ebook img

Modelling regional cropping patterns under scenarios of climate and socio-economic change in Hungary PDF

2018·2.7 MB·English
by  Sen Li
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modelling regional cropping patterns under scenarios of climate and socio-economic change in Hungary

ScienceoftheTotalEnvironment622–623(2018)1611–1620 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Modelling regional cropping patterns under scenarios of climate and socio-economic change in Hungary SenLia,⁎,LindaJuhász-Horváthb,LászlóPintérb,c,MarkD.A.Rounsevelld,e,PaulaA.Harrisonf aEnvironmentalChangeInstitute,UniversityofOxford,SouthParksRoad,OxfordOX13QY,UK bDepartmentofEnvironmentalSciencesandPolicy,CentralEuropeanUniversity,Nádoru.9,Budapest1051,Hungary cInternationalInstituteforSustainableDevelopment,325-111LombardAvenue,Winnipeg,MBR3B0T4,Canada dInstituteofMeteorologyandClimateResearch(IMK-IFU),KarlsruheInstituteofTechnology,Kreuzeckbahnstrasse19,Garmisch-Partenkirchen82467,Germany eSchoolofGeoSciences,UniversityofEdinburgh,DrummondStreet,EdinburghEH89XP,UK fCentreforEcology&Hydrology,LibraryAvenue,LancasterLA14AP,UK H I G H L I G H T S G R A P H I C A L A B S T R A C T • Weemphasisethecriticalroleofregion- allevelactorsindevelopingeffective responsestoarablelandusechanges. • We describe the development of an empirically-grounded agent-based model for projecting future cropping patterns. • We apply the model to stakeholder- driven scenarios of plausible future socio-economicandclimatechange. • Themodelprojectsstrongdifferencesin future land use change between two Hungarianregions. • Theresultssupporttheneedtoimple- mentfocusedadaptationpolicyatthe regionallevel. a r t i c l e i n f o a b s t r a c t Articlehistory: Impactsofsocio-economic,politicalandclimaticchangeonagriculturallandsystemsareinherentlyuncertain. Received24July2017 Theroleofregionalandlocal-levelactorsiscriticalindevelopingeffectivepolicyresponsesthataccommodate Receivedinrevisedform25September2017 suchuncertaintyinaflexibleandinformedwayacrossgovernancelevels.Thisstudyidentifiedpotentialregional Accepted5October2017 challengesinarablelandusesystems,whichmayarisefromclimateandsocio-economicchangefortwocounties Availableonline18October2017 inwesternHungary:VeszprémandTolna.Anempirically-grounded,agent-basedmodelwasdevelopedfroman extensivefarmerhouseholdsurveyaboutlocallandusepractices.Themodelwasusedtoprojectfuturepatterns Editor:D.Barcelo ofarablelanduseunderfourlocalised,stakeholder-drivenscenariosofplausiblefuturesocio-economicandcli- Keywords: matechange.Theresultsshowstrongdifferencesinfarmers'behaviourandcurrentagriculturallandusepatterns Agriculturallanduse betweenthetworegions,highlightingtheneedtoimplementfocusedpolicyattheregionallevel.Forinstance, Croprotation policythatencourageslocalfoodsecuritymayneedtosupportimprovementsinthecapacityoffarmersto Empirically-groundedagent-basedmodel adapttophysicalconstraintsinVeszprémandfarmeraccesstosocialcapitalandenvironmentalawarenessin Environmentalchangeimpactassessment Tolna.Itisfurthersuggestedthatthetworegionswillexperiencedifferentchallengestoadaptationunderpos- Farmerhouseholdsurvey siblefutureconditions(upto2100).Forexample,Veszprémwasprojectedtohaveincreasedfallowland Stakeholder-drivenscenarios underascenariowithhighinequality,ineffectiveinstitutionsandhigher-endclimatechange,implyingrisksof landabandonment.Bycontrast,Tolnawasprojectedtohaveaconsiderabledeclineinmajorcerealsunderasce- narioassumingade-globalisingfuturewithmoderateclimatechange,inferringchallengestolocalfoodself- ⁎ Correspondingauthor. E-mailaddress:[email protected](S.Li). https://doi.org/10.1016/j.scitotenv.2017.10.038 0048-9697/©2017ElsevierB.V.Allrightsreserved. 1612 S.Lietal./ScienceoftheTotalEnvironment622–623(2018)1611–1620 sufficiency.Thestudyprovidesinsightintohowsocio-economicandphysicalfactorsinfluencetheselectionof croprotationplansbyfarmersinwesternHungaryandhowfarmerbehaviourmayaffectfutureriskstoagricul- turallandsystemsunderenvironmentalchange. ©2017ElsevierB.V.Allrightsreserved. 1.Introduction Thisstudybuildsonrecentresearchonapplyinganempirically- grounded ABM for scenario-based future LUCC projections, e.g. Socio-economicandpoliticalchangesarecriticaldriversofagricul- Castellaetal.(2007),Guillemetal.(2015),andMurray-Rustetal. tural land use in Europe (Ewert et al., 2005; Holman et al., 2016; (2013).Theobjectiveswere(i)toprojectpossiblefuturepatternsofar- LambinandMeyfroidt,2011;RounsevellandReay,2009).Development ablelanduseattheregionallevelfortwocounties,VeszprémandTolna, ofnewfarmingtechnologiesandcrops,increasingpopulationdensity, inwesternHungary,and(ii)toidentifypotentialcounty-specificchal- mobilityandchangingconsumptionpatterns,anddiversifiedinterna- lenges for crop production, which may arise from environmental tionaltradingpatternshaveallaffectedtheprofitabilityofdomesticag- change.Toachievetheseobjectives,anextensivefarmerhouseholdsur- riculturalproductiontovaryingextentsandinfluencedfarmerdecision- veywasdesignedandimplementedtoinvestigatethecurrentpatterns making.Climatechangealsoplaysanimportantrolethroughshiftsin ofarablelanduseinwesternHungary.Thiswasusedtoexploretheen- weatherpatterns(e.g.precipitationandtemperature)andextreme vironmentalfactorsinfluencingfarmerdecisionsinselectingcroprota- weatherevents(e.g.floods,droughtsandstorms)affectingcropsuit- tion plans. The model's structure was designed within the Aporia abilityandyieldvariabilityinagriculturalsystems(OlesenandBindi, framework,anABMofagriculturalLUCC(Murray-Rustetal.,2014), 2002;Olesenetal.,2011).Suchsocio-economic,politicalandclimatic andfunctionswerecalibratedbasedonthesurveydataaswellascensus changesareexpectedtocontinue,andmayevenaccelerateinthefuture datafromvarioussources.Ascenarioanalysiswasperformedusingfour resultinginpotentiallysevere,buthighlyuncertain,impactsonagricul- integratedclimateandsocio-economicscenariosco-createdwithstake- turallandsystems(Holmanetal.,2017). holdersfromthetwocounties.Themodellingexperimentssoughtto Landuse/coverchange(LUCC)modellingtechniqueshaveadvanced identifypotentialchangesinfuturearablelandusepatternsduetoen- rapidly(c.f.reviewsbyLambinetal.,2000,Matthewsetal.,2007and vironmentalandrelatedsocio-economicchangeandchallengesfor Verburgetal.,2004).Thishasledtomodel-basedprojectionsoffuture adaptingtothesechangeswithinthetwocounties. LUCCbeingmoreoftenusedfordecisionsupportinurban/ruralplan- ningpolicy(Harrisonetal.,2016;Presteleetal.,2016).Severalauthors 2.Materialsandmethods havesuggestedthatformodellingstudiesoffutureLUCCtobeuseful andrelevantforlandusedecision-makers,theyshould:(i)represent 2.1.Studysites real-worldprocessesandsectoralinteractionsofimportancewithin thecontextofaspecificsocio-ecologicalsystem;(ii)developparticipa- Farmers'landusedecisionsandhowtheyaffectarablelandusedy- toryscenarioswithstakeholderstogainqualitativeinsightintopossible namicswereexploredfortwopredominantlyruralcountiesinwestern futurechanges;and(iii)recogniseuncertaintyanderrorpropagationin Hungary,VeszprémandTolna(Fig.1).Thesecountieswerechosenbe- modeloutputsexplicitlyratherthanfocusingonprecisepredictions causeoftheinterestofkeystakeholdersinthecommunitiesinanas- (Audsleyetal.,2006;Harrisonetal.,2015;Millaretal.,2007).Moreover, sessmentoftheimpactsofenvironmentalchange,andparticularly