswenotethatwetruncate theprogenitor(scale-length,mass,etc.)accordinglyandstartagain ourinitialdistributionataradiuswhichisonlyslightlylargerthan withstep(iii). thetidalradiusofBootoday,therebyreducingtheinitialmass-loss oftheouterparts.Ahalowhichextendstoitsvirialradius(r200, For all our models, we check for stability by evolving them aquantitywhichisanorderofmagnitudelargerthanthetidalra- firstinisolation.ThetimeevolutioninisolationoftheLagrangian diusatfirstperigalacticon)wouldsufferstrongmass-lossduringits radii of some of our models are shown in Fig. 2. For the single- firstperi-Galacticpassage.Thus,theregionfromwhichweexpect component Plummer models, the distribution function is used to enhanced mass-loss due to the Maxwellian approximation would generatethevelocities.ForthecombinedmodelsweusetheJeans beremovedbytidesatearlytimes.Bystartingwithasmallerini- 6 Fellhaueretal. Figure4.Left:Surfacebrightnessprofilesofourmodels.Theupper(green) lineshowstheexponentialfittotheobserveddata,whilethelower(red)line showsthePlummerfit.Right:Velocitydispersionprofilesofourmodels. Thehorizontal(green)lineshowstheobservedvalueofthecentralveloc- ity dispersion. The symbols are: Case A: tri-pods; case B: crosses; case C1:triangles;caseC2:squares;caseD:pentagons.Modelsonorbit(3)are omitted. Figure3.Surfacebrightnessdistributionofourmodelsatthepresentepoch. Topleft:caseA,starclustermodel;topright:caseB,mass(stellarplus dark)followslightmodel;middleleft:caseC1,two-component,darkmat- terdominatedmodelwithhaloofthesamescale-length;middleright:case C2,2-component,darkmatterdominatedwithextendedhalo;bottom:case D,2-component,darkmatterdominatedwithtails.Modelsonorbit(3)are omitted. Figure5.Radial variation ofthemass-to-light ratios inourmodels.The horizontal line shows the constant value of case B (mass follows light). TrianglesrepresentcaseC1,squaresrepresentcaseC2andpentagonsare tialtruncationradius,wenegatetheimpactofthismasslossonthe forcaseD.Toconvertthemassinluminousmatterinoursimulations to evolutionofourmodels. aluminosityforthestellarcomponentweassumeamass-to-lightratioof two.Modelsoforbit(3)areomitted. 4 RESULTS singlePlummersphereofmass8 105 M⊙ andPlummerradius × (half-lightradius)of202pcandtruncatethedistributionat500pc Inthissection,wedescribethebest-fittingmodelsofeachtype(A- (seeTable2).Wechooseorbit(4)forthismodelbecauseitfitsthe D) introduced in 3.3. We show their initial parameters (relevant § line-of-sightpathtracedbythetidaltailsandisnotextremeinany forthenumericalsetup)aswellasthecomputedvaluesofthevirial sense.Thefinalobjecthasaboundmassof7.6 104 M⊙ anda radius,concentrationandmaximumcircularvelocity(relevantfor mass(includingunboundmaterial)of1.1 105×M⊙ lieswithina comparisonwithotherstudies)inTable2.TheresultsoftheBoo × field of view of one square degree. The object is strongly tidally modelsatthepresent epoch, especiallytheinferredcentralmass- distortedandelongated, although theiso-densitycontours remain to-lightratiosofBoo,areshowninTable3. quitesmooth(seeFig.3,topleftpanel).Theradialsurfacedensity distribution reproduces the observed profile reasonably well (see Fig.4left panel) but thevelocitydispersion of thefinal object is 4.1 The‘starcluster’case(A) onlyoftheorderof1kms−1(seeFig.4rightpanel).Infact,there- Inthissimulationweassumethattheelongationoftheouterstel- mainingboundmasshasanevenlowerdispersion( 