Modelling and Control of Lower Limb Exoskeletons and Walking Aid for Fundamental Mobility Tasks by Daniela Miranda Linares A thesis submitted to the University of Sheffield for the degree of Doctor of Philosophy Department of Automatic Control and Systems Engineering November 2016 Abstract In the last five decades, exoskeletons have emerged as a solution to assist paraplegic and elderly patients perform fundamental mobility tasks. The main challenge nowadays, is to develop a device that is safe, power sufficient, seamlessly integrates with the user, while being affordable. Several solutions have been proposed, and controllers have been identified as the only component which can enhance integration with the user without adding weight to the system, or increasing energy consumption. Moreover, a software platform where the mechanical design and control techniques can be assessed, prior to experimental trials, could save resources and decrease costs. In this thesis, the development of humanoid and exoskeleton models, within the SimWise virtual environment, to perform an initial validation of controllers proposed without the need of a physical prototype, is performed. Furthermore, the selected platform is evaluated regarding its fitness for this application. The methodology used to generate CAD models of a humanoid, exoskeletons and a wheel walker within the SimWise virtual environment is described, along with its integration with MATLAB Simulink. Two exoskeleton models with their corresponding controllers were developed, firstly, a hybrid exoskeleton with a wheel walker for restoration of walking in paraplegic patients. And secondly, an actuated exoskeleton for assistance in standing-up and sitting-down motions in both the elderly and paraplegic patients. The hybrid exoskeleton uses functional electrical stimulation as actuation for knee joints and a frame with brakes mounted at hip, knee and ankle joints to generate the walking cycle. The wheel walker is used for support and equilibrium. A fuzzy controller for the low level and a finite state controller for the middle level is developed. Validation of the system over repeated walking cycles, including external disturbances, and simulation of use by humanoids of different dimensions, is performed within the virtual environment and results discussed. PID low level control of hip and knee joints is used to analyse standing-up and sitting- down motions, and incorporated with an actuated exoskeleton for assisting elderly people on performing the aforementioned tasks. A finite state middle level control is developed to generate reference trajectories at variable velocities for the restoration of these motions for paraplegic patients. An optimisation algorithm is used to identify low level controller parameters for ankle joints. Finally, offline and online calculation and incorporation of zero moment point in the control loop is performed to assess equilibrium of the system. I Acknowledgements Firstly I thank God for allowing me to accomplish this goal, and giving me health and strength to do so. I am immensely grateful with Him for each, and every blessing I have received during the course of my life, and especially in the last 4 years. I also wish to express my most sincere gratitude to my supervisor Dr. Osman Tokhi for his guidance, patience, and encouragement throughout this research. For his trust, kind commitment to his students, and for sharing his valuable experience and knowledge with all of us. I am grateful as well to Professor Juan Coronado, Carlos Díaz and all the guys from the Polytechnic University of Cartagena for their collaboration, teachings and warm hospitality during my stay. I gratefully acknowledge the National Council for Science and Technology and the Automatic Control and Systems Engineering Department for sponsoring my research studies. As well as the ACSE staff, whom I have had the opportunity to meet during these years, for their valuable advice and enthusiasm towards research. I am indebted to all those who throughout my education life, have taught me important lessons: lecturers at ACSE, at the ITESM-CEM and CEMA, in México, particularly those who, beyond academic knowledge, have taught me valuable life lessons. I am thankful to all the colleagues who have in one way or another helped ignite my scientific curiosity, given support, advice and researched and worked by my side, especially Normaniha, Siti Khadijah, Asnor, Ghasaq, Norafizah, Omar, Hyreil, Nafri, Abdullah, Ahmad and all the guys from 307. On the personal side I would like to thank my parents Alberto and Emma, to whom I am indebted for their devotion to our family wellness and education. For teaching me so much, challenging me to dream big, and especially for their help and understanding during the pursue of this degree, and for being such working and loving parents and grandparents. I am grateful too to my sister Verónica and my brother Luis for so many childhood memories, for their love, support and inspiration. I am also thankful to my Mexican, Brazilian, Malaysian, Nigerian, Chinese and English friends at Sheffield and at home, for sharing your knowledge, culture and special moments with me. Thanks especially to Nora and Janet, for their support and company during these years. I want to express my outmost gratitude to my husband José de Jesús for being my colleague, my friend, and an amazing father. For providing prised advice and help in the writing of this thesis. For being always loving and supportive, particularly during the research journey we have gone through together, for being at my side in the past to face every challenge, and for the hope of adventures that we are yet to share. Finally I am thankful to my little José Alberto, since even without knowing it, he has been my inspiration and has brighten my days with his sole existence and cute innocence. It has been a blessing being able to witness every minute of his life. II Table of contents ABSTRACT ..................................................................................................................... I ACKNOWLEDGEMENTS ............................................................................................... II TABLE OF CONTENTS ................................................................................................ III LIST OF FIGURES ........................................................................................................ VI LIST OF TABLES .......................................................................................................... X LIST OF ACRONYMS ................................................................................................... XI CHAPTER 1 MOBILITY IMPAIRMENTS AND EXOSKELETONS: PARAPLEGIC AND ELDERLY PEOPLEC ................................................................................................................. 1 1.1 BACKGROUND AND MOTIVATION ............................................................................ 1 1.2 THE SOLUTION TO IMMOBILITY: EXOSKELETONS .................................................... 3 1.3 MAIN CHALLENGES .................................................................................................. 9 1.4 AIM AND OBJECTIVES ............................................................................................. 12 1.5 MAIN CONTRIBUTIONS ........................................................................................... 13 1.6 THESIS OUTLINE ..................................................................................................... 14 1.7 PUBLICATIONS........................................................................................................ 16 CHAPTER 2 MODELLING OF HUMANOID, EXOSKELETON AND WHEEL WALKER .......... 17 2.1 INTRODUCTION ....................................................................................................... 17 2.2 MOBILITY ISSUES ................................................................................................... 18 2.2.1 Spinal cord injury and paraplegia .................................................................. 18 2.2.2 Elderly muscle weakening ............................................................................. 19 2.3 EXOSKELETONS REVIEW ........................................................................................ 20 2.3.1 Sensors ........................................................................................................... 24 2.3.2 Actuators ........................................................................................................ 25 2.3.3 Power supplies ............................................................................................... 27 2.3.4 Control techniques ......................................................................................... 27 2.4 MODELLING OF HUMANOID, EXOSKELETON AND WALKING AID ........................... 33 2.4.1 Software ......................................................................................................... 33 III 2.4.2 Humanoid modelling ...................................................................................... 36 2.4.3 Exoskeleton for paraplegic patients ................................................................ 38 2.4.4 Exoskeleton for elderly and paraplegic patients assistance ............................ 42 2.4.5 Integration of models in SimWise 4D and MATLAB Simulink .................... 45 2.5 SUMMARY ............................................................................................................... 47 CHAPTER 3 LOW AND MIDDLE LEVEL CONTROL OF HYBRID EXOSKELETON AND WHEEL WALKER FOR PARAPLEGIC GAIT IN STRAIGHT LINE ............................................. 49 3.1 INTRODUCTION ....................................................................................................... 49 3.2 WALKING CYCLE .................................................................................................... 50 3.3 MUSCLES OPERATION ............................................................................................. 52 3.4 FUNCTIONAL ELECTRICAL STIMULATION OF PARAPLEGIC MUSCLES ..................... 53 3.5 CONTROL OF PARAPLEGIC WALKING WITH HYBRID ORTHOSIS .............................. 58 3.5.1 Fuzzy control of knee joints torque ................................................................ 59 3.5.2 Finite State Control ........................................................................................ 64 3.6 VALIDATION TESTS ................................................................................................. 73 3.6.1 Repeatability tests ........................................................................................... 76 3.6.2 Stability .......................................................................................................... 78 3.6.3 Range .............................................................................................................. 81 3.6.4 Torque and energy consumption .................................................................... 82 3.7 SUMMARY ............................................................................................................... 85 CHAPTER 4 PID CONTROL OF HUMANOID AND EXOSKELETON FOR ELDERLY ASSISTANCE ON STANDING-UP AND SITTING-DOWN TASKS……………………………….87 4.1 INTRODUCTION ....................................................................................................... 87 4.2 ASSISTIVE DEVICES FOR ELDERLY MOBILITY ......................................................... 88 4.3 ELDERLY STANDING-UP AND SITTING-DOWN ......................................................... 90 4.4 OPEN-LOOP SIMULATIONS OF STANDING-UP AND SITTING-DOWN MOTIONS ......... 94 4.5 PID CONTROL OF HUMANOID FOR TORQUE PROFILES ASSESSMENT ....................... 95 4.5.1 PID Control .................................................................................................... 