effectivepolicyresponsestoenvironmentalchangeneedtocoordinate extremeorhigh-endclimatechange,onvulnerabilityintheirregions acrossgovernancelevelsandacrosssectors(Adgeretal.,2005;Ciscar andthedegreetowhichadaptationoptionsmayreducetheirvulnera- etal.,2011;HurlimannandMarch,2012).Inparticular,theroleof bility.Thetwocountieshaveasimilarculturalprofile,andthegeo- lowerlevel(regionalandlocal)actorsindeterminingresponsesto graphicaldistancebetweentheircentresisapproximately100km. LUCCareessentialinunderstandingtheeffectivenessofmanagement Hydro-climaticconditionsinthetwocountiesareparticularlyimpor- interventionsunderuncertainfuturescenarios(Antonsonetal.,2016; tantforregionalagriculture,withVeszprémlocatedatthenortheast EikelboomandJanssen,2013;KumarandGeneletti,2015).Todate, shoreoftheLakeBalaton,thelargestlakeinCentralEurope,andTolna mostscenario-basedLUCCstudieshavefocusedonthecontinental- locatedonthewestbankoftheriverDanube,Europe'ssecond-longest andglobal-scale(Ewertetal.,2005;Holmanetal.,2017;Hurttetal., river. Individual farmers from Veszprém andTolna manage 75,782 2011;Rounsevelletal.,2005).Regional-andlocal-levelLUCCstudies and119,485haagriculturalland,respectively,representingbelow- havebeenrare,withafewrecentexceptions(Guillemetal.,2015; averageandaveragelevelsinthecountry(KSH,2011).Eventhough Houetetal.,2016;Lietal.,2017b;Murray-Rustetal.,2013). theextentoftotalarablelandatthenationallevelhasonlyslightlyin- Farmersmakeagriculturallandusedecisions.Whilefarmersmaybe creased by 0.5% between 2000 and 2010, the proportion of major operatingwithinsimilarsocio-economiccontextsattheregionalscale, crops has changed considerably: by −9.4% for cereals, −33.8% for landusedecisionscanbehighlydiverse,owingtodifferencesinindivid- pulses,−54.8%forpotatoes,−70.6%forsugarbeet,−18.9%forfresh ualobjectives,preferencesandexperiences,aswellasfarm-levelphys- vegetables, melons, strawberries and +87.1% for industrial crops icalconstrainssuchassoiltypeandaccessibility.Thissuggeststhat (EUFSS,2012).Basedonthesecensusdata,thestudyfocusedonthedy- modelsofagriculturalLUCCneedtoincorporateexplicitlyrepresenta- namicsoflanduseproportionsratherthantheirextents. tionofthemechanismsofhowindividualand/orfarm-levelattributes affectfarmermanagementstrategies(Rounsevelletal.,2003).From 2.2.Modeldevelopment thisperspective,agent-basedmodelling(ABM)isanapproachthatof- fersaflexible,bottom-upwayofrepresentingtheprocessesofindivid- Anempirically-groundedmodelwasdevelopedforthecasestudies, uallandusedecision-makingandcross-scaleinteractions(Murray-Rust usingtheAporiaframeworkforagent-basedmodellingofagricultural etal.,2014;Valbuenaetal.,2010).ABMshavebeenshowntoprovide landusechange(Guillemetal.,2015;Murray-Rustetal.,2014).The greaterexplanatorypowerthanmanytop-downapproaches(e.g.linear modeldevelopedinthisstudy,termedAporia-Lite,adoptedtheAporia programmingmodelling)(Filatovaetal.,2013;Kellyetal.,2013)and conceptsandwasprogrammedinareducedformtoonlyincludethe thusofferthepotentialforinterpretingthereasonsbehindprojected important components for the case study (see Fig. 2). As an patternsoflandusechange. empirically-grounded model, the database and key functions of S.Lietal./ScienceoftheTotalEnvironment622–623(2018)1611–1620 1613 Fig.1.ThetwostudysitesinHungary:VeszprémandTolnacounties. Aporia-Litemodelarehighlyspecialisedforthecasestudy.Readersin- agriculturallandmanagerofspecificsocio-economicandattitudinalat- terested in the technical details in developing agent-based models tributes.Theirfarmsarerepresentedasparcelagentsdepictedbyasetof usingtheAporiaframeworkarereferredtoMurray-Rustetal.(2014). physicalattributes.Afarmeragentmanagesaparcelagentthroughare- ThefreesoftwareandguidanceforthefullversionoftheAporiamodel gime,oracroprotationplan,whichhasspecificattributesdescribingits areavailableathttp://www.wiki.ed.ac.uk/display/Aporia. social,economicandenvironmentalvalues.Thus,theregimedatabase TheAporia-Litemodelconsistsoftwotypesofagents(farmerand servesasalocalknowledgebaseofcroprotationplansforfarmerselec- parcel)andaregimedatabase.Afarmeragentrepresentsanindividual tion.Theregimeselectionprocessisassumedtobedrivenbyajoint Fig.2.ThetheoreticalframeworkoftheAporia-Litemodel. 1614 S.Lietal./ScienceoftheTotalEnvironment622–623(2018)1611–1620 considerationofallthefarmerandparcelattributesandtheavailable isthecommonrangefoundinthesurvey.Avariabledescribingthegen- knowledgeonadoptableregimes.Afarmertypologyisembeddedin eraladoptabilityoftheregimewasgeneratedtoreflecttheeasewith themodeltobetterunderstandandcategorisethedifferencesinregime whichacroprotationplancouldbeadoptedbasedonexistinglocal selection.Themodelgeneratespatternsoffarmertypesandarableland knowledge.Thiswasestimatedfromthelikelihoodofdifferentcrop- useonanannualbasis. to-crop chains as found in the local survey and termed the ‘crop matchpossibility’(Fig.3).Forexample,thetotalcropmatchpossibility 2.2.1.Localfarmerhouseholdsurvey ofathree-yearregime‘Maize→Sunflower→Wheat’wasestimatedas Anextensive,multi-purposefarmerhouseholdsurveywasconduct- the‘Maize→Sunflower’matchpossibility∗the‘Sunflower→Wheat’ edbetweenJuneandAugust2015forthetwostudyareas.Thesurvey matchpossibility.Allpossiblecroprotationsoflength2–8yearswere wasdesignedtoservetwokeypurposes.Firstly,toinvestigatecurrent generated.Inordertoreducethecomputationalburden,noN1000 agriculturallandusepatternsandcollectinformationonmajorlocal croprotationswereretainedforeachlength,byselectingthe1000 cropsandsamplecroprotationplans.Secondly,tocollectattitudinal, withthegreatestcrop-matchpossibility.Finally,4855and5526poten- socio-economicattributesandphysicalattributesthatmayinfluence tiallyadoptablecroprotationplanswereincludedintheregimedata- farmers'landusedecision-making.Thesurveystudywasdesigned basesforVeszprémandTolna,respectively. withassistancefromtheHungarianCentralStatisticalOffice(KSH), Thedatabaseswerethencompletedbycompilingfurthereconomic, andwasconductedjointlywiththeKSH'sregularagriculturalsurvey socialandenvironmentalattributesforeachregime.Theattributesused in2015bytrainedandexperiencedKSHsurveyors.Foreachcounty, inthisstudyfollowedpreviousAporiamodellingstudies(Guillemetal., theKSHdetermined110surveyparticipantsbyrandomlyselecting 2015;Murray-Rustetal.,2014),includingregimelength,regimediver- farmerswhomanageprivateholdingsfromitsannualsamplingpools sity,grossmargin(averageyield∗price+subsidies−costs),costs which contain 687 farmers (out of 13,529) in Veszprém and 1253 (seed,labour,machinery,fertiliser,pesticideandothercosts),soilstruc- farmers(outof18,092)inTolna.Thesesamplingpoolsweredeter- ture,nitrogendemand,croplandcoverage,andscoresfortradition, minedbytheKSH'sinternalexpertstoadequatelyreflectthelocaldis- sceneryandrecreation.The2013agro-economicstatisticsprovidedby tribution of farm size and farming objective. For the 220 survey the Hungarian Research Institute of Agricultural Economics (AKI) participantsselectedfromthetwocountiesandvisited,allhelpedto wereusedtocalculategrossmarginandcosts.Thequalitativescores completethequestionnaire.Finally,172farmerswhoprovidedinfor- ofsoilstructure,nitrogendemandandcropcoverwerecalculatedfol- mationontheirregimeswereincludedinthisstudy.Furtherdetails lowingthemethodintheDEFRAguidebookof‘ArableCropping&the aboutthesurveystudycanbefoundinLietal.