ebook img

Modelling of blood flow in aneurysm geometry PDF

64 Pages·2015·1.84 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modelling of blood flow in aneurysm geometry

Univerzita Karlova v Praze Matematicko - fyzika´ln´ı fakulta ´ ´ DIPLOMOVA PRACE Tereza Z´abojn´ıkov´a Modelov´an´ı proudˇen´ı krve v geometrii aneuryzma Matematicky´ u´stav Vedouc´ı diplomov´e pr´ace: RNDr. Jaroslav Hron, Ph.D. Studijn´ı program: Fyzika ˇ Studijn´ı obor: Uˇcitelstv´ı fyziky pro SS v kombinaci s odbornou fyzikou (Matematick´e modelov´an´ı ve fyzice a technice) Praha 2015 Charles University in Prague Faculty of Mathematics and Physics MASTER THESIS Tereza Z´abojn´ıkov´a Modelling of blood flow in aneurysm geometry Mathematical Institute Supervisor of the master thesis: RNDr. Jaroslav Hron, Ph.D. Study programme: Physics Specialization: Mathematical Modelling in Physics and Technology Prague 2015 ´ I thank to Miguel Angel Ferna´ndez, my consultant from Universit´e Pierre et Marie Curie, Paris 6, who has spent a lot of time consulting my work during my Erasmus in Paris and who has gave me the original idea of this thesis, my supervisor Jaroslav Hron who helped me to finish my work started in Paris and my parents who have supported me during my studies. I declare that I carried out this master thesis independently, and only with the cited sources, literature and other professional sources. I understand that my work relates to the rights and obligations under the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles University in Prague has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act. In ...................... on ............. Author signature Na´zev pra´ce: Modelova´n´ı proudˇen´ı krve v geometrii aneurysma Autor: Tereza Za´bojn´ıkova´ Katedra: Matematicky´ u´stav UK Vedouc´ı diplomov´e pra´ce: RNDr. Ing. Jaroslav Hron, Ph.D., Matematicky´ stav UK Abstrakt: C´ılem t´eto pra´ce bylo nal´ezt stabiln´ı sch´ema, kter´e by ˇreˇsilo Stokes˚uv probl´em tekutiny, ve kter´e je ponoˇrena´ elasticka´ pevn´a la´tka. Narozd´ıl od vˇetˇsiny sch´emat ˇreˇs´ıc´ıch interakci pevn´e l´atky s tekutinou, naˇse sch´ema nevyˇzaduje, aby na sebe s´ıtˇe pevn´e la´tky a tekutiny navazovaly. Omezili jsme se na dvoudi- menziona´ln´ı oblast pro tekutinu, ve kter´e je ponoˇrena jednodimenziona´ln´ı ela- sticka´ pevn´a la´tka. Pro popis interakce jsme pouˇzili metodu vnoˇren´e hranice (Immersed boundary method). Na zaˇca´tku jsme povaˇzovali pevnou la´tku za nehmotnou. Upravili jsme jiˇz existuj´ıc´ı sch´ema ˇreˇs´ıc´ı takovy´to probl´em tak, aby bylo nepodm´ınˇenˇe stabiln´ı, coˇz jsme matematicky doka´zali a numericky otesto- vali. Pot´e jsme navrhli modifikaci sch´ematu tak, aby pevna´ la´tka jiˇz mˇela nˇejakou hmotnost, a t´eˇz dok´azali jeho nepodm´ınˇenou stabilitu. Navrˇzen´a sch´emata jsme implementovali v programu Freefem++ a otestovali jejich chova´n´ı na geometrii podobn´eaneurysma. Vyzkouˇselijsmetak´echova´n´ınavrˇzeny´chsch´ematvpˇr´ıpadˇe, kdy se rostouc´ı aneurysma dotkne pˇreka´ˇzky, napˇr´ıklad kosti (s no-slip podm´ınkou na okraji). Kl´ıˇcov´a slova: interakce tekutiny s pevnou l´atkou, metoda ponoˇren´e hranice, proudˇen´ı krve Title: Blood flow in geometry of aneurysm Author: Tereza Za´bojn´ıkov´a Department: Mathematical Institute of Charles University Supervisor of the master thesis: RNDr. Jaroslav Hron, Ph.D., Mathematical Institute of Charles University Abstract: The aim of this work is to find a stable scheme which would solve the Stokes problem of the fluid flow, in which an elastic structure is immersed. Unlike most of the schemes solving fluid-structure interaction problems, in our scheme meshes of fluid and structure do not have to coincide. We have restricted ourselves to two-dimensional domain occupied by fluid with one-dimensional im- mersed structure. To describe a fluid-structure interaction, we have used an Immersed boundary method. At first we consider the strucure to be massless. We have modified an existing scheme and made it unconditionally stable, which was mathematically proven and numerically tested. Then we have proposed a modification where the structure is not massless and also proved the uncondi- tional stability in this case. The proposed schemes were implemented using the Freefem++ software and tested on aneurysm-like geometry. We have tested the behavior of our scheme in case when the qrowing aneurysm touches an obstacle, for example a bone (with no-slip condition on the bone boundary). The proposed schemes were implemented using the Freefem++ software and tested on aneurysm-like geometry Keywords: fluid-structure interaction, immersed boundary method, blood flow Contents 1 Introduction 3 1.1 Aneurysms and computational hemodynamics . . . . . . . . . . . 