0.5kms−1) ≈ lariso-densitycontoursofBoorepresentstheon-setoftidaltails. butweobserveanenhancedvalueinprojectionduetotheunbound Thisrequiresthatthefinalmodelhasatidalradiusofabout250pc stars surrounding the object. The remnant exhibits no significant which,giventheobservedluminousmass,canonlyoccuriftheen- velocitygradientsacrossthemainbodyofthesystem.Asexpected, closedmasscontainsnodarkmattercontribution.Westartwitha thereisanoffsetofabout2kms−1,orroughlytwicetheinternal ModellingBoo 7 Table2.Initialconditionsforthebestfittingmodelsofallsixcases.Shownarethebasicparametersforeachmodelandeachcomponent:initialmass,scale- lengthandcut-offradius.Furthermorewedenotethevirialradius(rvir=r200,exceptfortheA-cases:rvir=−GM2/4E),theconcentrationc=rvir/rs, themassatthevirialradius,themaximumrotationvelocityandfinallytheorbit(numbersrefertoorbitsinTable1). case model mass rs rcut rvir c M(rvir) vc,max orbit [M⊙] [pc] [pc] [kpc] [M⊙] [kms−1] A Plummer 8.0×105 202 500 0.34 1.7 5.1×105 4.1 (4) B Plummer 1.6×107 200 2000 1.4 7.0 1.6×107 18.5 (4) C1 NFW 4.5×107 300 1200 12 40 1.5×108 13.1 (4) Hernq. 3.0×104 300 300 C2 NFW 3.0×108 1000 2500 25 25 1.3×109 22.7 (4) Hernq. 4.0×104 250 500 D NFW 1.25×108 250 1000 18 72 5.1×108 23.9 (2) Hernq. 5.0×104 250 400 A-3 Plummer 3.5×106 178 500 0.3 1.7 2.2×106 9.2 (3) B-3 Plummer 2.0×107 200 1000 2.6 2.6 2.0×107 20.7 (3) C1-3 NFW 5.0×107 300 1000 13 45 2.0×108 8.0 (3) Hernq. 5.0×104 300 500 C2-3 NFW 6.0×108 1000 2500 32 32 2.8×109 61.0 (3) Hernq. 5.0×104 250 500 horizontalbranchwouldargueagainstasignificantline-of-sightex- Table3.ParametersoftheBoomodelsatthepresentepoch.Thecolumns givethetotalmasswithinafieldofviewofonesquaredegree(∼1.1kpc), tensioninthissystem(seethecolourmagnitudediagraminFig.2 theluminousmasswithinthefieldofview,themeanmass-to-light(M/L) ofBelokurovetal.2006).Evengiventhisoptimalalignment,how- ratio,thecentralmass-to-lightratioandthecentralvelocitydispersion.For ever,wefindthattheprojectedvelocitydispersionoftheremnantis thesimulationwithoutdarkmattertheM/L-ratioquotedisinbracketsand smallerthan2kms−1.Thisaddsfurtherweighttoourconclusion denotesthevaluewhichwouldbeinferredbyapplyingthevirialtheorem. thatallviableprogenitorsofBoomusthavecontaineddarkmatter. model totalmass lumin.mass M/L M/L0 σ [M⊙] [M⊙] [kms−1] 4.2 (Darkplusluminous)mass-follows-light:case(B) A 1.1×105 1.1×105 (17) — 1.0 Thismodelisasimplifiedrepresentationofatwo-componentpro- B 1.3×107 4.2×104 620 620 6.5 genitor with a cored luminous distribution together with a cored C1 2.7×107 3.0×104 1800 550 6.5 dark matter halo of the same scale-length and profile. In this C2 6.7×107 3.9×104 3400 800 6.5 scenario, the initial object is a Plummer sphere with a mass of D 1.1×107 1.4×104 1400 1400 6.5 1.5 107M⊙.IthasaPlummerradiusof200pcandthedistribu- A-3 2.3×105 2.3×105 (32) — 2.0 tion×istruncatedat2kpc(seealsoTable2).Atthepresentepoch, CB1--33 11..13××110077 23..93××110044 784000 680000 57..50 the remnant mass is about 1.3×107 M⊙, a value which agrees closelywithoursimplemassestimatefrom 3.3.Thecentralline- C2-3 2.7×107 3.6×104 1500 1000 6.5 of-sight velocity dispersion is 6.5 kms−1 w§hich agrees with the observedvalueandthefinalscale-lengthis13arcsecasobserved. Toreproducetheradialsurface-brightnessprofileandthetotallu- velocitydispersion,betweenthemeanvelocitiesoftheleadingand minous mass, a mass-to-light ratio