ebook img

Modelling climate change effects on Atlantic salmon: Implications for mitigation in regulated rivers PDF

2018·3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modelling climate change effects on Atlantic salmon: Implications for mitigation in regulated rivers

ScienceoftheTotalEnvironment631–632(2018)1005–1017 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Modelling climate change effects on Atlantic salmon: Implications for mitigation in regulated rivers L.E.Sundt-Hansena,⁎,R.D.Hedgera,O.Ugedala,O.H.Diseruda,A.G.Finstada,e,J.F.Sauterleuteb,d,L.Tøfteb, K.Alfredsenc,T.Forsetha aNorwegianInstituteforNatureResearch,P.O.Box5685,Sluppen7485,Trondheim,Norway bSINTEFEnergyResearch,P.O.Box4761,Sluppen7465,Trondheim,Norway cNorwegianDepartmentofHydraulicandEnvironmentalEngineering,NorwegianUniversityofScienceandTechnology,7491Trondheim,Norway dSWECO,ProfessorBrochsgate2,7030Trondheim,Norway eDepartmentofNaturalHistory,NorwegianUniversityofScienceandTechnology,7491Trondheim,Norway H I G H L I G H T S G R A P H I C A L A B S T R A C T • Futureclimatechangeislikelytoimpact onAtlanticsalmonabundanceinrivers • Abundancewasmodeledcombiningbi- ological, hydrological and hydraulic models • Futurejuvenileabundancewasreduced inthreeoffourfuturescenarios • Reductioninabundancewascausedby reducedwettedareainsummerperiods • Reducedfuturejuvenileabundancecan bemitigatedinriverswithreservoirca- pacity by releasing water in critical periods a r t i c l e i n f o a b s t r a c t Articlehistory: Climatechangeisexpectedtoalterfuturetemperatureanddischargeregimesofrivers.Theseregimeshaveastrong Received8December2017 influenceonthelifehistoryofmostaquaticriverspecies,andarekeyvariablescontrollingthegrowthandsurvivalof Receivedinrevisedform5March2018 Atlanticsalmon.ThisstudyexploreshowthefutureabundanceofAtlanticsalmonmaybeinfluencedbyclimate- Accepted6March2018 inducedchangesinwatertemperatureanddischargeinaregulatedriver,andinvestigateshownegativeimpacts Availableonlinexxxx inthefuturecanbemitigatedbyapplyingdifferentregulateddischargeregimesduringcriticalperiodsforsalmon survival.Aspatiallyexplicitindividual-basedmodelwasusedtopredictjuvenileAtlanticsalmonpopulationabun- Editor:D.Barcelo danceinaregulatedriverunderarangeoffuturewatertemperatureanddischargescenarios(derivedfromclimate Keywords: datapredictedbytheHadleyCentre'sGlobalClimateModel(GCM)HadAm3HandtheMaxPlankInstitute'sGCM Salmonids ECHAM4),whichwerethencomparedwithpopulationspredictedundercontrolscenariosrepresentingpastcondi- Individual-basedmodelling tions.Parrabundancedecreasedinallfuturescenarioscomparedtothecontrolscenariosduetoreducedwetted Populationabundance areas(withtheeffectdependingonclimatescenario,GCM,andGCMspatialdomain).Toexaminethepotential Hydropowerregulation formitigationofclimatechange-inducedreductionsinwettedarea,simulationswererunwithspecificminimum Mitigation dischargeregimes.Anincreaseinabundanceofbothparrandsmoltoccurredwithanincreaseinthelimitofmin- Climatescenarios imumpermitteddischargeforthreeofthefourGCM/GCMspatialdomainsexamined.Thisstudyshowsthat,inreg- ulatedriverswithupstreamstoragecapacity,negativeeffectsofclimatechangeonAtlanticsalmonpopulationscan potentiallybemitigatedbyreleaseofwaterfromreservoirsduringcriticalperiodsforjuvenilesalmon. ©2018PublishedbyElsevierB.V. ⁎ Correspondingauthor. E-mailaddress:[email protected](L.E.Sundt-Hansen). https://doi.org/10.1016/j.scitotenv.2018.03.058 0048-9697/©2018PublishedbyElsevierB.V. 1006 L.E.Sundt-Hansenetal./ScienceoftheTotalEnvironment631–632(2018)1005–1017 1.Introduction ThecurrentstudyexploreshowthefutureabundanceofAtlantic salmonmaybeinfluencedbyclimate-inducedchangesinwatertem- Climatechangeisexpectedtomodifythermalandhydrologicalre- peratureanddischargeinaregulatedriver,andhownegativeim- gimes of rivers, with uncertain consequences for aquatic species pacts of climate change may be mitigated by implementing (KnouftandFicklin,2017).IntheNorthernHemisphere,climatemodels different minimum discharge regimes during