(2017a).Theattributes Environment’(DEFRA,2002).Thetraditionscorewasbasedonthe of farmers and regimes collected for this study are summarised in crops'contributiontosownareain1990,basedontheFAOcountrypro- TableS1,theAppendixA. filesforHungary.Therankingsofsceneryandrecreationweregenerat- ed with the help of local experts during stakeholder meetings 2.2.2.Regimedatabase (Section2.4). Inthefarmerhouseholdsurvey,participantswereaskedtoprovide detailedinformationon(i)thelengthofcurrentcroprotationplan(in 2.2.3.Farmer'sexecutivetypology years),(ii)therotationschemelistingthecropsplantedforeachyear, Typologiesareoftenusedtosimplifythediversityoffarmersand and(iii)whichyearofthiscroprotationschemetheyarecurrentlyin. their land use strategies, by defining different groups statistically Thesurveycollected172regimerecordsintotal,164ofwhichweredif- basedonspecificcriteria(McKinney,1950).Thesecriteriareflectnot ferent,suggestingahighdiversityinfarmers'regimeselectionprocess. onlytheresearchobjective,butalsodefinehowthediversityofland Toreflectthisdiversity,aregimedatabasewasdevelopedfromthesur- usedecisionsissimplifiedandincludedintheABMofLUCC(Valbuena veyresultstocoverasmanyadoptableregimesaspossible.Thedata- etal.,2008).Inthisstudy,the“executivetypology”isdefinedasa basewasconstructedtoincluderegimesof2–8yearduration,which categorisationofthefarmersbasedonthedifferencesinthestylesof Fig.3.Matchpossibilityofmajorcropsinthetwocasestudyareas:(A)Veszprémand(B)Tolna.Scalesofthecoloursegmentsindicatethetotalnumberoftimesthecropinquestionwas mentionedinaregimebyarespondent,eitherasa‘from’(greatergaptothecircumference)orasa‘to’(smallergap)ina‘from→to’cropmatchpossibility. S.Lietal./ScienceoftheTotalEnvironment622–623(2018)1611–1620 1615 croprotationplanactuallyapplied.Aclassificationanalysiswasper- regimeattributesandregimeselectionwererepeated.Finally,there- formed following the approach used in previous typology studies gime'sadoptability(orthe‘cropmatchpossibility’,Section2.2.3)was (Guillemetal.,2012;Karalietal.,2013).First,aprincipalcomponents consideredtorepresentthepotentialtoacquirelocalknowledgeand analysiswasconductedtoextracttheprincipalcomponentsdescribing supportforimplementingtheregime.Arandomselectionschemewas the variation of regime attributes. Attributes with anti-image appliedtoallowregimeswithahigheradoptabilitytohavegreater correlationb0.3wereexcluded,leadingtosixattributesbeingkept,in- chanceofbeingselectedfromthecandidatepool. cludinglengthofregimeadoption,diversityofregime,grossmargin, costs,soilstructureandtradition.Second,alltheregimerecordswere 2.3.Modelimplementation,workflowandevaluation classifiedbasedontheprincipalcomponentsusingaK-meanscluster analysis(withWard'smethod).Fourgroupsofregimes,ortheexecutive TheAporia-LitemodelwasscriptedintheJava-basedRepasttoolkit typesoffarmers,weredetermined: version2.1foragent-basedmodelling(Northetal.,2013).Allthedata analysisandempiricalfunctionsmentionedpreviouslywereperformed (i) Business-orientedfamerswhoadoptregimeswithhighmargin/ anddevelopedusingtheIBMSPSSstatisticsversion22(Field,2013),be- costs,whichcontainnon-traditionalcrops,butresultindegraded forebeingintegratedintothemodel. soilstructure; Wheninitialisingthemodel,farmeragentsandtheirparcelagents (ii) Traditional/non-diversifiedfamerswhoadoptlong-term,low- wereco-created.Eachfarmer-parcelpairwasassignedrandomlygener- diversityregimeswithtraditionalcrops; atedattributesaccordingtothesummarystatistics(meanandvariance) (iii) Traditional/diversified famers who adopt short-term, high- fromtheagriculturalcensusdataorthehouseholdsurveydata.Theag- diversityregimeswithtraditionalcropsandrelativelyhighmar- riculturalcensusfromtheHungarianCentralStatisticalOffice(KSH) gin/costs,and; (retrievedfortheyearof2013)wasusedtogenerate:farmingobjective (iv) Supplementaryfamerswho adoptshort-termregimesoflow (commercial,semi-subsistence,orsubsistence)andfarmtype(arable, margin/costs,andcreategoodsoilstructure. mixed,orlivestock)forfarmeragents;andfarmsizes(distributionof sizesavailableinthecensus)forparcelagents.Asthisstage,1000farm- eragentsweregeneratedforbothstudysites,andbecauseofthere- Theselectedregimeattributeswerecomparedbetweentheexecu- searchfocusonlythosewhomanage‘arable’or‘mixed’farmtypes tivetypesofthefarmersandthesummarystatisticsareprovidedin werekeptinthemodel.Thisresultedinapproximately590and570 TableS2,theAppendixA.Multinomiallogisticregressionswereper- farmeragentsbeingretainedforVeszprémandTolna,respectively. formedforthetwositesseparately,toidentifywhichfarmerandparcel Then,thesummarystatisticsbasedonthehouseholdsurveyonfarmers' attributesaffectthecategorisationoffarmers'executivetypes.Attri- landuse(TableS2,theAppendixA)wereusedtogeneratetheremain- buteswereenteredintotheregressionmodelandselectedbasedon ingattributesfoundtobeimportantinclassifyingtheagentexecutive theirstatisticalsignificance(Pb0.1),correlationswithotherattributes types(Section2.2.3).Aftertheagentswerecreated,theregimeselec- (−0.5bSpearmancorrelationcoefficientb0.5)andcontributionto tionprocedure(Section2.2.4)wasapplied.Allthefarmeragentswere thefunctionspredictivepower(usingthelikelihood-ratiostatistics). assignedaninitialregimeandarandomnumbertoindicatetheyear Usingtheseempiricalfunctions,itwaspossibletoprojecthowsocio- oftheregimethefameragentwasin.Then,foreachyear,farmeragents economicandenvironmentalchangescouldshiftfarmertypeand,con- managedtheirfarmsandmadelandusedecisionssimultaneously.They sequently,theirregimeselection.Thetwofinalcounty-specificfunc- wouldfirstcheckifaregimewasfinished:ifno,thelanduseplannedfor tionshadsatisfactorypredictivepowerwiththeNagelkerke'sPseudo thenextyearwouldbeapplied;ifyes,theregimeselectionprocedure R-SquareN0.6andanoverallrateofcorrectclassificationhigherthan (Section2.2.4)wasexecutedandnewregimesapplied. 67%.Thefollowingfourattributeswereincludedinbothfunctions: Themodelwasevaluatedthrough(i)stakeholders'qualitativeas- sizeoftheparcel,multipleparcelmanagement(binary),attitudeto- sessment and acceptance of the model structure and usefulness of wardstheimportanceoftheenvironment,andaccessibilitytoinforma- model projections,and(ii) aquantitativecomparisonbetweenthe tionviasocialgroups(binary)ofthefarmer.Inaddition,thefunctionfor projectedarablelandusepatternsandtheobservedpatternsrecorded Veszprémincludedfarmers'incomeandcommercialobjective(binary), inthelocalagriculturalcensus.Foreachcounty,themodelwasrun whilethatforTolnaalsoincludedfarmers'education,attitudestowards for100yearswithbaselinesettings(for2010)andtheproportionof theimportanceofrevenueandeffort,soilqualityandarabletypeofthe landusesformajorcropswassummarisedandcomparedwithcensus parcel.DetailedparameterestimatesarepresentedinTablesS3andS4, data(retrievedfromtheKSHfor2013). theAppendixA,forVeszprémandTolna,respectively. 