of 620 is required (see Fig. 3 trailingtails. toprightpanel).Theresultingsurfacebrightnessandvelocitydis- Sincethismodelcannotreproducetheobservedvelocitydis- persionprofilesareshownascrossesinFig.4.Thesurfacebright- persionofBoo,evenwhenunboundstarsalongthelineofsightare nessprofileisveryclosetotheobservedPlummerfittotheprofile included,weconcludethatadarkmatter-freesystemisruledoutas of Boo, whichisunsurprising given thattheinner regionsof this aprogenitor of Boo.Increasing thestellarmassof theprogenitor modelareshieldedfromtheeffectsoftides.Wenote,however,that would increase the velocity dispersion but would also reduce the atlargerradii(notvisibleinthefieldofviewshowninFig.3)this level of tidal disturbance. Asaresult, theremnant wouldcontain modelexhibitstheon-setoftidaltails. toomuchstellarmassandwouldnotshowevidenceoftidaltails. One might alsospeculate that the dark matter halo of Boo’s Asafinalpossibleavenuetoobtainaninflatedvelocitydisper- progenitorwascoredbutwithascale-lengthmuchlargerthanthat sion(inprojection)foraremnantwithoutdarkmatter,werotatethe of thelight. In such amodel, dark matter at large radii would be model(A)remnantsothatthetidaltailsliealongthelineofsight. tidallystrippedatearliertimes.Asaresult,thescale-lengthsofthe Thisconfigurationwouldbeexpectedtomaximisetheobservedve- darkandluminousmatterdistributionswouldbecomemoresimilar locitydispersion–Kroupa (1997)previouslyusedsuchpreferred over time, leading toa model which was closer to mass-follows- alignmentstoarguethatthedynamicalmassesofthelargerdSphs lightatthepresentepoch.Wethereforeconcludethatacoredhalo were over-estimated. In the case of Boo, we note that its narrow model is a plausible progenitor for Boo and, further, that a total 8 Fellhaueretal. mass-follows-lightmodelisconsistentwiththecurrentlyavailable data. As we discussed earlier, this model does not reproduce the elongation of Boo but remains spherical, having the same lumi- nousmassandscale-lengthastheobservations.Sincetheinnerre- gions of this model (corresponding to the volume probed by the observedstellardistribution)arealmostunaffectedbytheexternal tidalfield,weexpectthatourresultswouldchangeonlymarginally ifweusedanelongatedmodelwiththesamemassandmeanscale- lengthatthestartofthesimulation.However,althoughthiswould not strengthenour conclusions regardingtheviabilityofthissce- nario, it would greatly increase the computational effort required toidentifysuitableprogenitorsaswewouldhavetoconstraintwo additionalfreeparameters(orientationangles)unrelatedtotheim- portant physical structure of Boo in order to match the observed orientationofBoo. Both model A and model B compare well with Johnston,Choi&Guhathakurta (2002), probing just much smallerscales,eventhoughinmodelBfeatureslikeisophotaltwist andthebreakradiusarebeyondthefieldofviewofFig.3and4.It Figure6.Surfacebrightnessdistributionoveralargerarea,complementary toFigure2,formodel(D)inwhichtheprogenitorisonanextremeorbit isthe’diffuselight’aroundmodel Awhichboostsits’measured’ abouttheMilkyWay. velocitydispersionbyafactoroftwo. 4.3 Extendeddarkmatter:case(C) thehighest claimedratiowithintheregionprobed by thestarsin anyMilkyWaysatellitesofar,butarecomparabletothosederived C1: In this simulation, the dark matter halo and the luminous in NFW-based modelling by Penarrubia,Navarro&McConachie matter have the same scale-length but differing initial radial (2007).AsFig.5shows,intheinnermostregionstheM/L-ratioof structure and radial extent (see Table 2). In order to match the thismodel isabout 800butitincreasesexponentiallywithradius highcentralvelocitydispersion,thismodelrequiresaconcentrated uptoavalueof 9000. halo, with a correspondingly low total mass. As a result, halo ≈ Duetoitsmassive,extendedhalo,thismodelhasnotidaltails materialcanbeeasilystrippedfromtheouterpartsofthesystem. inside the optical radius. However, the surface brightness profile At the present epoch in our simulation we find 3× 104 M⊙ of closelymatchestheobservedprofile(seeFig.4),andthehighcen- luminousmatterinthefieldofview(seeFig.3middleleftpanel) tralvelocitydispersionisalsoreproduced.Asinthepreviousmod- and 2.7 × 107 M⊙ in dark matter, which agrees approximately els,wedonotaccountforanyinitialellipticityofBoo. withourestimatefromSection3.3.TheaverageM/L-ratiowithin Weconcludethatifweweretoallowsomeintrinsicelongation onesquaredegreeis1800.Ifweanalysetheradialdependenceof eitherof ourNFWhaloscenarioscouldaccount fortheobserved theM/L-ratio(seeFig.5)weseethatintheverycentrethevalue propertiesofBoo. isabout 550 and therefore similar toour mass follows light case (B) and it increases only in the very outer parts where virtually no stars are present. At the present epoch in the simulations the 4.4 Darkmatter&tails:case(D) stellar distribution is slightly elongated at larger radii (outside our field of view) although we started with a perfectly spherical In this model we attempt to retain the assumption that the ob- distribution.Thisshowsthatalotofdarkmatterintheouterparts servedelongationofBooistheonsetoftidaltailsinadarkmatter- hasbeenstrippedaway,andtheouterluminouspartofthesatellite dominated model. Therefore, we place the progenitor on a more isfeelingthetidalforcesoftheMilkyWay.Thefinalradialsurface eccentricorbit.Forthisscenariotobeviable,theperigalacticonof brightness profile is similar to that of Boo, although the central theorbitmustbesufficientlyclosetotheGalacticCentrethatthe value isslightlyhigher. Aswithmodel (B),theelongation of the tidal radius of Boo shrinks to a value such that even the deeply- satellite at radii less than 0.5◦ is not reproduced - an initially embedded luminous matter is affected by the external field. In flattenedprogenitorwouldprobablyyieldaremnantwithadensity fact,wefindthatthesimulationdoesnotshowtidaldistortionon distribution more similar to that of Boo. The velocity dispersion small scales, although some hint of tails are noticeable on larger within 10′ matches the observed value, although it falls off at scales(seeFig.6).Asinourotherdarkmatter-dominatedmodels, largerradii. thevelocitydispersionofBooisreproduced.However,theevolu- tionleadstoasurfacebrightnessprofilewhichfallsoffsomewhat C2:Inthisscenario,wehaveaninitialmodelwheretheluminous moresteeplythantheobservedprofile.Inthefieldofview,wefind matterisrepresentedbyaHernquistsphereembeddedinasignif- 1.4 104M⊙instarsand107M⊙inDM,givinganaverageM/L- × icantly more extended NFW halo. The initial scale-length of the ratioofabout1400.AsFig.5shows,theM/L-ratioisroughlycon- haloislargerthantheinitialsizeoftheluminousdistribution(see stantthroughouttheremnant. Table 2). This model reproduces the high velocity dispersion of Thissimulationshowsthateventhoughthetidalradiusatperi- Boobutextendstomuchlargerradiithantheobservedobject.By