critical periods. A havepredictedanincreaseinairtemperatureandwinterprecipitation, spatially-explicitindividual-basedmodelisusedtopredictpopula- butadecreaseinsummerprecipitation(IPCC,2007;Schneider,Laize, tion abundance under future climate regimes for comparison to Acreman,andFlorke,2013).ForSouthernNorway,run-offisexpected abundanceundercontrol(past)regimes,withafocusonhowthe toincreaseinwinter,butdecreaseinsummer(Schneideretal.,2013). dischargeregimeaffectswettedareaandconsequentlycarryingca- Episodesoflowsummerdischargesareexpectedduetolongerperiods pacity.Theeffectofclimatechangeonsalmonidfreshwaterabun- withlowprecipitationandlowerlevelsofgroundwaterinsummer dancehasbeenexaminedinpreviousstudies(Battinetal.,2007; (Hanssen-Bauer, Førland, Haddeland, et al., 2015). The projected Hedgeretal.,2013b;Leppi,Rinella,Wilson,andLoya,2014),but changesintemperatureanddischarge(IPCC,2007),i.e.increased thisistotheauthors'knowledgethefirststudytoincludeminimum temperatures and changed discharge patterns, may have dischargeregimescenarios,implementedasmitigationstrategiesfor detrimentaleffectsonaquaticorganismsinhabitingriversbecause climatechange,intothemodelpathway. bothtemperature(Angilletta,Niewiarowski,andNavas,2002)and dischargeregimesinfluenceimportantlifehistorytraitsofmany aquaticspecies,suchasgrowthandmortality(Heino,Virkkala,and 2.Materialandmethods Toivonen,2009). TheAtlanticsalmonlifecycleisdividedintotwophases:thejuvenile 2.1.Studyarea phase,whichtakesplaceinfreshwater;andtheadultphase,which largelytakesplaceintheocean.Forjuvenilesalmonintheriver,the Thestudyriver,theRiverMandalselva(58.2°N,7.5°E),isoneofthe temperatureanddischargepatternarekeyparametersforsurvival largestriversinsouthernNorway.Theriveris115kmlongandisregu- andgrowth.Thewatertemperaturewillaffectthespeedofphysiologi- latedwithsevenhydropowerstationsandseveralreservoirs(Ugedal, calandbiochemicalreactionsofthispoikilothermic(cold-blooded)or- Larsen,Forseth,andJohnsen,2006).Atlanticsalmonandbrowntrout ganism(Angillettaetal.,2002).Salmongrowthisstronglyinfluencedby (SalmotruttaL.)canmigratefromthesea47kmupstreamtothenatural temperature(Forseth,Hurley,Jensen,andElliott,2001)andsizedeter- waterfallofKavfossen(Fig.1).Themeandischargeattheoutletofthe minedbygrowthisanimportantfactorforjuvenilesurvival(Einumand mostdownstreamhydropowerstation(Laudal)is88m3s−1;average Fleming,2007).Thestagewhenjuvenilesmigratefromtherivertothe lowestdailydischargesrangebetween18.6m3s−1duringsummer oceanassmoltsisalsolargelydeterminedbysize(Metcalfe,Fraser,and (Jul–Sep) and 33.1 m3 s−1 during winter (Jan-Mar) (Ugedal et al., Burns,1998)andthereforestronglyinfluencedbywatertemperature. 2006).TheMandalsystemhasatotalstoragecapacityof358million Thedischargedeterminesthewettedareaoftheriver,dependingon m3 (NVE Atlas, https://atlas.nve.no), providing the opportunity to theriverprofile,withthewettedwidthofa“U”-shapedcrosssection storewaterfromextrawinterprecipitationandtoreleasethiswater changing less with changing discharge than a “V”-shaped cross indrierperiodsoftheyear. section.Thewettedareaoftherivercontrolstheriver'scarrying Inthebeginningofthe20thcentury,thesalmonfisheriesinthe capacity,butcarryingcapacityisalsodependentonhabitatquality riverwerehighlyproductive,butacidificationduringthe1960s forjuvenilesalmon,i.e.shelteravailabilityisofgreatimportance extirpatedtheoriginalsalmonpopulation.However,limingwas (Finstadetal.,2009).Thewettedareastronglyinfluencesdensity- initiatedin1997andanewsalmonstock,resultingfromstrayers dependentmortalityinearlylife-stages,acommonbottleneckfor fromotherriversandthereleaseofeggsandfryfromastockina salmon abundance in rivers (Einum, Sundt-Hansen, and Nislow, nearby river, rapidly increased in size. The catch peaked at 2006).Thus,watertemperatureanddischargedrivefundamental 10 tonnes in 2001. The present salmon stock in the river is a biologicalmechanisms,bothattheindividual-andpopulationlevel. geneticblend,withlikelyweakornolinkstotheoriginalstock