2.4.Modellingexperiments:projectingfuturearablelandusepattern 2.2.4.Regimeselection Inthemodel,thedecisionstrategyofafarmeragentfollowsautility 2.4.1.Integratedscenariosforlocalenvironmentalchanges maximisationprocedure.Theattributesofthefarmeragentanditspar- Understandinghowenvironmentalconditionsarelikelytochange celagentdepictthelimitsofsocio-economicandphysicalresources. inthefutureisanimportantfirststepinscenarioanalysis,asitprovides Consideringtheselimitations,anexecutivetypewasassignedtoafarm- theconditionsforwhichthemodel'sparametersneedtobemodified. er agent by applying the multinomial logistic regressive functions Throughworkingcloselywithlocalstakeholdersfromthetwostudy (Section2.2.3).Apoolofcandidateregimeswasthenselectedusing sites,asetofintegratedscenariosweredevelopedtodescribeplausible threesteps.First,arandomnumberwasgeneratedforeachregimeat- alternativefutureclimateandsocio-economictrajectories.Thesocio- tributefollowinganormaldistributionwiththesurveyedmeanand economic scenarios were based on downscaling four of the global variancevalues(TableS2,theAppendixA).Theserandomlygenerated Shared Socio-economic Pathways (SSPs) (O'Neill et al., 2015) for attributeswereassumedtobethetargetattributethatreflectsthemax- Hungary.PKD(Pinkdream–SSP1)describesasustainablefuturewith imum utility the farmer would seek. Secondly, the regimes which ahealthyeconomyandimprovedenvironment.RRV(RegionalRivalry metallofthefollowingrequirementsfromthedatabasewereselected –SSP3)representsaninternationallyfragmentedfuturewithhighlyde- intothecandidatepool:(i)candidate'slength=targetlength;(ii)can- graded environmental conditions. IEQ (Inequality – SSP4) is didate'sgrossmargin≥targetgrossmargin;(iii)candidate'scosts≤tar- characterisedbyapoliticalandbusinesselitewithincreaseddisparities getcosts,and;(iv)candidate'diversity,soilstructureandtraditionϵ[0.8 betweentheeliteandmassesinsocial,economicandpoliticaldimen- ∗targetvalues,1.2∗targetvalues].Thirdly,ifthepoolremainedempty sions,andadegradedenvironment.PPU(PatóPálÚr–SSP5)portrays afterloopingthroughthedatabase,thentherandomisationoftarget afossil-fuel-basedandhighlyindustrialisedfuturewithrapideconomic 1616 S.Lietal./ScienceoftheTotalEnvironment622–623(2018)1611–1620 growthandhighlyoverexploitedenvironment.ThePKDandIEQsce- improvementsduetoimprovedagronomyand/orcropbreeding.Pro- narioswerecoupledwithintermediateclimatechangebasedonthe jectionsforseveralmajorcropswereextractedforHungary(seeFig. RCP4.5emissionsscenario,whiletheRRVandPPUwerelinkedwith S1,theAppendixA).Ingeneral,cropyieldswereprojectedtoimprove high-endclimatechangebasedontheRCP8.5emissionsscenario.De- dramaticallyunderPPU(SSP5)andIEQ(SSP4),butdecreaseslightly tailsoftheparticipatorymethodologyfordevelopingthescenarios underPKD(SSP1)andRRV(SSP3).Sinceminorcerealsandlegumes through a series of stakeholder workshops are given in Li et al. werenotmodelledbytheIAP,theircropyieldswereassumedtoremain (2017b).Afulldescriptionofthedevelopmentofthefourlocalscenar- unchangedunderthedifferentscenariosinthemodellingexperiments. ioscanbefoundinKokandPedde(2016).Therationalebehindthese- lectionandintegrationofthelocalscenariosarediscussedinKoketal. (2015)andMadsenetal.(2016). 3.Results 2.4.2.Scenariodriverselectionandquantification 3.1.Modelperformance Foreachscenario,futurepatternsofarablelandusewereprojected by(i)tuningtheagents'attributesbasedonaquantificationexciseand Qualitativeevaluationsbythestakeholders(throughdiscussions) (ii)adjustingtheyieldsofmajorlocalcropsaccordingtoprojections suggestgeneralacceptanceofthemodelstructure.Inapost-workshop fromcropmodels.TheAporia-Litemodelwasrunfor100timesteps surveywithstakeholders,20outofthe23respondentsfoundmodel withscenario-specificsettings,throughwhichresultsattheannual projections useful or very useful for discussing possible policy re- levelweresummarisedandcompared. sponses. The comparison between the baseline model projections Thefourattributesfoundtobeimportantintheclassificationof (2010)withthecensusresultssuggestsasatisfactorymodelperfor- farmers'executivetypesinbothcasestudyareas(Section2.2.3)were mance(Fig.4):theprojectedrankoftheproportionformajorcropsin selectedforthequantificationexcise.‘Farmsize’wasassumedtobeas- totalarablelandusewasinlinewiththerankfoundincensusdata; sociatedwiththetotalagriculturallandusechange,i.e.,farmsizein forthemajorcrops(9outof11inVeszprémand7outof11inTolna), generaldecreasedastotalagriculturallandusedecreases.Whethera therecordedproportionofthecropintotalarablelanduseinthecensus farmermanages‘multipleparcels’wasassumedtocorrespondtothe datafellwithintheprojectedmin-maxrange. sizeoftheruralpopulation(i.e.,asmallerruralpopulationleadsto morepeoplemanagingmultipleparcels)andtechnology(i.e.,greater developmentof technology means less labouris needed and, thus, 3.2.Projectedchangesinfarmer'sexecutivetypes moremultipleparcels).‘Accesstosocialnetwork’wasassumedtobe dependentonchangesinsocialcapital,i.e.,increasedsocialcapitalcre- Projectedpatternsofchangeinfarmertypesaresimilarinbothcase atesmorechancesforfarmerstoaccessknowledge.‘Attitudetowards studyareasforsomescenarios,butdifferentforothers(seeFig.5A,for (theimportanceof)theenvironment’wasassumedtobeinfluenced theextentsofchangesby2100;seeFig.S2,theAppendixA,fortrends byageneralawarenessofenvironmentalprotectionandsustainablede- overtime).Ingeneral,projectedchangesinfarmertypesweredriven velopment,i.e.,enhancedawarenessleadsfarmerstohaveastronger bythedifferencesinthebaselinefarmertypeproportionsandassump- feelingoftheimportanceofenvironment.Thepotentialchangesin tionsmadeaboutthescenariodrivers(Table1).Themostdramatic theseattributeswereinterpretedqualitativelyforeachscenario,based changeswereprojectedunderRRVandPPUinVeszprémbutunder ontherationaleandstorylinesunderpinningthelocalisedscenarios PKDinTolna.TheIEQscenariowasprojectedtoleadtoarelatively (Table1).The‘low’and‘mediumtohigh’changeextentswereassumed lowerlevelofchangeinbothareas. tobe15%and35%forallattributesforexperimentalpurposes.These UnderPKD,farmerswereexpectedtobemoreenvironmentally valueswereselectedastheyarenottooextremetobeimpossiblein friendlyandself-sustainedforbothcasestudyareasby2100:anin- thefuturebutstillabletocauseconsiderablechangesinprojectedfu- creasein thesupplementary (+10.6%in Veszprém and+14.8%in turecroppingsystems. Tolna) and traditional/non-diversified (+25.5% in Veszprém and PotentialchangesincropyieldswerederivedfromtheIntegrated +17.8%inTolna)farmertypeswereprojected,aswellasadecrease AssessmentPlatform(IAP)atthepan-Europeanlevel(Harrisonetal., inbusiness-oriented(−3.0%inVeszprémand−11.4%inTolna)and 2016;Holmanetal.,2015).IntheIAP,cropyieldprojectionsareinflu- traditional/diversified (−33.1% Veszprém and −21.1% in Tolna) encedbyclimate,CO levelsandSSP-specificassumptionsaboutyield farmers. 2 UnderRRV,farmersweremoreinclinedtoadopthighergrossmar- ginregimesandtobelessresponsibleinprotectingsoilstructure:de- creaseswereprojectedforthesupplementary(−9.8%Veszprémand Table1 −7.2%inTolna)andtraditional/non-diversified(−11.0%Veszprém Settingsofselectedagents'attributesforfuturelanduseprojectiona. and −39.5% in Tolna) farmers. Owing to a strong increase in the business-orientedfarmersinTolna(+39.5%by2100),traditional/di- Scenario Timeslice Farm Multiple Accessto Attitudetowards(the size parcels social importanceof) versifiedfarmerswereprojectedtodecreasein2070–2100.Incontrast, network environment inVeszprém,thebusiness-orientedfarmerswereprojectedtobestable PKD 2010–2040 − − ↗ ↗ (+1.4%by2100)andthetraditional/diversifiedfarmerswereprojected 2040–2070 ↘ ↘ ↗ ↗ toincreasecontinually(+7.2%by2100). 2070–2100 ↘ ↘ ↗↗ ↗ UnderIEG,theproportionsoffarmertypeswereprojectedtoberel- RRV 2010–2040 ↗ ↘ ↘ ↘ ativelystableby2100:Veszprémhadamoderateincreaseinsupple- 2040–2070 ↗↗ ↘↘ ↘ ↘ 2070–2100 ↗↗ ↘↘ ↘↘ ↘↘ mentaryfarmers(+17.7%)anddecreases(absolutechangesb10%)in IEQ 2010–2040 ↗ − ↘↘ − alloftheotherfarmertypes;Tolna,however,hadanincreaseinthetra- 2040–2070 ↘↘ ↘ ↗ ↗ ditional/diversifiedfarmers(+11.3%)andslightdecreasesintheother 2070–2100 ↘ ↘ − − types. PPU 22001400––22004700 ↘↘↘↘ ↗↗↗↗ ↘− ↘−↘ UnderPPU,farmerswereexpectedtoadoptmoreflexiblelanduse 2070–2100 ↘ ↗ ↗ ↗ strategies (with a shorter regime length) and look for an optimal trade-offbetweenenvironmentsustainabilityandprofit,i.e.,ashiftto a Changesbetweenthestartandendofthetimeslice:‘–’indicatesamarginalchange; ‘↗’and‘↘’meanlowincreaseanddecrease;‘↗↗’and‘↘↘’meanmediumtohighin- the traditional/diversified type was projected by 2100 (+21.6% in creaseanddecrease. Veszprémand+33.0%inTolna)forallotherfarmertypes. S.Lietal./ScienceoftheTotalEnvironment622–623(2018)1611–1620 1617 Fig.4.Comparisonbetweenthepredictedproportionofarablelanduse(2010)andcensusdata(KSH2013)inVeszprém(A)andTolna(B). 3.3.Projectedchangesinarablelanduse Veszprémwheatdecreasedby18.2%andmaizeincreasedby7.5%,and inTolnawheatdecreasedby11.1%andmaizeincreasedby9.2%.Such Inthemodel,apartfromthetypeoffarmer,cropyieldalsoinflu- ashiftwasassociatedwithadecreasedgrossmarginofwheat(asare- encedthepatternsofarableLUCCbyaffectingthepotentialgrossmar- sultofdecreasedcropyield).Forenergycrops,sunflowerwasprojected ginofacroprotationplan,thekeyeconomicdriveroffarmerlanduse toincreasemoderatelyinbothVeszprém(+11.7%)andTolna(8.4%). decisionmaking.Thisfurtheramplifiedthedifferenceintheprojected Under RRV, a small change in arable land use was projected in regionalpatternsofarablelandusebetweencasestudies(seeFig.5B, Veszprém,witha3.9%increaseinmajorcerealsanda1.3%decreasein fortheextentsofchangesby2100;seeFig.S3,theAppendixA,for energycrops.However,arableLUCCinTolnawasprojectedtochange trendsovertime). rapidly,witha13.1%decreaseinmajorcereals(−8.9%formaize)and UnderPKD,thetwoareaswereprojectedtohaveasimilararable a 12.9% increase in energy crops (+13.4% for soybean, +3.6% for LUCCpatternby2100,bothwithaslightdecreaseincerealcroplands sunflower and −4.1% for rape). This difference was mainly due to (−5.8%inVeszprémand−1.7%inTolna)andanincreaseinmajoren- theprojectedincreaseinbusiness-orientedfarmersinTolna,making ergycrops(+8.2%inVeszprémand2.6%inTolna).Forcereals,both moreprofitablecrops(e.g.soybeanandsunflower)morefrequently areaswereprojectedtoexperienceashiftfromwheattomaize:in selected. Fig.5.Projectedchangesby2100intheexecutivetypesoffarmer(A)andarablelandusepattern(B)inVeszprémandTolna,underthefourintegratedscenario.ns:notselectedbythe farmeragents. 1618 S.Lietal./ScienceoftheTotalEnvironment622–623(2018)1611–1620 UnderIEQ,projectedarableLUCCwasatalowlevelforbothareas,as objectives(Guillemetal.,2012;Karalietal.,2013).Previousstudies lesssignificantchangesinfarmertypeswereprojectedthanforthe alsoincludedbothcropandmeatproduction,whereasthisstudyfo- otherscenarios.InVeszprém,wheresupplementaryfarmersincreased, cusedsolelyoncrops,owingtodifferentresearchobjectives,dataavail- regimeswithlowergrossmargin,butwhichcreatebettersoilstructure, abilityandlocalcharacteristics. weremorefrequentlyselected.Asaresult,landuseformaizewas Inthisstudy,differentdriversofarablelandusechangedetermining projectedtoreduceby7.5%.InTolna,theincreaseintraditional/diversi- currentandprojectedfuturecroppingpatternswerefoundinthetwo fiedfarmersandimprovementsincropyieldsledtoincreasesinwheat counties,suggestingthatpolicyoptionsfordealingwith,oradapting (by6.6%)andsunflower(+4.8%),anddecreasesinmaize(−8.6%)and to,thesedriversareneededthatarecounty-specificandimplemented rape(−3.8%). bylowerlevelactors.Thefarmertypologyshowsaclearlydistinctbase- UnderPPU,similarpatternsofchangewereprojectedforthetwo linepatternoffarmers'actualselectionoflandusepracticesbetween areas:increasesinthemajorcereals(+3.4%inVeszprémand+1.8% thetwoareas.Thismayseemcounterintuitive,asonemightnotexpect in Tolna) and decreases in energy plants (−7.9% in Veszprém and suchlargedifferencesbetweenthetwocountiesfromaculturaland −4.2%inTolna).Wheatwasprojectedtobethemostpopularcropbe- technologicalperspective.Inparticular,themodelestimatedthepro- causeforbothareasunderIEQandPPU,owingtoanincreaseinitspo- portionof‘supplementary’farmers,tobe50.5%inVeszprémand7.4% tentialgrossmarginresultingfromalargeyieldincrease.Comparedto inTolna,whilethe2013censusdatafromKSHshowsanearlyidentical maize,wheatalsohadlowerbaselinecosts,andtheregimeswhichin- proportionofsuchfarmers,withVeszprémhaving54.6%andTolna, cludedwheatweremoreaccessiblebytraditionalandsupplementary 54.4%. It should be noted that the ‘supplementary’ farmers in this farmerswhodominatedregionalfarmerpopulationsinbothareas. studywereassumedtorepresentfarmerswhonotonlyproducefood fortheirownconsumption,butalsoadoptsustainablelandusepractices 4.Discussion toavoidsoiloverexploitation.Aprojectedreductioninsustainableuse practiceswouldposefuturechallengesforTolnainachievingitslocal TheAporia-LiteABMwasdevelopedasanexplanatorytooltobetter foodself-sufficiencyandsecuritygoals.Theresultspresentedheresug- understandtherangeofarablelandusepatternsunderdifferentplausi- gestthatfuturepoliciestoaddressthischallengemayneedtoincrease blefutures,ratherthantomakeprecisepredictions.Thevalidityofthe farmeraccesstosocialcapital(e.g.creatingagriculturalorganisations modelprojectionsaresupportedinseveralways.Firstly,thescenarios andsocieties)andenhancetheirawarenessoftheimportancetofarm- describingthepossiblefutureclimateandsocio-economicconditions ingoftheenvironmentandmaintainingnaturalcapital.Conversely,itis weredevelopedbyworkingcloselywithstakeholderstoensurethesce- likelythatphysicalconstraints(asindicatedinthesurvey)havecontrib- narioswerecrediblewithinthelocalcontextandrelevantforpolicyde- utedtoahigherproportionof‘supplementary’farmersinVeszprém.For cisions(seeLietal.,2017bforthetimelineofscenariodevelopment). example,poorersoilquality,atopographylessfavourableforlarge- Secondly,theconceptualframeworkofthemodelfollowedanexisting scale farming and thus smaller farm sizes may indicate that some approachwhoseflexibility,extensibility,verification,andtransparency farmershavenochoicebuttoutiliseless-exploitativepractices.Thisis hasbeenextensivelytestedagainstreal-worldissues(Guillemetal., supportedbyarelatedstudythatfoundthattheoverallrateofclimate 2015;Murray-Rustetal.,2014).Thirdly,theaccuracyofthebaselinear- change adaptation was lower among farmers from Veszprém than ablelanduseprojectionswasfoundtobesatisfactoryforthetwocase thosefromTolna(Lietal.,2017a).Thus,futurepoliciesinVeszprém studyareas(Section3.1).Finally,localstakeholdersfoundthefuture targetingsustainablelocalfoodproductionmayneedtosupportim- projectionsappropriateinthecontextofthemodelandscenarios,and provementsinfarmers'abilitytoadapttovariousphysicalconstraints. usefulintermsofsupportingdiscussionsonpolicyresponsestoenvi- Thefutureprojectionsforthefarmertypologyandarablelanduse ronmentalchanges. alsoshowedcleardifferencesbetweenthetwocounties,underthe Themodelisempirically-groundedandcalibratedondatacollected sameintegratedclimateandsocio-economicscenarios.ForthePKD fromahouseholdsurveyoffarmers.Empiricaldatahavevarioususesin (Pinkdream)andPPU(PatóPálÚr)scenarios,theextentofchangedif- thedevelopmentofABMs(SmajglandBarreteau,2017)andinthis feredsomewhatinspiteoftheprojectedtrendsbeingsimilarinboth study the survey data contributed in two ways. Firstly, the survey areas.However,undertheRRV(RegionalRivalry)andIEQ(Inequality) addsimportantempiricalevidencetosupportunderstandingofthe scenarios,boththetrendsandextentsofchangewereprojectedtobe characteristicsoflocalcroprotationplansandfactorsaffectingfarmers' distinctlydifferent.Thesedifferencesattheregionallevelareconsistent decision-making.InHungary,thedata(i)improvesunderstandingof withthenationallevelsocio-economicstorylinesunderpinningeach what motivates individual-level decision-making which previously scenario,whichimpliesdifferentmagnitudesofchallengesforadapta- was very limited, and (ii) encapsulates existing evidence about tionpolicies.PKD(SSP1;environmentalsustainabilityorientedscenar- landscape-leveldeterminantsofarablelandusechange(Munteanu io)andPPU(SSP5;highlyindustrialisedinfrastructurescenario)are etal.,2014;Verhulstetal.,2004),thusprovidingaricherpictureof bothassociatedwithrapideconomicdevelopment,reducedinequality theprocessesunderpinningHungary'slandusesystemdynamics.Sec- andlowchallengestoadaptation.Bycontrast,RRV(SSP3;fragmented ondly,theobservedpatternsplayedanimportantroleinguidingthede- withineffectiveinstitutionsscenario)andIEQ(SSP4;highlydividedso- signoftheAporia-Litemodelstructure.Fromthetheoryofthepattern- cietyscenario)bothhavesloweconomicdevelopment,increasedin- orientedapproach(Grimmetal.,2005),wesoughttobuildrigorous equalityandhighchallengestoadaptationwithfutureenvironmental modelsbasedonrelevantpatternsobservedintherealsystem,rather change(O'Neilletal.,2015).Suchchallengesmaybefurtheramplified thandevelopanoverly-complexmodeltoapproximatethesystemin forTolnaunderRRVandVeszprémunderIEQ.Forexample,ahugede- asmuchdetailaspossible.Assuch,severaldifferencescanbenoted cline(−13.1%)inmajorcerealswasprojectedforTolna,whichmay whencomparingthisstudywithtwopreviousstudiesforLunnainScot- threatentheregion'scapacitytobeself-sufficient.Moreover,securing landandAarauinSwitzerlandwhichappliedthesameAporiamodelling foodfromotherregionsmaybedifficultasRRV(SSP3)ischaracterised framework(Murray-Rustetal.,2014).Theempiricalanalysispresented byvariousbarrierstotrade,especiallyforagriculturalproducts(O'Neill heresuggeststhatcroprotationplansusedinwesternHungaryare etal.,2015).Veszprémwasprojectedtohavedeclinesinlandforboth highlydiverse.Hence,acomprehensiveregimedatabasewasconstruct- majorcereals(−4.7%)andenergycrops(−3.5%),butincreasesinfal- edforfarmers'cropselection,insteadofusingacharacteristicregime lowland(+5.8%),whichwasthehighestinallsimulations.Thisimplies databasewithonlyafewkeycroprotationplans.Thesurveydataalso thatsomeindividualfarmers,especiallysmallholders,mayfacesevere enabledanexplorationofactuallanduse,throughwhichanexecutive difficultiesinsustainingregularfoodproductionandthusdecidenot typologyoffarmertypeswasdeveloped.Bycontrast,thetypologiesde- to use their land. This situation is likely to be even worse in IEQ velopedinpreviousstudiesonlycategorisedfarmers'attitudesand (SSP4),asresourcesarecontrolledbyanelitepartofsociety,leaving S.Lietal./ScienceoftheTotalEnvironment622–623(2018)1611–1620 1619 small-scalefarmersstrugglingwithlowproductivity(O'Neilletal., betweenthetwocountieswerefurtherexacerbatedinthefutureeven 2015).Fallowlandsare,therefore,atriskofabandonment. underthesameclimateandsocio-economicscenario,suggestingdiffer- Thefindingsofthisstudyareofsubstantialregionalimportance entfociforlocalpoliciestoadapttolong-termenvironmentalchanges. withinVeszprémandTolnaandhavepotentialrelevancetootherre- Forexample,underanunequalfuturewithincreasedsocialdisparities gions.Inthenextstep,theprojectedimpactsonagriculturewillbe andhigher-endclimate change,Veszprém wasprojectedtohavea usedtotesttheabilityofexistingdevelopment/sectorstrategiesandad- growthinfallowland,whichimpliesdifficultiesforsmallholderfarmers aptationplansforthetwocountiestoreducevulnerabilitybylowering insustainingregularfoodproductionand,therefore,risksoflandaban- exposureandincreasingresilience.Asagriculturallanduseinthetwo donment.Alternatively,underade-globalisingfuturewithineffective countiesisbroadlysimilartootherpartsofthecountry,ourfindings institutions and moderate climate change, Tolna was projected to aregenerallyrelevanttootherareasofHungary,aswellasareasofEast- haveaconsiderabledeclineinlandformajorcereals,whichmayinflu- ernEuropethathavesimilarfarmownershipstructuresandhistoric encelocalfoodself-sufficiency.Thefutureprojectionsprovidefunda- landusechanges.Inparticular,ourimpactassessmentsarerelevantto mentalinformationtosupportariskassessmentforenvironmental theareasaroundtheLakeBalatonandwithintheDanuberiverbasin change.Theagent-basedmodeldevelopedcanbeusedinfuturestudies thathavesimilarhydro-climaticconditions.Moreover,themodelling totesttheeffectivenessofpolicyresponsesinadaptingfarmer'sbehav- methodhasmuchwiderrelevanceasitcanbeimplementedindifferent iourstovarioussocio-economicandclimatechanges. cropping environments provided a survey is undertaken to parameterisetheAporiamodel.Whenapplyingthemethodforotherre- Acknowledgements gions,researchersneedtoreflectonwhethersimplifyingorextending themodelcomponents/functionsusingdifferentapproaches(e.g.the Theresearchleadingtotheseresultshasreceivedfundingfromthe pattern-orientedtheoryusedinthisstudy)isnecessaryinordertobet- EuropeanCommunity'sSeventhFrameworkProgramme(FP7/2007– termeetthecase-specificresearchobjectivesanddataavailability.Good 2013)undergrantagreementnumber603416(TheIMPRESSIONSPro- practicesrelatedforevaluatingmodelcomplexityforacasestudypur- ject-ImpactsandRisksfromHigh-EndScenarios:StrategiesforInnova- posearedescribedinSunetal.(2016). tiveSolutions;www.impressions-project.eu). Fromamethodologicalperspectiveseveralfutureimprovements anddirectionsinthisresearcharepossible.Firstly,tobetterrepresent AppendixA.Supplementarydata individual-leveldecision-makingprocesses,theregimedatabasecould bereplacedbyanalgorithmtoallowfarmeragentstobuildtheirown Supplementarydatatothisarticlecanbefoundonlineathttps://doi. crop rotation plans automatically, such as approaches reviewed in org/10.1016/j.scitotenv.2017.10.038. Dury et al. (2012). In this study, due to data constraints, only the within-regimecropmatchpossibilitieswereconsidered.Futureinvesti- References gationsareneededtoevaluatetheconnectivitybetweenregimes,espe- ciallyonthefactorsinfluencingthecropmatchesthatconnecttheend Adger,W.N.,Arnell,N.W.,Tompkins,E.L.,2005.Adaptingtoclimatechange:perspectives across scales. Glob. Environ. Chang. 