95 4.5.2 Closed-loop PID control scheme .................................................................... 97 4.5.3 Tests with different gains ............................................................................... 98 4.5.4 Tests with different saturation levels ............................................................ 102 4.5.5 Tests with different velocities ...................................................................... 105 4.6 PID CONTROL OF EXOSKELETON FOR STANDING-UP ASSISTANCE ....................... 107 4.6.1 Standing-up with unactuated exoskeleton .................................................... 107 4.6.2 Exoskeleton assistance ................................................................................. 110 4.6.3 Reaction force with seat and ground ............................................................ 115 4.7 SUMMARY ............................................................................................................. 116 IV CHAPTER 5 ONLINE TRAJECTORY TRACKING CONTROL OF EXOSKELETON FOR PARAPLEGIC ASSISTANCE ON STANDING-UP AND SITTING-DOWN TASKS ....................... 117 5.1 INTRODUCTION ......................................................................................................... 117 5.2 EQUILIBRIUM OF MOBILE SYSTEMS .......................................................................... 118 5.2.1 Static equilibrium and-centre of mass .................................................................. 118 5.2.2 Dynamic equilibrium and zero moment point ..................................................... 121 5.3 METHODOLOGY FOR ONLINE TRAJECTORY TRACKING CONTROL ............................ 126 5.3.1 Control scheme .................................................................................................... 126 5.3.2 Finite state controller for standing-up and sitting-down ...................................... 127 5.4 OFFLINE VERIFICATION OF DYNAMIC STABILITY ..................................................... 137 5.5 IMPLEMENTATION OF ONLINE TRAJECTORY TRACKING CONTROL WITH FSC ......... 140 5.6 SUMMARY ................................................................................................................ 148 CHAPTER 6 PARTICLE SWARM OPTIMISATION OF ANKLE JOINT CONTROL PARAMETERS FOR DYNAMIC EQUILIBRIUM DURING STANDING-UP AND SITTING-DOWN TASKS .......... 149 6.1 INTRODUCTION ......................................................................................................... 149 6.2 PARTICLE SWARM OPTIMISATION ALGORITHM ....................................................... 150 6.3 PARTICLE SWARM OPTIMISATION OF ANKLE JOINT CONTROL PARAMETERS ........... 155 6.3.1 Optimisation of ankle joint PID controller gains ................................................. 155 6.3.2 Optimisation of feet orientation PID controller gains .......................................... 158 6.3.3 Optimisation of feet orientation fuzzy control parameters .................................. 159 6.4 ONLINE TRACKING OF ZMP ..................................................................................... 160 6.5 IMPLEMENTATION OF ANKLE JOINT CONTROL ......................................................... 162 6.6 SUMMARY ................................................................................................................ 167 CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK ................. 169 7.1. SUMMARY OF CONTRIBUTIONS .............................................................................. 169 7.2. CONCLUSIONS ........................................................................................................ 171 7.3. CHALLENGES .......................................................................................................... 174 7.4. RECOMMENDATIONS FOR FUTURE WORK ............................................................... 176 REFERENCES ....................................................................................................................... 179 APPENDICIES ....................................................................................................................... 191 APPENDIX A ..................................................................................................................... 191 APPENDIX B ..................................................................................................................... 192 APPENDIX C ..................................................................................................................... 195 APPENDIX D ..................................................................................................................... 196 APPENDIX E...................................................................................................................... 197 V List of figures Figure 2.1 Cord Injury levels and effects, modified from (Harrison, 2006). ......................... 19 Figure 2.2 Lower limb orthosis (Hsu et al., 2008) ................................................................. 21 Figure 2.3 Exoskeletons control structure, modified from (Tucker et al.,2015) .................... 29 Figure 2.4 Humanoid model: a) Isometric, b) frontal and c) lateral views ............................ 38 Figure 2.5 a) Initial (zero) position and ranges of motion for b) hip, c) knee and d) ankle. .. 38 Figure 2.6 Exoskeleton model: a) Isometric, b) frontal and c) lateral views.......................... 40 Figure 2.7 Wheel Walker: a) Isometric, b) frontal and c) lateral views ................................. 41 Figure 2.8 Humanoid wearing exoskeleton and wheel walker: a) Isometric, b) frontal and c) lateral views ............................................................................................................................ 42 Figure 2.9 EXO LEGS exoskeleton: a) Isometric, b) frontal and c) lateral views ................. 43 Figure 2.10 Humanoid wearing exoskeleton: a) Isometric, b) frontal and c) lateral views.. 