galacticonshrinkstovalueswellwithintheluminousdistribution, theendofsimulation,wefind3.9 104 M⊙ ofluminousmatter andsomestarsbecomeunbound,theresultingstellarremnantdoes within one square degree but 6.7 ×107 M⊙ of DM. These val- notexhibittidaltailsatthepresentepoch.Duringthelongperiodof × uesimply ameanM/L-ratioof morethan 3400, whichwould be theorbitwherethetidalradiusismuchlargerthantheextentofthe ModellingBoo 9 luminousmatter,formerlyunboundstarsbecomeboundagainand, apparently, redistribute themselves symmetrically about the rem- nantduetophasemixing.Giventheabsenceoftails,weconclude that this model is no more successful in reproducing the obser- vations than our other dark matter-dominated models and merely servestoillustratethatourconclusionsrelatingtomodels(B),(C1) and (C2) would be largely unchanged if those progenitors were placedonmoreextremeorbits. 4.5 Orbit(3)models Because neither orbit (4) nor the extreme orbit (2) are based on cosmological assumptions wealsoperformasuiteof simulations usingorbit(3),whichismoretypicaloftherangeofeccentricities foundincosmologicalsimulations.Wesearchforinitialmodelsfor ourfourorbit(4)cases,namelyAtoC2andcomparethedifferent models. The initial conditions and the final results are shown in Table2andTable3respectively.Comparingtheinitialvalues,there isacleartrendthattheinitialmasseshavetobehighertoreproduce Figure7.EvolutionofthedensityprofileofmodelC1-3.Shownarethe thesamekindofremnanttoday.Onecanalsonoticethetrendthat initialprofile(dotted,black),att=2.5Gyr(shortdashed,red),atthattime thefinalmodelshavelargercentralmass-to-lightratiosthantheir thesatelliteisnearitsperigalacticon,att=5Gyr(longdashed,green),at correspondingmodelsonorbit(4).Thistrendisbestvisibleifone t = 7.5Gyr(dashed-dotted,blue)closetoitsapogalacticonandthefinal comparesthesequenceofthemodelsC1(-4),C1-3andD(orC1- profileatt=10Gyr(solid,black).Verticallinedenotesthetidalradiusat 2). The initial mass increases with decreasing perigalacticon and perigalacticon. alsothefinalcentralmass-to-lightratioincreasesfrom550via600 toanastonishingvalueof1400inthemostextremecase. Tosimplifythecomparisonbetweenourmodels,wekeptthe thereforefocusedonboundmodelseitherwithorwithoutthepres- same initial scale-lengths from our orbit (4) models in our DM- enceofsignificantquantitiesofdarkmatter. dominated simulations for progenitors on orbit (3). In order to Ourmodel(A)isanextended’starcluster’modelandrepro- shieldtheluminouscomponentfromtidaldisruption,wethenhave ducesthesurfacebrightnessprofileanddistortedoutermorphology to make the orbit (3) models more massive. As a result, the ini- of Boo reasonably well. As expected for a purely stellar system tialcentralM/L-ratioswerehigherintheorbit(3)modelsaswell fromourargumentin 3.3,however,thefinalvelocitydispersion § asthecentralvelocitydispersions.However,thehalosonorbit(3) is significantly smaller than that observed in Boo. It is therefore are tidally shaped differently, because they experience a stronger veryunlikelythatapurelystellarmodelcouldbetheoriginofBoo. tidalfieldandthereforeattheendofthesimulationthehaloscale- Our darkmatter-dominated modelsmodels (cases(B)- (D)) lengths in our orbit (3) models differ from the ones on orbit (4). canreproduceboththesurfacebrightnessprofileandthevelocity