15:75–76. https://doi.org/10.1016/ ofoneregimetothebeginningofanother.Secondly,theimpactofre- j.gloenvcha.2005.03.001. gional/localclimatechangecouldbeexploredfurther.Thisincludes Alexander,P.,Moran,D.,Rounsevell,M.D.A.,Smith,P.,2013.Modellingtheperennialen- modellingtheconsequencesofclimaticvariabilityandextremeweather ergycropmarket:theroleofspatialdiffusion.J.R.Soc.Interface10.https://doi.org/ 10.1098/rsif.2013.0656. events on crop yields, water availability and pests and diseases Antonson,H.,Isaksson,K.,Storbjörk,S.,Hjerpe,M.,2016.Negotiatingclimatechangere- (BachingerandZander,2007;DelplaandRodriguez,2014;Steffens sponses:regionalandlocalperspectivesontransportandcoastalzoneplanningin etal.,2015;Whiteetal.,2011).Thirdly,itwouldbeusefultobetterin- South Sweden. Land Use Policy 52:297–305. https://doi.org/10.1016/ j.landusepol.2015.12.033. tegratespatialheterogeneitywithinthemodel.Here,wewereunableto Audsley,E.,Pearn,K.R.,Simota,C.,Cojocaru,G.,Koutsidou,E.,Rounsevell,M.D.A.,Trnka, explorethespatialpatternoflandusechange,duetodataconstraints, M., Alexandrov, V., 2006. What can scenario modelling tell us about future i.e.,alackofobservedagriculturalparcelsforcasestudyareasandinsuf- Europeanscaleagriculturallanduse,andwhatnot?Environ.Sci.Pol.9:148–162. ficientevidenceforthespatialeffectsoffarmerdecision-making.Empir- https://doi.org/10.1016/j.envsci.2005.11.008. Bachinger,J.,Zander,P.,2007.ROTOR,atoolforgeneratingandevaluatingcroprotations ical studies are needed to address these shortcomings and further fororganicfarmingsystems.Eur.J.Agron.26:130–143.https://doi.org/10.1016/ understandhowlandusemaybepromotedorconstrainedbytheex- j.eja.2006.09.002. change of knowledge between adjacent farmers (Alexander et al., Castella,J.-C.,PhengKam,S.,DinhQuang,D.,Verburg,P.H.,ThaiHoanh,C.,2007. Combiningtop-downandbottom-upmodellingapproachesoflanduse/coverchange 2013; dos Santoset al.,2011). Finally, while this study focusedon tosupportpublicpolicies:applicationtosustainablemanagementofnaturalre- projectingfuturescenarios,themodelcouldalsobeusedtotesttheef- sourcesinnorthernVietnam.LandUsePolicy24:531–545.https://doi.org/10.1016/ fectivenessofdifferentpolicies.Forexample,themodelcouldbeusedto j.landusepol.2005.09.009. Ciscar,J.-C.,Iglesias,A.,Feyen,L.,Szabó,L.,VanRegemorter,D.,Amelung,B.,Nicholls,R., explorehowdifferentsubsidystrategieschangelandusepatterns,or Watkiss,P.,Christensen,O.B.,Dankers,R.,Garrote,L.,Goodess,C.M.,Hunt,A., whennovelcropsaretaken-up. Moreno,A.,Richards,J.,Soria,A.,2011.Physicalandeconomicconsequencesofcli- matechangein Europe. Proc. Natl.Acad. Sci.108:2678–2683.https://doi.org/ 10.1073/pnas.1011612108. 5.Conclusions DEFRA,2002.ArableCropping&theEnvironment-AGuide.DepartmentforEnviron- ment,Food&RuralAffairs(DEFRA),London. Wedemonstratethedevelopmentandapplicationofanempirically- Delpla,I.,Rodriguez,M.J.,2014.Effectsoffutureclimateandlandusescenariosonriverine sourcewaterquality.Sci.TotalEnviron.493:1014–1024.https://doi.org/10.1016/ groundedABMtoexploredifferencesinarablelanduseunderfuture j.scitotenv.2014.06.087. scenariosfortwocasestudyareasinwesternHungary,Veszprémand dosSantos,L.M.R.,Michelon,P.,Arenales,M.N.,Santos,R.H.S.,2011.Croprotationsched- Tolnacounties.Despitethefactthatthetwoareasshareasimilarcultur- ulingwithadjacencyconstraints.Ann.Oper.Res.190:165–180.https://doi.org/ alandtechnologicalbackgroundandlargelycomparableagroclimatic 10.1007/s10479-008-0478-z. Dury,J.,Schaller,N.,Garcia,F.,Reynaud,A.,Bergez,J.E.,2012.Modelstosupportcropping conditions,ourmodelprojectedadistinctlydifferentpatterninthe planandcroprotationdecisions.Areview.Agron.Sustain.Dev.32:567–580.https:// typesoffarmersfromthetwoareas,inparticularforthe‘supplementa- doi.org/10.1007/s13593-011-0037-x. ry’farmerswhoareself-sustainedandadoptsustainablelanduseprac- Eikelboom,T.,Janssen,R.,2013.Interactivespatialtoolsforthedesignofregionaladapta- tion strategies. J. Environ. Manag. 127:S6–S14 (Supplement). https://doi.org/ tices, and, hence, different patterns of arable land use. Policy that 10.1016/j.jenvman.2012.09.019. encourageslocalfoodself-sufficiencyandsecuritymayneedtotarget EUFSS,2012.AgriculturalCensusinHungary.Eurostat. improvingthecapacityoffarmerstoadapttophysicalconstraintsin Ewert,F.,Rounsevell,M.D.A.,Reginster,I.,Metzger,M.J.,Leemans,R.,2005.Futurescenar- iosofEuropeanagriculturallanduse:I.Estimatingchangesincropproductivity. Veszprémandenhancingfarmeraccesstosocialcapitalandenviron- Agric.Ecosyst.Environ.107:101–116.https://doi.org/10.1016/j.agee.2004.12.003. mental awareness in Tolna. The projected differences in land use Field,A.,2013.DiscoveringStatisticsUsingIBMSPSSStatistics.Sage. 1620 S.Lietal./ScienceoftheTotalEnvironment622–623(2018)1611–1620 Filatova,T.,Verburg,P.H.,Parker,D.C.,Stannard,C.A.,2013.Spatialagent-basedmodelsfor Matthews,R.B.,Gilbert,N.G.,Roach,A.,Polhill,J.G.,Gotts,N.M.,2007.Agent-basedland- socio-ecologicalsystems:challengesandprospects.Environ.Model.Softw.45:1–7. usemodels:areviewofapplications.Landsc.Ecol.22:1447–1459.https://doi.org/ https://doi.org/10.1016/j.envsoft.2013.03.017. 10.1007/s10980-007-9135-1. Grimm,V.,Revilla,E.,Berger,U.,Jeltsch,F.,Mooij,W.M.,Railsback,S.F.,Thulke,H.-H., McKinney,J.C.,1950.Theroleofconstructivetypologyinscientificsociologicalanalysis. Weiner,J.,Wiegand,T.,DeAngelis,D.L.,2005.Pattern-orientedmodelingofagent- Soc.Forces28:235–240.https://doi.org/10.2307/2572006. based complex systems: lessons from ecology. Science 310:987–991. https:// Millar,C.I.,Stephenson,N.L.,Stephens,S.L.,2007.Climatechangeandforestsofthefuture: doi.org/10.1126/science.1116681. managinginthefaceofuncertainty.Ecol.Appl.17:2145–2151.https://doi.org/ Guillem,E.E.,Barnes,A.P.,Rounsevell,M.D.A.,Renwick,A.,2012.Refiningperception- 10.1890/06-1715.1. basedfarmertypologieswiththeanalysisofpastcensusdata.J.Environ.Manag. Munteanu,C.,Kuemmerle,T.,Boltiziar,M.,Butsic,V.,Gimmi,U.,Lúboš,H.,Kaim,D.,Király, 110:226–235.https://doi.org/10.1016/j.jenvman.2012.06.020. G.,Konkoly-Gyuró,É.,Kozak,J.,Lieskovský,J.,Mojses,M.,Müller,D.,Ostafin,K., Guillem,E.E.,Murray-Rust,D.,Robinson,D.T.,Barnes,A.,Rounsevell,M.D.A.,2015.Model- Ostapowicz,K.,Shandra,O.,Štych,P.,Walker,S.,Radeloff,V.C.,2014.Forestandagri- lingfarmerdecision-makingtoanticipatetradeoffsbetweenprovisioningecosystem culturallandchangeintheCarpathianregion—ameta-analysisoflong-termpatterns services and biodiversity. Agric. Syst. 137:12–23. https://doi.org/10.1016/ and drivers of change. Land Use Policy 38:685–697. https://doi.org/10.1016/ j.agsy.2015.03.006. j.landusepol.2014.01.012. Harrison,P.A.,Holman,I.P.,Berry,P.M.,2015.Assessingcross-sectoralclimatechangeim- Murray-Rust,D.,Rieser,V.,Robinson,D.T.,Miličič,V.,Rounsevell,M.,2013.Agent-based pacts,vulnerabilityandadaptation:anintroductiontotheCLIMSAVEproject.Clim. modellingoflandusedynamicsandresidentialqualityoflifeforfuturescenarios.En- Chang.128:153–167.https://doi.org/10.1007/s10584-015-1324-3. viron.Model.Softw.46:75–89.https://doi.org/10.1016/j.envsoft.2013.02.011. Harrison,P.A.,Dunford,R.W.,Holman,I.P.,Rounsevell,M.D.A.,2016.Climatechangeim- Murray-Rust,D.,Robinson,D.T.,Guillem,E.,Karali,E.,Rounsevell,M.,2014.Anopen pactmodellingneedstoincludecross-sectoralinteractions.Nat.Clim.Chang.6: frameworkforagentbasedmodellingofagriculturallandusechange.Environ. 885–890.https://doi.org/10.1038/nclimate3039. Model.Softw.61:19–38.https://doi.org/10.1016/j.envsoft.2014.06.027. Holman,I.,Audsley,E.,Berry,P.,Brown,C.,Bugmann,H.,Clarke,L.,Cojocaru,G.,Dunford, North,M.,Collier,N.,Ozik,J.,Tatara,E.,Macal,C.,Bragen,M.,Sydelko,P.,2013.Complex R.,Harrison,P.A.,Janes,V.,Kovats,S.,Lafond,V.,Li,S.,Lobanova,A.,Mokrech,M., adaptivesystemsmodelingwithRepastSimphony.Compl.Adapt.Syst.Model.1: Rounsevell,M.,Sandars,D.,Savin,C.,Wimmer,F.,2015.SpecificationforEuropean 1–26.https://doi.org/10.1186/2194-3206-1-3. modelimprovementanddevelopment.IMPRESSIONSDeliverableD3B.1. Olesen,J.E.,Bindi,M.,2002.ConsequencesofclimatechangeforEuropeanagricultural Holman,I.P.,Harrison,P.A.,Metzger,M.J.,2016.Cross-sectoralimpactsofclimateand productivity, land use and policy. Eur. J. Agron. 