4c4 Figure 2.11 SimWise Plant ..................................................................................................... 46 Figure 2.12 Example of Simulink implementation of SW Plant ............................................ 46 Figure 3.1 Phases of gait cycle, modified from (Hsu, et al., 2008) ........................................ 50 Figure 3.2 Joint trajectories in normal adult walking modified from (Okamoto and Okamoto, 2007)....................................................................................................................................... 51 Figure 3.3 a)Motor unit diagram b) Motor unit activation sequence, modified from (Dictionary, 2009) .................................................................................................................. 52 Figure 3.4 FES parameters ..................................................................................................... 54 Figure 3.5 Control scheme for simulation of paraplegic walking with FES and hybrid orthosis. .................................................................................................................................. 58 Figure 3.6 Control scheme of experimental validation of paraplegic walking with FES and hybrid orthosis ........................................................................................................................ 59 Figure 3.7 Fuzzy membership function .................................................................................. 60 Figure 3.8 Simple fuzzy control system (Ross, 2010) ............................................................ 61 Figure 3.9 Control loop of fuzzy controller for one leg from (Jailani, 2011) ........................ 63 Figure 3.10 Knee joint references considered in a) Jailani’s work, b) Winter’s work, c) reference proposed. ................................................................................................................ 64 Figure 3.11 Simple finite state machine ................................................................................. 65 Figure 3.12 Finite state controller of walking motion ............................................................ 68 Figure 3.13 Switching period of brakes and FES for both legs with knee orientation for reference. ................................................................................................................................ 72 Figure 3.14 a) Exoskeleton angles and distances to floor b) Exoskeleton link lengths .......... 73 Figure 3.15 Knee joint actual orientation and reference during a complete walking cycle ... 74 Figure 3.16 Comparison of paraplegic walking with FES and hybrid orthosis vs normal walking joints trajectories ...................................................................................................... 75 VI Figure 3.17 a) Repeatability test run with incomplete step b)Zoom in of incomplete step ... 77 Figure 3.18 Repeatability test run starting step with left leg a) Complete simulation run b) Zoom in initial steps ............................................................................................................... 78 Figure 3.19 a) Representation of disturbances applied .......................................................... 79 Figure 3. 20 System reaction to external disturbances a) Complete simulation b) Zoom in affected time slot .................................................................................................................... 79 Figure 3.21 Travelled distance with disturbances .................................................................. 80 Figure 3.22 Test 2: System reaction to external disturbances a) Complete simulation b) Zoom in affected time slot ..................................................................................................... 81 Figure 3.23 Test 2: Travelled distance with disturbances ...................................................... 81 Figure 3.24 Knee joint torques a) 10 seconds segment b) Zoom in initial step ..................... 83 Figure 3.25 Torque-Time integral of knee joints a) Complete simulation b) Zoom in initial step ......................................................................................................................................... 84 Figure 4.1 Standing-up motion phases (Kralj and Bajd, 1989) .............................................. 91 Figure 4.2 Sitting-down motion phases (Kralj and Bajd, 1989) ............................................ 92 Figure 4.3 Standing-up and sitting-down lower limbs joints orientations ............................. 92 Figure 4.4 Simulation of standing-up and sitting-down motions ........................................... 94 Figure 4.5 Simulink control diagram of humanoid hip joints ................................................ 97 Figure 4.6 Simulink control diagram of humanoid hip and knee joints ................................. 99 Figure 4.7 Orientation, torque and TTI of a) hip and b) knee joints with gain combination for minimum RMSE .................................................................................................................... 99 Figure 4.8 Orientation, torque and TTI of a) hip and b) knee joints with gain combinations for minimum TTI ................................................................................................................. 100 Figure 4.9 Relation between TTI and 𝐾𝑑 gain for a) hip joints and b) knee joints ............. 101 Figure 4.10 Relation between RMSE and a) 𝐾𝑖 gain and b) 𝐾𝑝 gain for knee joints .......... 101 Figure 4.11 Orientation, torque and TTI of a) hip and b) knee joints with lowest torque saturation values................................................................................................................... 102 Figure 4.12 Relation between RMSE and saturation torque for a) hip and b) knee joints... 103 Figure 4.13 Relation between TTI and saturation torque for a) hip and b) knee joints ....... 104 Figure 4.14 Relation between TTI and RMSE for a) hip and b) knee joints ....................... 104 Figure 4.15 a)Orientation, b)torque and c)TTI of hip joints for three different velocities .. 106 Figure 4.16 a)Orientation, b)torque and c)TTI of knee joints for three different velocities 107 Figure 4.17 Exoskeleton joints............................................................................................. 108 Figure 4.18 a)Orientation, b)torque and c)TTI of hip joints with unactuated exoskeleton for different velocities ............................................................................................................... 109 Figure 4.19 a)Orientation, b)torque and c)TTI of knee joints with unactuated exoskeleton for different velocities ............................................................................................................... 110 Figure 4.20 Simulink control diagram of hip and knee joints of humanoid and exoskeleton ............................................................................................................................................. 111 Figure 4.21a)Orientation, b)torque and c)TTI of hip joints with actuated exoskeleton for different velocities ............................................................................................................... 112 VII Figure 4.22 a)Orientation, b)torque and c)TTI of knee joints with actuated exoskeleton for different velocities ................................................................................................................ 113 Figure 4.23 Standing-up and sitting-down motion with exoskeleton assistance .................. 113 Figure 4.24 a) RMSE and b) TTI of with actuated exoskeleton, unactuated exoskeleton and humanoid alone .................................................................................................................... 114 Figure 4.25 Reaction force with a) ground and b) seat with knee orientation as reference . 115 Figure 5.1 a) Humanoid and wheel walker CoM b) CoM and centroids diagram c) CoM during standing-up motion ................................................................................................... 120 Figure 5.2 Middle and low level control scheme ................................................................. 127 Figure 5.3 Finite state controller of standing-up and sitting-down motions ........................ 129 Figure 5.4 Feet and joints angles and distances between joints ........................................... 134 Figure 5.5 Finite State Machine of fundamental mobility tasks .......................................... 136 Figure 5.6 Robotic arm representing lower limbs ................................................................ 138 Figure 5.7 Orientation, angular velocity and angular acceleration during standing-up motion .............................................................................................................................................. 139 Figure 5.8 Orientation, angular velocity and angular acceleration during sitting-down motion .............................................................................................................................................. 139 Figure 5.9 Standing-up and sitting-down joints trajectories divided by state ...................... 141 Figure 5.10 Normalised orientation of a) hip joint and b) knee joint at different velocities 141 Figure 5.11 Hip joint orientation, torque and torque time integral at different velocities .... 142 Figure 5.12 Knee joint orientation, torque and torque time integral at different velocities . 143 Figure 5.13 Hip joint orientation and torque after error ....................................................... 144 Figure 5.14 Knee joint orientation and torque after error ..................................................... 144 Figure 5.15 Stick diagram of standing-up motion ................................................................ 145 Figure 5.16 ZMP and CoM during standing-up motion at average velocity compared to the support area .......................................................................................................................... 146 Figure 5.17 Zoom in view of ZMP and CoM during standing-up motion at average velocity .............................................................................................................................................. 147 Figure 5.18 ZMP and CoM during sitting-down motion at average velocity a) compared to the support area b) zoom in view ................................................................................... 147 Figure 6.1 Particle swarm optimisation algorithm ............................................................... 152 Figure 6.2 PID low level control scheme for ankle joint...................................................... 156 Figure 6.3 Control scheme with feet orientation PID controller .......................................... 158 Figure 6.4 Control scheme with feet orientation fuzzy controller ........................................ 160 Figure 6.5 Middle and low level control scheme with ZMP calculation and PSO optimisation .............................................................................................................................................. 161 Figure 6.6 Hip, knee and ankle joints orientation, torque and TTI, with feet fixed to ground .............................................................................................................................................. 162 Figure 6.7 Hip, knee and ankle joints orientation, torque and TTI, of control scheme with feet orientation PID and feet unfixed from ground, ........................................................... 164 Figure 6.8 Hip, knee and ankle joints orientation, torque and TTI, of control scheme with feet orientation FLC and feet unfixed from ground, .......................................................... 165 VIII
Description: