Doctoral thesis Modelling and evaluating the aquatic fate of detergents Carsten Schulze Institute of Environmental Systems Research Department of Mathematics and Computer Science University of Osnabru¨ck January 3(cid:0)(cid:2)(cid:1) , 2001 Supervisor: Prof. Dr. M.Matthies, DepartmentofMathematicsand ComputerScience, University of Osnabru¨ck, D-49069 Osnabru¨ck, Germany. Examiner: Prof. Dr. O. Jolliet, Department of Rural Engineering, Swiss Federal In- stitute of Technology Lausanne, CH-1015 Lausanne, Switzerland. Abstract Within this thesis an environmental assessment and evaluation method for analysing aquatic ecotoxicological impacts of household laundry is developed. The methodology allows comparative assessments of different product alternatives, washing habits, and wastewater treatment techniques in order to identify their relevance with respect to wa- terborne discharges. Elements from both analytical tools Life Cycle Assessment (LCA) andEnvironmentalRisk Assessmentofchemicals (ERA)arecombined inthismethodol- ogy. The coreconsistsof theGeography-referencedRegionalExposureAssessment Tool for European Rivers (GREAT-ER), whichcalculates concentrationsof ‘down-the-drain’ chemicals in surface waters due to point releases. In order tosimulate the aquatic fateof detergents,anew GREAT-ER emissionmodelisdeveloped,called GREAT-ER product mode,whichcalculatescalculatesconcentrationincreasesofdetergentingredientsinsur- face waters based on product formulations and assumptions concerning washing habits. Two evaluation methods, the Critical Length (CL) and the Product Risk Ratio (PRR ), (cid:3) are definedfor evaluating theresults. CL is the sum of mean concentration increases, di- vided by substance-specific no effect concentrations (NECs), over all river stretches and all ingredients weightedby the lengths of the stretches. PRR is the (percentual)number (cid:3) of river stretches in a region, in which the x-percentiles of the predicted concentration increasesofatleastoneingredientexceedasubstance-specificNEC.Theemissionmodel requires input data that can be derived from the functional unitof an LCA, which allows anassessment of other impactcategories byusingany existing LCAmethod. Themethodologyisappliedtoacasestudywhichisbasedonscenariosgiveninthecom- prehensive product assessment ‘Washing and washing agents’ (‘Produktlinienanalyse’, PLA). In order to apply the GREAT-ER product mode, the Rur river basin in Western North-Rhine Westphalia is chosen as study area. The catchment integration includes the development of a simplehydrological modelthatcombines a nonlinear regressionanaly- siswithalocalrefinementprocedure. The qualityof theintegrationoftheRurcatchment data is analysed by a comparison of monitoring data and predicted concentrations of de- tergent and cleaning agent ingredients using actual consumption data of the two years 1993and 2000. The product moderesults show thatuse habitshave a largerinfluenceon theresultsthanproductformulations. However,thelargestinfluenceiscausedbyvarying wastewater treatment techniques. Boron and the surfactants are the most relevant deter- gent ingredients. Furthermore, using different detergents for white and coloured laundry lowersthepredicted emissionssignificantly. Basedonthis methodology,sustainable development indicators(SDIs)for describingthe aquatic aspects of household laundry are defined. CL is proposed as pressure indicator and PRR as state indicator for describing aquatic aspects of the sustainability of house- (cid:3) hold laundry in a region. Different regions can be compared by normalising the CL by the region’s population and expressing the PRR as a percentage of stretches in a region. (cid:3) Annually evaluating regional CLs and PRR s allows the assessment whether a region is (cid:3) movingtowardsa more sustainable state. I Acknowledgement My sincere thanks go to Michael Matthies for being supervisor and to Olivier Jolliet for being examiner of this thesis. I herewith also express many thanks to my colleagues at the Institute of Environmental Systems Research and from the Intevation GmbH for any help and assistance. In particular, I gratefully thank Andreas Beyer and Jo¨rg Klasmeier for inspiring discussions and criticisms. Also, the linguistic support provided by Teresa Gehrsis acknowledged. I wish to thank the Henkel KGaA for the financial support of this thesis and especially Frank RolandSchro¨derand ThorstenWindfor their cooperation. Several people and institutions provided different kind of information. In this context, I wish to thank F. Jo¨rrens, J. Lange, and L. Po¨rtner from the Wasserverband Eifel- Rur (WVER), and also associates from the Staatliches Umweltamt Aachen, the Lan- desumweltamt Nordrhein-Westfalen, and the Umweltbundesamt Berlin. Furthermore, ac- knowledgement is being made toMark Huijbregts fromthe Universityof Amsterdam, to UweKlinsmannfromtheBASFAG,andtoPeterRichnerfromCibaSpecialtyChemicals. I will particularly remember the wonderful times spent at the Sustainable Development Group and the Safety and Environmental Technology Group of the Swiss Federal Insti- tutes of Technology at Lausanne and Zurich. I sincerely thank them for enabling me to stayintheirinstitutesdoingresearch. Boththemomentsspentatworkaswellasenjoying Swiss sceneryand culturewere highlymotivating. Finally, I would like to express my thanks to my friends and family and especially to Monika for supporting me each in their own way throughout the different stages of this work. II Falstaff: You shall hear (...) they conveyed me into a buck- basket. Ford : A buck-basket? Falstaff: Yea, a buck-basket: rammed me in with foul shirts and socks, foul stockings, and greasy napkins; that, master Brook, there was the rankest compound of villainoussmell thateveroffendednostril. WilliamShakespeare(1564 -1616): MerrywivesofWindsor (ActIII, SceneV) Contents 1. Introduction 1 1.1. The humanactivityandneed householdlaundry . . . . . . . . . . . . . . 1 1.2. Instruments,tools, methods, andmodels . . . . . . . . . . . . . . . . . . 3 1.3. Aimof thesis and researchquestions . . . . . . . . . . . . . . . . . . . . 5 1.4. Outline of dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2. Existing approaches 7 2.1. Environmental DecisionSupport Instruments . . . . . . . . . . . . . . . 7 2.1.1. Choiceof EDSIs . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2. LifeCycle Assessment . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3. EnvironmentalRisk Assessment . . . . . . . . . . . . . . . . . . 11 2.2. Reviewof LCIA methodsregarding aquaticecotoxicity . . . . . . . . . . 13 2.3. Applying GREAT-ER to theIttercatchment . . . . . . . . . . . . . . . . 15 2.3.1. The GREAT-ER model . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2. CasestudyItter catchment . . . . . . . . . . . . . . . . . . . . . 17 2.3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4. Environmental assessment studiesrelatedto householdlaundry . . . . . . 25 2.4.1. Comprehensiveproductassessment ‘Washingand washingagents’ 25 2.4.2. Environmentalriskassessment of detergentchemicals . . . . . . 26 2.4.3. CHAINETcasestudy’Domesticwashingof clothes’ . . . . . . . 27 2.4.4. EuropeanLCI fordetergentsurfactantsproduction . . . . . . . . 28 2.4.5. Furtherrelatedstudies . . . . . . . . . . . . . . . . . . . . . . . 29 2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3. The GREAT-ER product mode 31 3.1. Model Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.1. Emission estimatesand aquaticfatemodelling . . . . . . . . . . 32 V Contents 3.1.2. ‘Only-above-threshold’evaluation- PRR . . . . . . . . . . . . . 33 (cid:3) 3.1.3. ‘Less-is-better’evaluation -CL . . . . . . . . . . . . . . . . . . 34 3.2. Interpretation of theresults . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.1. ProductRisk Ratios . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.2. Critical Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3. Mixture toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4. Case study household laundry 39 4.1. Model detergents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2. Model households . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3. Study areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4. Effectdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.5. Considered substances . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.5.1. Anionic surfactants . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.5.2. Nonionic surfactants . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5.3. Builders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5.4. Bleachingagents . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.5.5. Opticalbrighteners . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.5.6. Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5. The Rur catchment - Integration into the GREAT-ER model 53 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2. The Rurriverbasin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3. Data collection andassembly . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.1. Rivernetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.2. Riverattributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3.3. Dischargesite data . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.4. Monitoringdata . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.5. Additionalbackground data . . . . . . . . . . . . . . . . . . . . 59 5.3.6. Substancedata . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3.7. Generationof a GREAT-ER dataset . . . . . . . . . . . . . . . . 59 5.4. Hydrological modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.4.1. Nonlinearregression . . . . . . . . . . . . . . . . . . . . . . . . 60 5.4.2. Local refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4.3. ResultsobtainedintheRur catchment . . . . . . . . . . . . . . . 66 5.4.4. Discussionof methodology . . . . . . . . . . . . . . . . . . . . 67 VI Contents 6. GREAT-ER simulations in the Rur catchment 69 6.1. Resultsapplying the 1993dataset . . . . . . . . . . . . . . . . . . . . . 69 6.1.1. Numberof Monte-Carlo shots . . . . . . . . . . . . . . . . . . . 69 6.1.2. Boron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.1.3. LAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.1.4. NTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.5. EDTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2. Rur2000 dataset andmonitoring . . . . . . . . . . . . . . . . . . . . . . 84 6.2.1. Choiceof substances . . . . . . . . . . . . . . . . . . . . . . . . 84 6.2.2. Choiceof samplingsites . . . . . . . . . . . . . . . . . . . . . . 85 6.2.3. Samplingfrequency . . . . . . . . . . . . . . . . . . . . . . . . 85 6.2.4. Incorporationinto GREAT-ER . . . . . . . . . . . . . . . . . . 85 6.3. Resultsusing the2000data . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3.1. Monitoringresults . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3.2. Boron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.3. Anionic surfactants . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3.4. Nonionic surfactants-Alcohol Ethoxylate . . . . . . . . . . . . . 93 6.3.5. NTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.3.6. EDTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.4.1. Simulationusing1993data . . . . . . . . . . . . . . . . . . . . . 100 6.4.2. Simulationusing2000data . . . . . . . . . . . . . . . . . . . . . 101 6.4.3. Environmentalfateof substancesin lakes . . . . . . . . . . . . . 102 6.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7. Results of the product mode assessment 105 7.1. Main Rurscenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.1.1. PLAreference scenarios . . . . . . . . . . . . . . . . . . . . . . 106 7.1.2. Comparisonof products-Dosage accordingto product . . . . . . 109 7.1.3. Comparisonof products-Dosage accordingto usehabit . . . . . 113 7.1.4. Mixture toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.2. Differentiatingthenumberof substances inthePRR evaluation . . . . . 116 (cid:3) 7.3. Comparisonof catchments . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.3.1. Comparisonof differentwastewatertreatmentoptions . . . . . . 119 7.3.2. Productcomparison indifferentcatchments . . . . . . . . . . . . 121 7.3.3. Comparisonof differentcatchments . . . . . . . . . . . . . . . . 123 VII Contents 7.4. Assessment of inorganiccompounds . . . . . . . . . . . . . . . . . . . . 125 7.4.1. Sodium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.4.2. Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.4.3. Carbonate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.4.4. Sulphate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8. Discussion 133 8.1. Methodology of theproduct mode . . . . . . . . . . . . . . . . . . . . . 133 8.1.1. RelationtoERAand LCA . . . . . . . . . . . . . . . . . . . . . 133 8.1.2. CLandPRR evaluation . . . . . . . . . . . . . . . . . . . . . . 134 (cid:3) 8.1.3. Numberof substances consideredinthe PRR calculation . . . . 136 (cid:3) 8.1.4. Modelsensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 136 8.1.5. Length-versus volume-basedaggregation . . . . . . . . . . . . . 138 8.1.6. ‘Less-is-better’versus ‘Only-above-threshold’ . . . . . . . . . . 139 8.2. Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.2.1. Referencescenarios andproduct comparison . . . . . . . . . . . 140 8.2.2. Relevanceof detergentingredients . . . . . . . . . . . . . . . . . 140 8.2.3. Dominanceof boron . . . . . . . . . . . . . . . . . . . . . . . . 141 8.2.4. Influenceof catchment characteristics . . . . . . . . . . . . . . . 142 8.2.5. Contributionof inorganiccompoundsto measuredconcentrations 143 8.2.6. Mixture toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . 143 8.3. Furtheraspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8.3.1. Casestudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8.3.2. Modelrestrictions . . . . . . . . . . . . . . . . . . . . . . . . . 144 9. Sustainable Development Indicators 147 9.1. SustainableDevelopment . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.2. Existing SDI approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 149 9.3. Indicators describingtheenvironmentalsustainability of householdlaundry150 9.3.1. Pressureindicators . . . . . . . . . . . . . . . . . . . . . . . . . 150 9.3.2. Stateindicators . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9.3.3. Responseindicators . . . . . . . . . . . . . . . . . . . . . . . . 151 9.4. Discussionof proposedindicators . . . . . . . . . . . . . . . . . . . . . 152 10.Conclusions 153 10.1. Combination of LCAandERA . . . . . . . . . . . . . . . . . . . . . . . 153 10.2. Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 VIII
Description: