ebook img

Modelling and Control of the Crazyflie Quadrotor for Aggressive and Autonomous Flight by Optical ... PDF

153 Pages·2017·6.33 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modelling and Control of the Crazyflie Quadrotor for Aggressive and Autonomous Flight by Optical ...

Modelling and Control of the Crazyflie Quadrotor for Aggressive and Autonomous Flight by Optical Flow Driven State Estimation Marcus Greiff Department of Automatic Control MSc Thesis TFRT-6026 ISSN 0280-5316 Department of Automatic Control Lund University Box 118 SE-221 00 LUND Sweden © 2017 by Marcus Greiff. All rights reserved. Printed in Sweden by Tryckeriet i E-huset Lund 2017 Abstract The master thesis seeks to develop a control system for the Crazyflie 2.0 unmannedaerialvehicletoenableaggressiveandautonomousflight.Forthis purpose, different rigid-body models are considered, differing primarily in their parametrisation of rotation. The property of differential flatness is ex- plored and several means of parametrising trajectories in flat output space areimplemented.Anewmethodofrotorcontrolwithparameterestimationis developed and geometric controllers are implemented for rigid-body control. Finally, state estimation is accomplished through a scalar-update extended Kalmanfilter,whereinformationfromtheinternalmeasurementunitisfused with positional information from camera systems, ultra-wide band systems, optical flow measurements and laser ranging measurements. Capable of sus- taining flight with any combination of the previously mentioned sensors, the real-time implementation is showcased using polynomial motion-planning to avoid known obstacles. Acknowledgements I would like to express my sincere thanks to the Professors Anders Roberts- son and Bo Bernhardsson as well as Ph.D. student Fredrik Bagge Karlsson for valuable advice and helpful theoretical discussions throughout the course of the thesis. I also wish to thank Professor Karl-Johan ˚Astr¨om for helpful discussions on the complementary filtering and enthusiastic encouragement. In addition, would like to thank the members of Bitcraze AB individually. Firstly, Arnaud Taffanel, for his patience and help with the EKF implemen- tationandinputonthefirmwarearchitecture.Secondly,MarcusEliasson,for helpwiththedesignanddevelopmentoftheexpansionboardsrelatingtoop- ticalflowandlaserranging.Thirdly,TobiasAntonsson,forhelpfuldiscussions on the rotor-loops and debugging of the Crazyflie radio. Fourthly, Kristof- fer Richardsson, for discussions on the firmware implementation and ideas relating to organisation of labour. Finally, Bj¨orn Mauritz, for support and encouragement throughout the project. I would also like to thank Michael Hamer, for his prior work on the extended Kalman filter, helpful discus- sions on the control system throughout the thesis and help with tuning the geometric controller. Finally, I would like to thank Daniel Nilsson, for his contribution to the ROS implementation in the Kinect vision project. Contents 1. Introduction 1 1.1 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Goals of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Modelling 4 2.1 Tait-Bryan rigid-body dynamics . . . . . . . . . . . . . . . . 4 2.2 Quaternion rigid-body dynamics . . . . . . . . . . . . . . . . 11 2.3 Rotor dynamics and coupling . . . . . . . . . . . . . . . . . 14 2.4 Implementation considerations . . . . . . . . . . . . . . . . . 17 2.5 Open loop response . . . . . . . . . . . . . . . . . . . . . . . 21 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3. Motion planning 24 3.1 Differential flatness . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Generation of flat output trajectories . . . . . . . . . . . . . 32 3.3 Parametrization of flat outputs . . . . . . . . . . . . . . . . 38 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4. Rotor control 44 4.1 Open loop control . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2 Closed loop rotor control . . . . . . . . . . . . . . . . . . . . 45 4.3 Rotor adaptation and estimation . . . . . . . . . . . . . . . 50 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5. Rigid-body control 54 5.1 Saturations and controllability . . . . . . . . . . . . . . . . . 55 5.2 Tait-Bryan parametrised control . . . . . . . . . . . . . . . . 57 5.3 Geometric control . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6. Inner state estimation 69 6.1 Model independent estimation . . . . . . . . . . . . . . . . . 70 6.2 Model based state estimation . . . . . . . . . . . . . . . . . 75 6.3 MOCAP positioning . . . . . . . . . . . . . . . . . . . . . . 78 Contents 6.4 UWB positioning . . . . . . . . . . . . . . . . . . . . . . . . 84 6.5 Optical flow and laser positioning . . . . . . . . . . . . . . . 92 7. Conclusions and summary 102 Bibliography 104 A. Modelling appendix 111 A.1 Identification of mappings . . . . . . . . . . . . . . . . . . . 111 A.2 Continuous time DC motor parameters . . . . . . . . . . . . 113 A.3 Coriolis matrix definition . . . . . . . . . . . . . . . . . . . . 115 A.4 Gimbal lock avoidance with Tait-Bryan angles . . . . . . . . 116 A.5 Quaternion rotations and relation to Tait-Bryan angles . . . 119 A.6 Quaternion rate of change . . . . . . . . . . . . . . . . . . . 121 A.7 Quaternion state-space representation . . . . . . . . . . . . . 122 A.8 Linearised systems . . . . . . . . . . . . . . . . . . . . . . . 123 A.9 Closed form system integration with constant terms . . . . . 124 A.10Cross product identities. . . . . . . . . . . . . . . . . . . . . 125 A.11Time derivative of the rotation matrix . . . . . . . . . . . . 126 B. Controller appendix 127 B.1 Set-point weighed PID . . . . . . . . . . . . . . . . . . . . . 127 B.2 MRAC with MIT synthesis . . . . . . . . . . . . . . . . . . . 128 B.3 Linear quadratic reaulators . . . . . . . . . . . . . . . . . . . 130 C. State estimation appendix 132 C.1 Cramer-Rao lower bound in TOA . . . . . . . . . . . . . . . 132 C.2 Robust protocols considering clock drift. . . . . . . . . . . . 133 C.3 The Extended kalman Filter . . . . . . . . . . . . . . . . . . 136 C.4 Multi-camera LS regression. . . . . . . . . . . . . . . . . . . 138 Index of Acronyms Acronym Description UAV Unmanned Aerial Vehicle EKF Extended Kalman Filter, a state estimator using system dynamics PID Proportional-Integral-Derivative regulator LQR Linear-Quadratic Regulator UWB Ultra-Wideband, referring to radio communication with a large bandwith TOA Time Of Arrival, a term used to describe a class of UWB- positioning algorithms MRAC ModelReferenceAdaptiveControl,hereforSISO systems with MIT-rule synthesis GA Genetic Algorithm, used in the motion-planning of the rotor-craft CIR ChannelImpulseResponse,usedtodeterminetime-stamps in the TOA methods RLS RecursiveLeast-Squares,hereforon-linearparameteriden- tification LS Least-Squares, referring to any problem formulated and solved in a least-squares sense TSP The Travelling Salesman Problem, an integer- programming problem IMU Inertial Measurement Unit, contains a 3-axis gyroscope, a 3-axis accelerometer and a 3-axis magnetometer Contents Acronym Description PD Proportional-Derivative control PWM Pulse-Width Modulation, used in the rotor control MOCAP Motion capture, here referring to camera systems TWR Two-Way Ranging, a protocol for communication in the UWB-system TDOA TimeDifferenceOfArrival,atermusedtodescribeaclass of UWB-positioning algorithms SO(3) Isometric rotations in R3 with fixed origin CRLB Cramer-RaoLowerBound,alowerboundforanyunbiased estimator DW1000 The radio chip implemented in the LPS SISO Single-Input Single-Output, a class of dynamical systems SFD Start of Frame Delimiter, used to time-stamp packets in the UWB-network SDS-TWR Symmetric-Double-Sided Two-Way Ranging, a communi- cation protocol QR Referring to the QR-decomposition of matrices MSE Mean Squared Error LPS LocoPositioningSystem,anUWB-systembeingdeveloped by Bitcraze DC Direct Current, with respect to the brushed motors imple- mented in the UAV SE(3) Euclidean group of isometric rotations in R3 with fixed origin and fixed-sign determinant ROS TheRobotOperatingSystem,ameta-operatingsystemfor robotics LP Low-Pass, referring to a filter which attenuates high fre- quency spectral content AHRS Attitude Heading and Reference Systems, a category of complementary filters MIT Massachusetts Institute of Technology ZOH Zero-OrderHold,anapproximationusedwhendiscretising continuous systems

Description:
Proportional-Derivative control. PWM. Pulse-Width Modulation, used in the rotor control .. denoting the matrix J(η) = WT (η)IBW(η) for convenience.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.