3 1.2 Blood flow modelling . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Fluid-Structure interaction . . . . . . . . . . . . . . . . . . 6 1.2.2 Arbitrary Lagrangian Eulerian formulation . . . . . . . . . 6 1.2.3 Immersed boundary . . . . . . . . . . . . . . . . . . . . . . 7 2 Basic Scheme 9 2.1 Massless membrane . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Model with simplified elasticity . . . . . . . . . . . . . . . . . . . 11 2.3 Weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Finite elements discretisation . . . . . . . . . . . . . . . . . . . . 12 2.4.1 Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.2 Pseudo-compressibility method . . . . . . . . . . . . . . . 14 2.4.3 Force-term adjustment . . . . . . . . . . . . . . . . . . . . 15 2.5 Time discretisation and linearization . . . . . . . . . . . . . . . . 16 3 Scheme Modification 18 3.1 Problem 5: Structure update modification . . . . . . . . . . . . . 18 3.2 Problem 6 with inertial part . . . . . . . . . . . . . . . . . . . . . 19 3.3 Stability of scheme 6 . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 Stability of scheme 5 . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.5 Membrane with fixed borders . . . . . . . . . . . . . . . . . . . . 24 4 Implementation 26 4.1 Force assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Fluid problem matrix definition . . . . . . . . . . . . . . . . . . . 27 4.3 Integration of inertial member . . . . . . . . . . . . . . . . . . . . 27 4.4 Algorithm Complexity . . . . . . . . . . . . . . . . . . . . . . . . 33 5 Numerical tests 34 5.1 Steady state - analytical solution . . . . . . . . . . . . . . . . . . 34 5.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.3 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.4 Unsteady state - Ellipse . . . . . . . . . . . . . . . . . . . . . . . 43 5.4.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.4.2 Comparison of geometries of results using problem 4-6 . . 44 5.5 Test - tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.6 Geometry of aneurysma . . . . . . . . . . . . . . . . . . . . . . . 48 1 6 Conclusion 52 Bibliography 54 List of Figures 56 List of Tables 58 2 Chapter 1 Introduction 1.1 Aneurysms and computational hemodynam- ics Themotivationtostudycomputationalhemodynamics(ascienceaboutblood flow) is clear. Almost half of all deceases in Europe is caused by vascular deseases and 2/3 of all dispenses of the public health care are spent because of them. Figure 1.1: vascular deseases: aneurysme and atherosclerose [8] In recent years, the blood flow modelling has matured greately. One reason is the development of imaging techniques, the second one is the huge development in the field of scientific computation (by that we mean the bigger performance of the computational clusters and also agorithmic progress). The aim is to develop a computational method which would be quick (in some cases of vascular deseases the time is really important and we simply can’t 3 wait one month for the cluster to show us the patient-specific result), stable and accurate. Once we would have it, we could scan the problematic place in the patient’s vascular system, and the information about pressure and flow could help us to decide what kind of treatment we should use. For example in case of aneurysm, there are two possibilities how to exclude the aneurysm from a vascular system and prevent it from bursting. We can either fill the space of aneurysm by coil, or clip the neck of aneurysm by a steel clip to seal it off from the parent vessel. Figure 1.2: Two possibilities to treat aneurysms: clipping and coiling [1] Decidingwhichtreatmentismoreconvenientinspecificcasecouldbesimlified by running a simulation on patient-specific model. Over the years not only the development of computers and clusters shortened the time needed to obtain a result. In 11 years, thanks to various algorithmic modifications, the computational time has reduced 50 times (solving the same problem on the same computer, but with some algorithmic modifications)! (see [8]) Figure 1.3: Progress of computational hemodynamics in INRIA, presented in ´ course of Ecole Polytechnique and Universit´e Paris 6 [8] 4

Description:
Freefem++ software and tested on aneurysm-like geometry. We have tested the set vert the number of kth vertex of triang. 6: Sh is a P1 finite element space on the structure parametrization, the projection vs has to be .. To test our schemes in a dynamical case, we have started from the structure.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.