Duetothisfact,westillseehighercentralvaluesfortheM/L-ratio dispersion,butnotthemorphologyoftheouterstellardistribution. althoughthefinalvelocitydispersionsaresimilar. Thismorphologicallimitationisbecauseallourprogenitorsareini- Inourheavilydarkmatter-dominatedsimulationswefindonly tiallyspherical,andtheirdarkmatterhalosprotectthemfromsig- a slight evolution of the luminous component with time. But the nificanttidaldisturbance.EveniftheorbitofBoohasaverysmall halo component experiences a rather strong tidal shaping in its perigalacticon(case(D)),theremnantdoesnotexhibittidaltailson outerparts.Weshowthetimeevolutionofthehalodensityprofile scalesassmallasthoseobservedinBoo.Forthesemodelsthere- ofoneofourmodels(C1-3)inFig.7.Stillourmodel oftheDM fore,iftheelongationoftheoutercontoursofBooisrealandnot haloshowsacuspyprofileevenafter10Gyrofevolution,i.e.the anartifactofthesparsephotometricdata,thenitmustresultfrom influenceofthetidesontheinnermostpartsofthesatelliteisrather intrinsicelongationoftheprogenitorsystem.Asstatedin 3.3the § weak.Duetotheinterplayofdarkandluminouscomponenteffects putative S-shape of the contours in these cases do not represent asdiscussedinKazantzidis,Magorrian&Moore(2004)seemnot theon-setoftidaltailsbutmightbecausedbytidaltorquesacting toplayastrongroleinoursimulations. on an intrinsically flattened system which is at least partly rota- tionally supported but remains deeply embedded in its DM halo. GiventheverylowstellarmassofafaintsatellitelikeBoo,adwarf discgalaxyprogenitor(suchaswasusedbyMayeretal.(2002)to 5 CONCLUSIONS modeltheCarinadSph)wouldeitherhavetobeordersofmagni- Inthispaperwehaveinvestigatedawiderangeofpossibleprogen- tudelowerinbaryonicmassthantypicallyobservedstellardiscs,or itorsandevolutionaryhistoriesfortherecentlydiscoveredBootes wouldhavetolosealmostallofitsinitialmass(bothdarkandbary- dwarf spheroidal satellite galaxy of the Milky Way. As we dis- onic).Thelatterscenariowouldeitherrequireanextremelylowstar cussedin 3.3,althoughtheouteriso-densitycontoursofthestellar formationefficiencyintheoriginaldisk(i.e.mostofthebaryonic § distributionareelongated,anobservationsometimesinterpretedas component is still in the form of gas, which gets easily stripped suggestiveoftidaldisturbance,thisinterpretationisnotconsistent byrampressurestrippingandthecosmicultravioletbackgroundat withtheobservedvelocitydispersionof 7kms−1.Ourinitialat- highredshiftassuggestedbyMayeretal.(2007)),or verystrong ≈ temptstoreproduceboththedistortedoutermorphologyandhigh tidaldisturbance. Againweemphasise that toreproduce thehigh velocitydispersion using models whichwereclose to,or slightly velocity dispersion of Boo, we require a dark matter mass in the beyond, the point of complete disruption were unsuccessful. We inner regions which would preclude this level of tidally-induced 10 Fellhaueret al. masslossfromthecentralparts-inourstudyitwasnotpossibleto KleynaJ.T.,WilkinsonM.I.,GilmoreG.,EvansN.W.,2003,ApJ, reproducethedataofBoowithadisruptedobjectofanykind. 588,L21 Onthebasisofourstudy,weconcludethatitisunlikelythat KochA.,KleynaJ.T.,WilkinsonM.I.,GrebelE.K.,GilmoreG., theprogenitorofBoocontainednodarkmatter.Infact,wefound EvansN.W.,WyseR.F.G.,HarbeckD.R.,2007,AJ,134,566 noviablemodelsinwhichdarkmatterwasnotalwaysdominant. KroupaP.,1997,NewAstronomy,2,139 ExternaltidaleffectsontheevolutionoftheprogenitorofBoodo MartinN.F.,Ibata R.A.,Chapman S.C.,IrwinM.J.,LewisG.F., not significantly affect the observed stellar velocity dispersion in 2007,MNRAS,380,281 the inner regions, or the structure of the galaxy. Our most likely MateoM.,1998,ARA&A,36,436 modelshavefinalDMmassesintherange1 7 107M⊙. MayerL.,GovernatoF.,ColpiM.,MooreB.,QuinnT.,Wadsley − × BychangingthepossibleorbitofBoowefoundthatthecloser J.,StadelJ.,LakeG.,2001,ApJ,559,754 theorbitgetstotheGalacticcentre(i.e.smallerperigalacticonand MayerL.,MooreB.,QuinnT.,GovernatoF.,StadelJ.,2002,MN- highereccentricity)thelargeristhemass-to-lightratioexhibitedin RAS,336,119 theundisturbedcentralpartofthefinalmodel. MayerL.,KazantidisS.,MastropietroC.,WadsleyJ.,2007,Na- In order to understand properly the details of the specific ture,445,738 Bootes galaxy progenitor, however, further data are required. MiyamotoM.,NagaiR.,1975,PASJ,27,533 First,deeperphotometricdataextendingtolargerradiiaroundthe MooreB.,GhignaS.,GovernatoF.,LakeG.,QuinnT.,StadelJ., satellite are essential in order to establish the full extent of the TozziP.,1999,ApJ,524,L19 remnant and whether there is any evidence that the elongation is Mun˜ozR.R.,CarlinJ.L.,FrinchaboyP.M.,NideverD.L.,Majew- tidal in origin (e.g. whether the elongation links to larger scale skiS.R.,PattersonR.J.,2006,ApJ,650,L51 tidal arms). Secondly, a larger kinematic data set is required to NavarroJ.F.,FrenkC.S.,WhiteS.D.M.,1996,ApJ,490,493 study the variation of the velocity dispersion and mean velocity Penarrubia J., Navarro J.F., McConachie A.W., 2007, ApJ, ac- withposition inBoo. Thiswould yield further information about cepted(arXiv:0708.3087) the mass distribution within the remnant. Both these studies are PlummerH.C.,1911,MNRAS,71,460 currentlyunderway. ReadJ.I.,WilkinsonM.I.,EvansN.W.,GilmoreG.,KleynaJ.T., 2006,MNRAS,367,387 Acknowledgements:MF,VB andDBZ acknowledge funding by RutledgeG.A.,HesserJ.E.,StetsonP.B.,1997,PASP,109,907 STFC.MIWacknowledgessupportfromaRoyalSocietyUniver- SiegelM.H.,2006,ApJ,649,L83 sity Research Fellowship. We thank Rainer Spurzem and Walter WalshS.M.,JerjenH.,WillmanB.,2007,ApJ,662,L83 Dehnenforusefulcomments. WillmanB.,etal.,2005,ApJ,626,L85 YorkD.G.,etal.,2000,AJ,120,1579 ZuckerD.B.,etal.,2006,ApJ,650,L41 REFERENCES AaronsonM.,1983,ApJ,266,L11 BailinJ.,FordA.,2007,MNRAS,375,L41 BattagliaG.,IrwinM.,TolstoyE.,HillV.,HelmiA.,LetarteB., JablonkaP.,2007,MNRASaccepted,arXiv:0710.0798 BelokurovV.,etal.,2006a,ApJ,647,L111 BelokurovV.,etal.,2007,ApJ,654,897 BinneyJ.,TremaineS.,1987,’GalacticDynamics’,PrincetonSe- riesinAstrophysics,PrincetonUniversityPress CombesF.,LeonS.,MeylanG.,1999,A&A,352,149 Fellhauer M., Kroupa P., Baumgardt H., Bien R., Boily C.M., SpurzemR.,WassmerN.,2000,NewA,5,305 FellhauerM.,KroupaP.,2005,MNRAS,359,223 FellhauerM.,etal.,2006,ApJ,651,167 GhignaS.,MooreB.,GovernatoF.,LakeG.,QuinnT.,StadelJ., 1998,MNRAS,300,146 GilmoreG.,WilkinsonM.I.,WyseR.F.G.,KleynaJ.T.,KochA., Evans,N.W.,2007,ApJ,663,948 Hernquist,L.,1990,ApJ,356,359 Hernquist,L.,1993,ApJS,86,389 JingY.P.,SutoY.,2000,ApJ,529,L69 JohnstonK.V.,SigurdssonS.,HernquistL.,1999,MNRAS,302, 771 JohnstonK.V.,ChoiP.I.,GuhathakurtaP.,2002,AJ,124,127 KazantzidisS.,KravtsovA.V.,Zentner A.R.,AllgoodB.,Nagai D.,MooreB.,2004,ApJ,611,L73 KazantzidisS.,MagorrianJ.,MooreB.,2004,ApJ,601,37 KingI.,1966,AJ,71,61 KleynaJ.T.,WilkinsonM.I.,EvansN.W.,GilmoreG.,2001,ApJ, 563,L115