16:239–262. https://doi.org/ socio-economicchangeinScotland:implicationsforadaptationpolicy.Reg.Environ. 10.1016/s1161-0301(02)00004-7. Chang.16:97–109.https://doi.org/10.1007/s10113-014-0679-8. Olesen,J.E.,Trnka,M.,Kersebaum,K.C.,Skjelvåg,A.O.,Seguin,B.,Peltonen-Sainio,P.,Rossi, Holman,I.P.,Brown,C.,Janes,V.,Sandars,D.,2017.Canwebecertainaboutfutureland F.,Kozyra,J.,Micale,F.,2011.ImpactsandadaptationofEuropeancropproduction usechangeinEurope?Amulti-scenario,integrated-assessmentanalysis.Agric.Syst. systems to climate change. Eur. J. Agron. 34:96–112. https://doi.org/10.1016/ 151:126–135.https://doi.org/10.1016/j.agsy.2016.12.001. j.eja.2010.11.003. Houet,T.,Marchadier,C.,Bretagne,G.,Moine,M.P.,Aguejdad,R.,Viguié,V.,Bonhomme, O'Neill,B.C.,Kriegler,E.,Ebi,K.L.,Kemp-Benedict,E.,Riahi,K.,Rothman,D.S.,vanRuijven, M.,Lemonsu,A.,Avner,P.,Hidalgo,J.,Masson,V.,2016.Combiningnarrativesand B.J.,vanVuuren,D.P.,Birkmann,J.,Kok,K.,Levy,M.,Solecki,W.,2015.Theroads modellingapproachestosimulatefinescaleandlong-termurbangrowthscenarios ahead:narrativesforsharedsocioeconomicpathwaysdescribingworldfuturesin forclimateadaptation.Environ.Model.Softw.86:1–13.https://doi.org/10.1016/ the 21st century. Glob. Environ. Chang. https://doi.org/10.1016/ j.envsoft.2016.09.010. j.gloenvcha.2015.01.004. Hurlimann,A.C.,March,A.P.,2012.Theroleofspatialplanninginadaptingtoclimate Prestele,R.,Alexander,P.,Rounsevell,M.D.A.,Arneth,A.,Calvin,K.,Doelman,J.,Eitelberg, change.WileyInterdiscip.Rev.Clim.Chang.3:477–488.https://doi.org/10.1002/ D.A.,Engström,K.,Fujimori,S.,Hasegawa,T.,Havlik,P.,Humpenöder,F.,Jain,A.K., wcc.183. Krisztin,T.,Kyle,P.,Meiyappan,P.,Popp,A.,Sands,R.D.,Schaldach,R.,Schüngel,J., Hurtt,G.C.,Chini,L.P.,Frolking,S.,Betts,R.A.,Feddema,J.,Fischer,G.,Fisk,J.P.,Hibbard,K., Stehfest,E.,Tabeau,A.,VanMeijl,H.,VanVliet,J.,Verburg,P.H.,2016.Hotspotsofun- Houghton,R.A.,Janetos,A.,Jones,C.D.,Kindermann,G.,Kinoshita,T.,KleinGoldewijk, certaintyinland-useandland-coverchangeprojections:aglobal-scalemodelcom- K.,Riahi,K.,Shevliakova,E.,Smith,S.,Stehfest,E.,Thomson,A.,Thornton,P.,van parison.Glob.Chang.Biol.22:3967–3983.https://doi.org/10.1111/gcb.13337. Vuuren,D.P.,Wang,Y.P.,2011.Harmonizationofland-usescenariosfortheperiod Rounsevell,M.D.A.,Reay,D.S.,2009.LanduseandclimatechangeintheUK.LandUsePol- 1500–2100:600yearsofglobalgriddedannualland-usetransitions,woodharvest, icy26(Supplement1):S160–S169.https://doi.org/10.1016/j.landusepol.2009.09.007. and resulting secondary lands. Clim. Chang. 109:117. https://doi.org/10.1007/ Rounsevell,M.D.A.,Annetts,J.E.,Audsley,E.,Mayr,T.,Reginster,I.,2003.Modellingthe s10584-011-0153-2. spatialdistributionofagriculturallanduseattheregionalscale.Agric.Ecosyst.Envi- Karali,E.,Brunner,B.,Doherty,R.,Hersperger,A.,Rounsevell,M.A.,2013.Theeffectof ron.95:465–479.https://doi.org/10.1016/S0167-8809(02)00217-7. farmerattitudesandobjectivesontheheterogeneityoffarmattributesandmanage- Rounsevell,M.D.A.,Ewert,F.,Reginster,I.,Leemans,R.,Carter,T.R.,2005.Futurescenarios mentinSwitzerland.Hum.Ecol.41:915–926.https://doi.org/10.1007/s10745-013- ofEuropeanagriculturallanduse:II.Projectingchangesincroplandandgrassland. 9612-x. Agric.Ecosyst.Environ.107:117–135.https://doi.org/10.1016/j.agee.2004.12.002. Kelly, R.A., Jakeman, A.J., Barreteau, O., Borsuk, M.E., ElSawah, S., Hamilton, S.H., Smajgl,A.,Barreteau,O.,2017.Framingoptionsforcharacterisingandparameterising Henriksen,H.J.,Kuikka,S.,Maier,H.R.,Rizzoli,A.E.,vanDelden,H.,Voinov,A.A., humanagentsinempiricalABM.Environ.Model.Softw.93:29–41.https://doi.org/ 2013.Selectingamongfivecommonmodellingapproachesforintegratedenviron- 10.1016/j.envsoft.2017.02.011. mentalassessmentandmanagement.Environ.Model.Softw.47:159–181.https:// Steffens,K.,Jarvis,N.,Lewan,E.,Lindström,B.,Kreuger,J.,Kjellström,E.,Moeys,J.,2015. doi.org/10.1016/j.envsoft.2013.05.005. Directandindirecteffectsofclimatechangeonherbicideleaching—aregional Kok,K.,Pedde,S.,2016.IMPRESSIONSSocio-economicScenariosEUFP7IMPRESSIONS scale assessment in Sweden. Sci. Total Environ. 514:239–249. https://doi.org/ ProjectDeliverableD2.2. 10.1016/j.scitotenv.2014.12.049. Kok,K.,Christensen,J.H.,Sloth,M.M.,Pedde,S.,Gramberger,M.,Jäger,J.,Carter,T.,2015. Sun,Z.,Lorscheid,I.,Millington,J.D.,Lauf,S.,Magliocca,N.R.,Groeneveld,J.,Balbi,S., Evaluationofexistingclimateandsocio-economicscenariosincludingadetailedde- Nolzen,H.,Müller,B.,Schulze,J.,Buchmann,C.M.,2016.Simpleorcomplicated scriptionofthefinalselection.EUFP7IMPRESSIONSProjectDeliverableD2.1. agent-based models? A complicated issue. Environ. Model. Softw. 86:56–67. KSH,2011.Censusof2011.HungarianCentralStatisticalOffice(KSH),Budapest. https://doi.org/10.1016/j.envsoft.2016.09.006. Kumar,P.,Geneletti,D.,2015.Howareclimatechangeconcernsaddressedbyspatial Valbuena,D.,Verburg,P.H.,Bregt,A.K.,2008.Amethodtodefineatypologyforagent- plans?Anevaluationframework,andanapplicationtoIndiancities.LandUsePolicy basedanalysisinregionalland-useresearch.Agric.Ecosyst.Environ.128:27–36. 42:210–226.https://doi.org/10.1016/j.landusepol.2014.07.016. https://doi.org/10.1016/j.agee.2008.04.015. Lambin,E.F.,Meyfroidt,P.,2011.Globallandusechange,economicglobalization,andthe Valbuena,D.,Verburg,P.H.,Bregt,A.K.,Ligtenberg,A.,2010.Anagent-basedapproachto loominglandscarcity.Proc.Natl.Acad.Sci.108:3465–3472.https://doi.org/10.1073/ modelland-usechangeataregionalscale.Landsc.Ecol.25:185–199.https://doi.org/ pnas.1100480108. 10.1007/s10980-009-9380-6. Lambin,E.F.,Rounsevell,M.D.A.,Geist,H.J.,2000.Areagriculturalland-usemodelsableto Verburg,P.H.,Schot,P.P.,Dijst,M.J.,Veldkamp,A.,2004.Landusechangemodelling:cur- predictchangesinland-useintensity?Agric.Ecosyst.Environ.82:321–331.https:// rent practice and research priorities. GeoJournal 61:309–324. https://doi.org/ doi.org/10.1016/S0167-8809(00)00235-8. 10.1007/s10708-004-4946-y. Li,S.,Juhász-Horváth,L.,Harrison,P.A.,Pintér,L.,Rounsevell,M.D.A.,2017a.Relating Verhulst,J.,Báldi,A.,Kleijn,D.,2004.Relationshipbetweenland-useintensityandspecies farmer'sperceptionsofclimatechangerisktoadaptationbehaviourinHungary. richnessandabundanceofbirdsinHungary.Agric.Ecosyst.Environ.104:465–473. J.Environ.Manag.185:21–30.https://doi.org/10.1016/j.jenvman.2016.10.051. https://doi.org/10.1016/j.agee.2004.01.043. Li,S.,Juhász-Horváth,L.,Pedde,S.,Pintér,L.,Rounsevell,M.D.A.,Harrison,P.A.,2017b.In- White,J.W.,Hoogenboom,G.,Kimball,B.A.,Wall,G.W.,2011.Methodologiesforsimulat- tegratedmodellingofurbanspatialdevelopmentunderuncertainclimatefutures:a ingimpactsofclimatechangeoncropproduction.FieldCropRes.124:357–368. casestudyinHungary.Environ.Model.Softw.96:251–264.https://doi.org/10.1016/ https://doi.org/10.1016/j.fcr.2011.07.001. j.envsoft.2017.07.005. Madsen,M.S.,Maule,C.F.,Christensen,J.H.,Fronzek,S.,Carter,T.,2016.IMPRESSIONScli- matescenarios.EUFP7IMPRESSIONSProjectDeliverableD2.3.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.