Atlanticsalmonhasbeeninalong-termdeclineinmostofitsdistri- (Hesthagen,2010). butionarea,bothintermsofthenumberofpopulationsandintermsof abundanceinfreshwateraswellasthemarineenvironment(Hindar, Hutchings,Diserud,andFiske,2011;Windsor,Hutchinson,Hansen, 2.2.Modellingprocedure andReddin,2012;ICES,2013).InNorway,approximately30%ofrivers withsalmonstocksareaffectedbyhydropowerdevelopment,withef- Water temperature and discharge (and consequently wetted fectsonsalmonstocksrangingfromextirpationtomodestreductions area)intheregulatedstretchdownstreamoftheLaudalhydropower inabundanceorevenpositiveeffects(Hvidstenetal.,2015).Environ- station–stretchingdownstream20kmfromtheoutletofthestation mentalflowpracticesinregulatedriversarecommonlydominatedby (upstreamdistance=20.5km)tothestartofthetidalzone(up- adefinedconstantminimumdischargevalueforwinterandahigher streamdistance=700m–weregeneratedforselectedclimatesce- constantvalueforsummer(Alfredsen,Harby,Linnansaari,andUgedal, nariosusingamodellinghierarchy(Fig.2)).Coarse-scalepredictions 2012).Thesevaluesareoftenexceeded,butcannotbelower.Inamajor- ofairtemperatureandprecipitationfromGlobalClimateModels ityofregulatedriversystems,watermassesarecommonlystoredinres- (GCMs)weredownscaledusingaRegionalClimateModel(RCM)to ervoirsduringperiodsofhighrun-offandreleasedinperiodswhen providefiner-scalepredictions(spatialresolution=1km2)ofair electricityisrequired,usuallyinwinter.Thusdischargeregimesmay temperatureandprecipitationacrossthecatchmentencompassing beadjusted,whichoftenleadstoincreasedwinterdischargesandre- theMandalselva.Thesedatawereusedtodeterminethehydrologi- ducedspringfloodsinNorwegianrivers,comparedtounregulatedriv- calregimeofthecatchmentusingahydrologicalmodel.Giventhat ers. In a few documented cases, hydropower developments have theMandalselvaisregulatedandthehydraulicpropertiesofthe increasedsmoltabundanceinpartsoftheriver(Ugedaletal.,2008) riverareinfluencedbyhydropoweroperationaswellasthehydro- ortotalsmoltabundance,inbothcasesduetoincreasedwaterdischarge logicalregime,outputsfromthehydrologicalmodelwereusedina duringwinter(Hvidstenetal.,2015).Activemanagementofriverdis- hydropowerproductionmodel,toprovidewatertemperatureand chargepatternsinregulatedwatercoursesmaythereforerepresenta discharge.Ahydraulicmodelwasthenusedtoderiveweeklywetted rarecaseofeffectivemitigationofnegativeclimatechangeeffectson area,acriticalcomponentoftheindividual-basedpopulationmodel, fishpopulations(PiouandPrevost,2013). fromthedischargedata. L.E.Sundt-Hansenetal./ScienceoftheTotalEnvironment631–632(2018)1005–1017 1007 2.3.GlobalClimateModel(GCM)andRegionalClimateModel(RCM) ClimatedatausedinthisstudywereprovidedbytheNorwegianMe- teorologicalInstituteDNMI(Engen-Skaugen,Haugen,andHanssen- Bauer,2008).ThesedatawerederivedfrompredictionsfromtheHadley Centre'sHadAm3HGCMandtheMaxPlankInstitute'sECHAM4GCM. Scenarios used were both for (1) future climates, the SRS A2 (high CO )andB2(lowtomediumCO )emissionscenarios(2071–2100), 2 2 and(2)acontrolclimate,SRSCN(1960–1990)(Table1).Thesescenarios areusedbytheDNMItoevaluatethefutureclimateinNorway.TheSRS A2andB2emissionscenariosaredescribedintheIPCCFourthAssess- mentReport(IPCC,2007)andrepresenttheclimateforcingthrough CO emissionsforspecificscenariosoffuturedevelopmentoftheworld 2 (IPCCSRES2000),andarerespectivelysimilartotheRCP8.5andRCP 6.0scenariosusedintheIPCCFifthAssessmentReport(IPCC,2014) (seeVanVuurenandCarter,2014).GCMdatawereata55×55kmre- gional domain (spatial resolution) for the HadAm3H model, and at boththisdomainandafinerdomain(25×25km)fortheECHAM4 model.GCMpredictionsoftemperatureandprecipitationwerethen downscaled toafinerresolution (grid of1km2cells) by theDNMI usingtheRegionalClimateModel(RGM)HIRHAM(Christensenetal., 2007;May,2007)whichwasbiasadjustedbasedonobservationsof localclimate(Engen-Skaugen,2007).Theuseofdatafromdifferent GCMswithdifferentspatialdomainsallowedtheinvestigationof how pronepredictionsofsalmonpopulationabundancewereto theclimatemodeloutputsonwhichtheanalyseswerebased. 2.4.Hydrologicalmodel DownscaledtemperatureandprecipitationpredictionsfromtheRCM wereusedasinputtoahydrologicalmodeltopredictwaterinflowsalong thecompletewatercourseoftheMandalselva.Hydrologicalmodelling wasperformedintheopensourcemodelplatformENKI(Kolbergand Bruland,2012).Thisgriddedmodelsimulatesinflowbasedonmeteoro- logicalinputs(temperatureandprecipitation)andcatchmentcharacter- istics(elevation,soilwaterstorage,distributionofsub-catchmentsand rivernetwork).Themodelinterpolatestemperatureandprecipitation acrossthecatchmentusingInverse-DistanceWeightingandKriging,re- spectively.Soil-moistureandsurfacerunoff(fromexcesssoilmoisture) are then calculated using the response function developed for the HydrologiskaByrånsVattenbalanavdeling(HBV)model.Toachievea bettermodelofsoilmoistureandsurfacerunoff,themodelincludesan evaporationroutinebasedontheroutineinLandPinemodel(Rinde, 2000)andasnowaccumulation/snowmeltroutine(seeKolberg,Rue, andGottschalk,2006).Theformerreducessoilmoistureandrunoff(par- ticularlyinthesummer);thelatterintroducesalaginsoilmoistureand runoffbystoringprecipitationassnowduringwinter,andreleasingthis inspring.Themodeliscalibratedforindividualsub-catchmentswithin theentirecatchmentbysettingthemodeltorunforoneindividual sub-catchmentatatimeandvalidatingwiththeremainingcatchments (iterating with the Shuffled Complex Evolution Method, with Nash Sutcliffe'sefficiencycriteria(NashandSutcliffe,1970)). 2.5.Hydropowerproductionmodel Thehydropowerproductiondischargeintheriverwassimulated usingthenMAGmodel(KillingtveitandSælthun,1995;Killingtveit, 2004)basedoninputsfromthehydrologicalmodel.ThenMAGmodel simulateshydropoweroperationsforwholesystemsconsistingofhy- dropowerstations,reservoirsandtransfers,andpredictsriverdischarge amongothervariables.Amodelofthehydropowersystemwithallres- ervoirsandpowerstationsintheMandalselvawasused(Fjeldstad, Alfredsen,andBoissy,2014)andtheoperationalstrategyofthepower Fig.1.RiverMandalselvawiththemodelledstretchoftherivermarkedwithathickblue systemwaskeptunchangedamongtheclimatescenarios.Watertem- line,fromtheoutletofLaudalPowerstationanddownstreamtoKrossen(startofthetidal zone).(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderis peraturedownstreamoftheLaudalhydropowersystemwasfound referredtothewebversionofthisarticle.) fromregressionequationsbasedonobservedwatertemperature,air 1008 L.E.Sundt-Hansenetal./ScienceoftheTotalEnvironment631–632(2018)1005–1017 Fig.2.ThemodelpathwayfromdownscalingoftheGlobalClimateModel(GCM),viaaRegionalClimateModel(RCM),tohydrological-,hydropower-andhydraulic-models,andfinally downtotheindividual-basedpopulationmodel,IB-salmon. 8 temperature,productiondischargeandsimulatedinflow.Watertem- < T ¼0:13 T b−6 res a peratureinthemodelledwatercourse,T ,wascalculatedbyweighting T ¼0:0567T 2þ0:5117T þ1:5617 −6≥T ≤1 ð3Þ w : res a a a thetemperaturecontributionsfromnaturalinflowandthereservoir Tres¼1:0324Taþ1:1685 TaN1 immediatelyupstream(Eq.1): Q Q Tw¼QinTinþQresTres ð1Þ 2.6.Hydraulicmodel tot tot Inordertoestimatetherelationshipbetweendischargeandwetted whereTinandTresarewatertemperaturesfromnaturalinflowandthe areainthemodelledstretch,theHEC-RAS®(2008)hydraulicmodel reservoirrespectively,QinandQresaretherespectivedischarges,and was applied. This model can simulate discharges within rivers, for Qtotisthetotaldischarge.Watertemperaturesinthenaturalinflow bothsteady-flowsurfaceprofiles,and1-Dand2-Dunsteadyflowcondi- and in the reservoir were estimated from regression relationships tions.TheHEC-RASmodelwasusedtodeterminedischarge–wetted establishedwithairtemperature,Ta(Eqs.2and3). widthrelationshipsforeachofthreestationswithdifferentchannel 8 profilecharacteristicsrepresentativeofthemodelledstretchofthe < T ¼0:5 T b−3 river:channelprofilesweremore“U”-shaped,more“V”shaped,andin- in a :Tin¼0:0658Ta2þ0:5287Taþ1:5707 −3≥Ta≤1 ð2Þ termediatebetweenthesetwo.Themodelwascalibratedwithfieldob- Tin¼0:9567Ta−0:8926 TaN1 servations of water level measurements in each station at a single Table1 OverviewofGlobalClimateModels(GCM),emissionscenarios,spatialresolutionsofGCMoutputdata,andscenariossimulationsusedwiththeindividual-basedmodel(IBM). GCM Emissionscenario Domain Spatialresolution(km) IBMscenarioname HadAm3H A2+control RegClim 55×55 Had.Reg.A2 Had.Reg.CN HadAm3H B2+control RegClim 55×55 Had.Reg.B2 Had.Reg.CN ECHAM4 B2+control RegClim 55×55 ECHAM.Reg.B2 ECHAM.Reg.CN ECHAM4 B2+control NorAcia/NorClim 25×25 ECHAM.Nor.B2 ECHAM.Nor.CN L.E.Sundt-Hansenetal./ScienceoftheTotalEnvironment631–632(2018)1005–1017 1009 discharge by varying the Manning's roughness coefficient 2.7.1.Modelfunctions (0.020–0.095)untilthemodelpredictionmatchedfieldobservations. The IBM used (IB-salmon) (Hedger et al., 2013a; Hedger et al., 1-Dsteady-statesimulationswerethenperformedatvariousdischarges 2013b;Sauterleuteetal.,2016)isaspatially-explicitmodeldesigned toestablishdischarge–wettedwidthcurves(Fig.3a).Curveswereex- forpredictingpopulationcharacteristicsofthefreshwaterstageofjuve- trapolatedfordischargesoutsideofthevalidateddischargerangeofthe nileAtlanticsalmon,butalsomodelsseasurvivalandthereturnofsur- HEC-RASsimulations.Thedischarge–wettedwidthcurvesofthethree vivingadultsfromthesea.Themodelhasatime-stepintervalofone stationswerethentransferredtothe50mlongriversectionswithcor- week,withtheriverdividedintoaseriesof50msections.Individual respondingchannelprofiles(determinedbyaerialphotography)and life-historytraits(growth,smoltificationtiming,fecundity,mortality) scaledbytheratiobetweenthemaximumwettedwidthofthe50m andothercharacteristics(location,migration)aremodelledusingem- sectioninquestion(again,determinedbyaerialphotography)andthe pirical functions (Hedger et al., 2013a; Hedger et al., 2013b). Life- maximumwettedwidthoftherespectivestation.Thisenabledtheesti- stages modelled as individual elements are parr (juveniles in the mationofthedischarge–wettedwidthrelationshipforeachsection river),smolts(parrthathavesmoltified,whichthenmigratetosea), throughouttheentiremodelledstretchoftheriver.Thewettedarea searesidentadults,andreturningadults(adultsthathavereturnedto of each section was calculated by multiplying the section wetted therivertospawn).Themaininputparametersofthemodelarewetted widthbythesectionwettedlength(50m),givingahighlynon-linear area(dependentonchannelprofileanddischarge),watertemperature, relationshipbetweendischargeandtotalwettedareainthemodelled spawninglocationandarea,andparrcarryingcapacity.Atthebeginning watercourse(Fig.3b). ofasimulation,annualeggdepositionisreadfromafile,andbinned into sections according to relative spawning habitat quality. Later whenafullage-distributionofspawningadultshasreturned,eggsare 2.7.Atlanticsalmonpopulationmodel depositedinsectionsasafunctionofspawningfemaleabundanceand bodymassinwhichthespawningfemalewasborn.Theweeklyparr Anindividual-basedmodelling(IBM)approachwasusedtopredict growth is determined using a Ratkowsky-type model (Ratkowsky, theimpactofclimatechangeandmitigationmeasuresonpopulation Lowry,Mcmeekin,Stokes,andChandler,1983)parameterizedwithex- abundances(expressedinthisstudyastotalnumberofindividuals perimentaldataongrowth/temperaturerelationshipsforNorwegian withinthemodelledstretch)andchangesinlifehistorycharacteristics Atlanticsalmonjuveniles(Jonsson,Forseth,Jensen,andNæsje,2001) ofAtlanticsalmonwithinthemodelledwatercourse.Thisapproach (Eq.4). wasusedbecauseseveralaspectsoftheprocessesaffectingthesalmon populationwouldhavebeendifficulttoparameterizeusingpopulation 8 differentialequations(seeDeAngelisandGrimm,2014).Forexample, >>>< Mt¼Mt−1 TbTLorTNTU coohpnaelnroagcteaelsacitanrarmyspionargttiaacllailtpyyalcoriectasyul,llleotevcdaell.frrLiovomecarlcpchrhoaafinnlgege,eslsoiicnnalwwheeattbtteeitddataaqrreueaaa,lditweypheainnchdd >>>:Mt¼ Mbt−1þb dðT−TLÞ(cid:2)110−0egðT−TUÞ(cid:3)!!ð1=bÞ T≥TU&T≤TU ð4Þ local parr biomass, and also the spatial configuration of different carrying capacities, channel widths and biomass. Running an IBM allowed population characteristics to dynamically emerge from whereMistheindividualbodymassfortimet,Tistheweeklymean heuristicfunctionsthatwerewellparameterizedatthespatiallylocal temperature,TLandTUareloweranduppertemperaturesforgrowth, andindividuallevel. andb,dandgareparametersofthemodel. Fig.3.Relationshipbetweendischargeand(a)wettedwidthintheHEC-RASstations,and(b)totalwettedareainthemodelledwatercourse. 1010 L.E.Sundt-Hansenetal./ScienceoftheTotalEnvironment631–632(2018)1005–1017 Bodylength,L,ispredictedfrombodymasseveryweek,usinga powerfunctionrelationship(Eq.5). (cid:4) (cid:5) 1=3 L¼ 105M=0:84 ð5Þ Theannualsmoltificationprobability(appliedinweekofyear20), SP,isestimatedforeachindividualasalogisticfunctionofbodylength, L(Eq.6). 8 < eðp1þðp2(cid:2)LÞÞ :SP¼1þeðp1þðp2(cid:2)LÞÞ if L≤250 ð6Þ SP¼1 if LN250 wherep1andp2areparametersofthemodel. Parrdensitydependentmortalityinanygivensectionisdependent onthetotalbiomassofparrwithinthatsection(thesumofindividual bodymassesofallparrinthesection)andthetotalcarryingcapacity ofthesection(thetotalbiomassthatcanbesupported,whichisthe productofthecarryingcapacityperunitareaandthetotalwetted areaofthesection).Ifthebiomasswithinasectionexceedsthetotalcar- ryingcapacity,surplusparrareforcedtomigrateoutofthesection:they mayeithermigratetoanewsectionorexperiencemortality(density dependentmortality)(Eq.7). 8>< Bs;t¼Bs;t−1 Bs;t−1bK Fdiegn.si4t.ieOsbcsoemrvpeadrepdatrorsaimbuunladtaendcpeaarrndabaugnedadniscteriabnudtiaognefdriosmtribeuleticotnroffirosmhintghejusavlemnoilne >: BDs;st;t¼¼Ksþ(cid:2)BDs;ts−þ1K;t−(cid:3)1 Bs;t−1≥K ð7Þ abundancemodel(IBsalmon). whereBisthetotalparrbiomass(gm−2)withinthesection,s,attime,t, GiventhattheIBMincludedprobabilisticfunctions,generatedpop- Disthetotalparrbiomass(gm−2)ofindividualsthatdisperseoutofthe ulationsabundanceswouldvaryaccordingtosimulation,evenwiththe sectionandsurvive,Kisparrcarryingcapacity(gm−2)ands istheparr samesetofparametervalues.However,apreliminaryanalysisofsimu- survivalprobability.Densitydependentmortalitymayincreaseifthe lationsshowedthattheeffectofstochasticityingeneratedoutputwas sectionbiomassincreases(duetobodymassgrowthoranincreasein small.Forexample,whenrunningtenseparatesimulationsforeachof abundanceviarecruitmentorimmigration)orthetotalcarryingcapac- theclimatescenarios,thecoefficientofvariation(CV)forannualsmolt ityofthesectiondecreasesduetoadecreaseinthewettedarea. abundancewasalwaysb0.2%foreachclimatescenario.ThisCVwas negligibleincomparisontothedifferenceinsmoltabundancebetween 2.7.2.ParameterizingandrunningthemodelintheMandalselva differentclimatescenarios. Themodelwasparameterizedtorunonapartoftheriverstretching 20kmdownstreamfromtheoutletofthemostdownstreamhydro- powerstation(Fig.1).Dischargeintothisstretchoftheriverisregulated 2.8.Mitigationinfutureclimates bythehydropoweroperator:withwaterenteringfromaturbineoutput andfromanupstreambypass(minimumdischargesof3ms−1and Inordertoexplorepotentialmitigationmeasuresforclimatechange 1.5ms−1insummerandwinterrespectively).Theminimumdischarge andhowthesewouldaffectjuvenileabundance,simulationswererun wasmanipulatedinfuturescenariostostudytheeffectofmitigation withtheimplementationofminimumdischargeregimesduringsum- measures.Themodelwasparametrizedandvalidatedusingavailable merweeks(week20–40).Summerdischargesinmostfuturescenarios dataonelectrofishingjuveniledensities(Fig.4)andjuvenilesizeatage were less than those of the corresponding control scenarios (see (basedonelectrofishingatsevenstationsinOctober/November,yearly Table2).Therefore,regulatingdischargessothattheyweregreater from2002to2010,NorwegianEnvironmentAgency),andsmoltabun- thanwhatwouldoccurnaturallyduringthisperiodallowedforcompar- danceatage(seeUgedaletal.,2006).Habitatqualityofeachsectionin ingpotentialmitigationmeasuresforclimatechange.Fivesummertime themodelledstretchwasbasedonfieldsurveysofsubstratetypeand minimumdischargeregimeswereexamined:2,4,6,8and10m3s−1. size,spawninghabitatandsheltermeasurements(Finstadetal.,2007). Spawninghabitatwasdeterminedfromsurveydata.Aspawninghabitat Table2 qualityindex,varyingbetweenzero(nospawning)andone(maximum Thesummarystatistics(median,min,maxandrange)ofdischarge(m3s−1)incontrol spawning),wasusedtoallocatetheinitialeggdepositionatstartofsim- (1961–1990)andfuturescenarios(2070–2100),forallyearsandforthesummerperiod ulationstothedifferentsections. (week20–40). Themodelwasrunwitha“burn-in”timeof10yearstoallowforthe Allyear Summerperiod simulationofasalmonpopulation,followedby40yearsofsimulationto (week20–40) provideoutputdataonthepopulation.Theburn-in-timeisusedtocre- Scenarios Median Min Max Range Median Min Max Range atestablepopulationprocesses(seeWilliams,O'Brien,andYao,2017)– inthecaseofIB-salmon,thisinvolvedgeneratinganage-andsize- Control 64.6 2.4 445.0 442.6 53.1 2.4 260.0 257.6 specificpopulationdistributionfromaninitialestimateofeggdeposi- (1961–1990) 67.7 1.8 490.0 488.2 52.4 1.8 311.3 309.6 66.4 2.4 462.5 460.1 55.0 2.4 267.2 264.8 tion.Predictionsfromtheburn-intimewereexcludedfromtheanalysis. Future 61.37 0.61 347.5 346.9 12.5 0.6 116.5 115.9 Foranalysisoftheeffectofchangesinclimatescenariosanddischarge (2070–2100) 60.33 1.5 521.83 520.33 18.5 1.5 197.6 196.1 regimesonpopulationabundance,onepopulationwassimulatedper 75.03 3.08 499.21 496.13 38.4 3.1 374.8 371.7 64.84 1.08 390.41 389.33 21.5 1.1 198.2 197.1 setofparametervalues. L.E.Sundt-Hansenetal./ScienceoftheTotalEnvironment631–632(2018)1005–1017 1011 Fig.5.Modelledmeanweeklywatertemperature,dischargeandwettedareainthecontrol(1961–1991)andfuture(2071–2100)scenarios.Curvesshowmeanweeklyvaluesacrossall outputyearsofthesimulation:controlscenarios(filledsquares);A2scenarios(circles);andB2scenarios(triangles).Hatchedareasshowthesummerseason. Theseminimumdischargeregimesaresustainablefromthehighstor- reducedinallfuturescenarioscomparedtothecontrol,andoccurred agecapacityoftheMandalselvasystem. afewweeksearlierintheyear.Dischargesinthesummermonthsof June,JulyandAugustwerelowerinthefuturescenariosthaninthecon- 3.Results trol scenarios (Fig. 5). Of the future scenarios, the ECHAM.Reg.B2 3.1.Climatechangeinfuturescenarios Table3 Meanwatertemperatures(°C)inthecontrol(1961–1991)andfutureclimatescenarios 3.1.1.Hydraulicpredictions (2071–2100). Watertemperatureincreasedunderallfuturescenarios(Had.Reg. Scenarios Globalcirculationmodels Temperature(°C) A2,Had.Reg.B2,ECHAM.Reg.B2andECHAM.Nor.B2)comparedtothe controlscenarios(Fig.5,Table3).TheHad.Reg.B2scenarioshoweda Control Had.Reg.CN 6.25(SD±5.16) Control ECHAM.Reg.CN 6.27(SD±5.16) slightlylowermeantemperatureduringsummerweeksthantheHad. Control ECHAM.Nor.CN 6.27(SD±5.14) Reg.A2scenario,butonethatwasstillseveraldegreeshigherthanthe Future Had.Reg.A2 9.05(SD±5.76) controlscenario. Future Had.Reg.B2 8.48(SD±5.52) Winterdischargesinallfuturescenariosweregreaterthaninthe Future ECHAM.Reg.B2 8.66(SD±5.76) corresponding control scenarios. In contrast, the spring flood was Future ECHAM.Nor.B2 8.89(SD±5.16) 1012 L.E.Sundt-Hansenetal./ScienceoftheTotalEnvironment631–632(2018)1005–1017 Fig.6.Meanparrabundance(a)andsmoltabundance(b)accordingtoage(0+,1+,2+,3+,4+)inthecontrol(1961–1991)andfuture(2071–2100)scenarios. scenariopredictedahigherdischargeinsummerthanthefutureHad. Themajorityofsmoltsinthefuturescenarioswere2+,comparedto3 Reg.A2,Had.Reg.B2andECHAM.Nor.B2scenarios. +and4+inthecontrolscenarios. Insummer,wettedareawasconsiderablyreducedinthefuturesce- Theweeklydensitydependentmortalityofparr(asaproportionof nariosHad.Reg.A2,Had.Reg.B2andECHAM.Nor.B2.Incontrast,wetted thetotalparrabundance)wasinverselycorrelatedwithwettedarea areapredictedundertheECHAM.Reg.B2scenario,didnotchangecon- andwashighestduringthesummerperiodinallfutureclimatescenar- siderablycomparedtothecontrolscenario.(Fig.5). ios,whenthewettedareawaspredictedtobesmall(Fig.7).Futuresce- narios with greater summertime reduction in wetted area (HAD scenarios)causedgreaterdensitydependentmortalitythanscenarios 3.1.2.Salmonpopulationpredictions. withsmallersummertimereductionsinwettedarea(ECHAMscenarios). Parrabundancedecreasedinallfuturescenarios,comparedtothe respectivecontrolscenarios(Fig.6a).Thisreductionwas,however, 3.2.Mitigationofclimatechange small in the ECHAM.Reg.B2 scenario. Because of changes in age at smoltificationandsubsequentemigrationtosea,theagecomposition 3.2.1.Dischargeandwettedarea inallfuturescenariosshiftedtowardsyoungerparrincomparisonto Dischargesinthefuturescenarioswerereducedduringsummer thecontrolscenarios.Inthefuturescenarios,the3+and4+juvenile weeks,particularlyinprojectionHad.Reg.A2,Had.Reg.B2andECHAM. ageclass(inyears)disappearedandaverysmallproportionof2+ Nor.B2,andlesssointheECHAM.Reg.B2scenario.Implementationof wasleft,comparedtothecontrolscenarios. minimumdischargeregimes(from2to10m3s−1)increasedsummer Smoltabundanceinthreeofthefuturescenarios–Had.Reg.A2,Had. wettedareafortheHad.Reg.A2,Had.Reg.B2andECHAM.Nor.B2scenar- Reg.B2andECHAM.Nor.B2–waslessthanintherespectivecontrolsce- ios(Fig.8).TheeffectwasstrongestfortheHad.Reg.A2wheresummer narios(Fig.6b).However,smoltabundanceintheECHAM.Reg.B2sce- wettedareasincreasedfrom≈4.5×106m2underconditionsofno nario was greater than in the respective control scenario. The age assignedminimumdischargeto≈7×106m2underaminimumdis- compositionofsmoltschangedinallfuturescenarios,withageshifting chargeof10ms−1.Incontrast,implementationofminimumdischarge towardsayearyoungercomparedtosmoltsinthecontrolscenarios. regimeshadlittleeffectonwettedareasfortheECHAM.Reg.B2scenario Fig.7.Meanweeklydensitydependentmortalityofparr(proportionofthetotalweeklyparrabundance)andthecorrespondingweeklywettedareainthecontrol(1961–1990)andfuture (2071–2100)scenarios.Barplotsandcurvesshowmeanweeklyvaluesacrossalloutputyearsofthesimulation.Hatchedareasshowthesummerseason. L.E.Sundt-Hansenetal./ScienceoftheTotalEnvironment631–632(2018)1005–1017 1013 1014 L.E.Sundt-Hansenetal./ScienceoftheTotalEnvironment631–632(2018)1005–1017 Fig.8.Meanweeklywettedareainthecontrol(1961–1990)andfuture(2071–2100)scenarioswithaminimumdischargeinweekofyear20–40of2,4,6,8and10m3s−1inthefuture scenarios.Curvesshowmeanweeklyvaluesacrossalloutputyearsofthesimulation.Hatchedareasshowthesummerseason. duringsummermonthsduetosummerdischargesin thisscenario forsalmonabundanceinfutureclimateswereidentified.Thisstudysug- beinggreaterthanthoseassignedintheminimumdischargeregimes. geststhattheabundanceofAtlanticsalmoninfutureclimateswillde- creasefortheregionmodelled,andelucidatesmechanismsimportant 3.2.2.Parrandsmoltabundance forregulationofjuvenileAtlanticsalmonindividuals.Lowwaterdis- WhenrunningtheIBMwitharangeofdifferentminimumdischarge chargeinsummerwasidentifiedasapossiblebottleneck,andsimula- regimes,parrandsmoltabundanceincreasedwithincreasingminimum tionofdifferentminimumdischargeregimesshowedthatchangesin dischargeinallscenariosexceptfortheECHAM.Reg.B2scenario(Fig.9). riverregulationmaybeapossiblemitigationmeasure.Theexactchange Theincreaseinabundanceofbothparrandsmoltoccurredwhenmin- inAtlanticsalmonabundancedependedontheGCMandGCMdomain imumdischargeinsummerwas4m3s−1orgreater.TheECHAM.Reg.B2 usedtosupplypredictionsofairtemperatureandprecipitation,sofur- scenariowasnotstronglyinfluencedbythedifferentminimumdis- theradvancesinGCMmodellingarerequiredtoincreasetherobustness chargeregimesbecausethepredicteddischargeinsummerwashigher ofthepredictionofhowanygivenAtlanticsalmonpopulationwillre- thanthatassignedintheminimumregimes. spondtoclimatechange. Reducedparrabundancewasfoundinallfutureclimatescenariosin 4.Discussion comparisontocontrolscenarios,althoughthereductionwassmallfor theECHAM.Reg.B2scenario.Threeoutoffourclimatescenarios(Had. 4.1.Effectofclimatescenariosonfuturefreshwatersalmonabundance Reg.A2,Had.Reg.B2andECHAM.Nor.B2)predictedreducedsmoltabun- dance,whereasthefourth(ECHAM.Reg.B2)predictedincreasedsmolt In this study, the effect of future climate change on an Atlantic abundance.Climateoutputsderivedfromthethreeclimatescenarios– salmonpopulationinaregulatedriverwasmodelled,andbottlenecks Had.Reg.A2, Had.Reg.B2 and ECHAM.Nor.B2 – resulted in a strong

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.