ebook img

Modelling and control of combustion instabilities with anchored laminar ducted flames PDF

196 Pages·2015·10.32 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modelling and control of combustion instabilities with anchored laminar ducted flames

Imperial College London Department of Aeronautics Modelling and control of combustion instabilities with anchored laminar ducted flames Charles Michael Angelo Luzzato August 2, 2015 Supervised by Dr. Aimee Morgans Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in Aeronautics of Imperial College London and the Diploma of the Imperial College 1 2 Abstract This thesis deals with the derivation of new semi-analytical methods for the modelling of combustion instabilities in anchored laminar flame combustors. In a first part, through an analysis of the motion of the acoustic discontinuity in a ducted flame model, it shows that the movement of the flame induced discontinuity can lead to stability changes. For unstable combustors, it can also affect the amplitude of limit cycle oscillations. In a second part, the problems that are encountered when attempting to obtain the transfer functions for linearly unstablesystemsfromwithinlimitcyclearedemonstrated. Indeed,underthesecircumstances, both the phase and amplitude of the unstable mode need to be corrected. Whilst the correc- tion to the phase can easily be determined, the correction to the gain cannot, supporting the need for robust model based controllers or adaptive control methods which do not require sys- tem identification. Lastly, this thesis presents the derivation and implementation of the first asymptotic-based mathematical models which account for the flame motion, hydrodynamic field and acoustic field in an anchored ducted flame setup. This modelling exploits the differ- ence in length scales associated with the flame, hydrodynamic field and acoustic waves. Unlike ducted flame models which omit the hydrodynamic field, this allows us to capture instability mechanisms such as Rayleigh-Taylor, or Darrieus-Landau instabilities, in the context of an- chored laminar flames. This is done for two simplified configurations: a weakly conical flame shape, and a conical flame shape case with small mean heat release. Key words: G-Equation, lean-premixed flame, combustion instabilities, thermo-acoustic in- stability,Rayleighcriterion,hydrodynamicinstability,transferfunctionfromlimitcycle,robust control, active adaptive control, Darrieus-Landau instability, parametric instability, V-flame, anchored flame, time-varying acoustics 3 4 Declaration and Copyright I herewith certify that all material in this dissertation which is not my own work has been properly acknowledged. Imperial College, London Charles Michael Angelo Luzzato The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 5 6 Contents Acronyms 13 List of Symbols 15 1 Introduction 21 1.1 Lean premixed combustors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.2 Combustion instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.2.1 The Rayleigh criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Pressure and heat release coupling . . . . . . . . . . . . . . . . . . . . . . 27 Saturation into limit cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.2.2 Models for combustion instabilities . . . . . . . . . . . . . . . . . . . . . . 30 Flame modelling and the G-Equation . . . . . . . . . . . . . . . . . . . . 31 Acoustics modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Modelling in the presence of hydrodynamics . . . . . . . . . . . . . . . . . 35 1.3 The need for prediction or control . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.4 Objectives and summary of research . . . . . . . . . . . . . . . . . . . . . . . . . 37 2 Acoustic wave modelling: accounting for time variation in the compact flame assumption 39 2.1 Plane wave acoustic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.1.1 Method of characteristics / wave description method . . . . . . . . . . . . 41 Invariants and wave expansion . . . . . . . . . . . . . . . . . . . . . . . . 41 Implementation in the case of a ducted flame model . . . . . . . . . . . . 41 Boundary condition and perturbations . . . . . . . . . . . . . . . . . . . . 43 Acoustic jumps across the flame . . . . . . . . . . . . . . . . . . . . . . . 44 2.1.2 Accuracy of the numerical implementation of the method of characteristics 45 Comparison between linear, polynomial, and spline interpolation . . . . . 45 7 8 Contents 2.1.3 The importance of mean flow . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2 Demonstrating the importance of time-variation . . . . . . . . . . . . . . . . . . 48 2.2.1 Floquet theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.3 Introducing time-variation in a ducted flame model . . . . . . . . . . . . . . . . 49 2.3.1 Movement of the flame . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.4 Effect of time-variation on combustion instabilities . . . . . . . . . . . . . . . . 51 2.4.1 Combustor stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.4.2 Strongly unstable systems and limit cycle amplitude . . . . . . . . . . . . 55 2.4.3 Effect of the Rayleigh criterion . . . . . . . . . . . . . . . . . . . . . . . . 56 2.5 Acoustics modelling conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 Active control of combustion instabilities 61 3.1 Obtaining linear models for model-based control from within limit cycle . . . . 62 3.1.1 Ducted flame limit cycle system . . . . . . . . . . . . . . . . . . . . . . . 62 3.1.2 Open loop transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1.3 Transfer function of a controlled system . . . . . . . . . . . . . . . . . . . 66 Active feedback controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Correction of transfer function obtained from limit cycle . . . . . . . . . . 68 3.2 Adaptive control of combustion instabilities . . . . . . . . . . . . . . . . . . . . 70 3.2.1 Background theory for Self Tuning Regulator adaptive controllers . . . . 71 State-space formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Controller coefficient update rules . . . . . . . . . . . . . . . . . . . . . . 72 3.2.2 Application to limit cycle systems with moving acoustic discontinuity . . 75 3.3 Transfer function analysis and control conclusions . . . . . . . . . . . . . . . . . 78 4 Flame modelling in the presence of hydrodynamics: theory 79 4.1 Modelling approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2 Derivation of the non-linear equations . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2.1 Non-dimensionalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2.2 Switching to the “flame” frame of reference . . . . . . . . . . . . . . . . . 83 4.2.3 Acoustic region: Linearised acoustics . . . . . . . . . . . . . . . . . . . . . 84 4.2.4 Hydrodynamic region: incompressible Euler equations . . . . . . . . . . . 86 4.2.5 Flame region: jump equations and flame equation . . . . . . . . . . . . . 87 Jumps across the flame . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Flame Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Contents 9 4.2.6 Flame anchoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Comparison of the G-Equation flame anchoring to the recirculation veloc- ity method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.3 Linearised hydrodynamics and flame . . . . . . . . . . . . . . . . . . . . . . . . 95 4.3.1 Physical space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 The influence of the steady flame shape . . . . . . . . . . . . . . . . . . . 95 Weakly conical flames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Conical flame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.3.2 Spectral space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Weakly conical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Conical flame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.4 Asymptotic expansion modelling conclusion . . . . . . . . . . . . . . . . . . . . 104 5 Flame modelling in the presence of hydrodynamics: numerical implemen- tation and results 105 5.1 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.1.1 Implementation structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.1.2 Dealing with Fourier series of discontinuous functions . . . . . . . . . . . 106 Function continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Solving the continuation minimisation problem . . . . . . . . . . . . . . . 109 Function continuation for time marching methods . . . . . . . . . . . . . 111 5.1.3 Verification of the asymptotic model implementation . . . . . . . . . . . . 112 Acoustic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Numerical convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Signal extension method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.1.4 Validation of the weakly conical case . . . . . . . . . . . . . . . . . . . . . 115 5.2 Weakly conical results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 118 5.2.1 Steady solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Amplitude of steady solution and linearisation assumptions . . . . . . . . 118 Mean position of the flame . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.2.2 The effect of the laminar burning velocity on anchoring . . . . . . . . . . 120 5.2.3 The effect of duct length . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.2.4 Comparison to G-equation . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.3 Conical results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.3.1 Steady solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.3.2 Flame wrinkling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 10 Contents 5.4 Conclusion on the implementation of asymptotic expansion modelling . . . . . . 131 6 Summary and Outlook 133 6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.1.1 The importance of the location of the flame induced acoustic discontinuity 134 6.1.2 Designing plant based active controllers from limit cycle system data . . . 134 6.1.3 Modelling hydrodynamics for V-flames semi-analytically . . . . . . . . . . 135 6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.2.1 Short term research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.2.2 Other numerical methods: medium and long term research . . . . . . . . 137 Chebyshev points and polynomial interpolation: removing the Gibbs phe- nomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Ghost fluid method: solving the non-linear hydrodynamic equations nu- merically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Bibliography 143 Appendix 161 A Appendix: Acoustics of a ducted flame 161 A.1 Acoustic jump matrix for the G-equation . . . . . . . . . . . . . . . . . . . . . . 161 A.1.1 Steady acoustic jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 A.1.2 Fluctuating acoustic jumps . . . . . . . . . . . . . . . . . . . . . . . . . . 162 A.2 Analytical solution for the acoustics in a duct with heat release . . . . . . . . . 163 A.3 Time-variation: Mechanic-acoustic analogy . . . . . . . . . . . . . . . . . . . . . 165 A.3.1 Mechanical analogy results . . . . . . . . . . . . . . . . . . . . . . . . . . 166 A.3.2 Implications on Combustion Instabilities . . . . . . . . . . . . . . . . . . . 168 A.4 Time variation: Ritz-Rayleigh Method . . . . . . . . . . . . . . . . . . . . . . . 169 A.4.1 Derivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 A.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Time-invariant case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Time-varying case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 A.4.3 Implications on Combustion Instabilities . . . . . . . . . . . . . . . . . . . 175 B Appendix: Derivation of the update rules for S.T.R. adaptive control 177

Description:
problems that are encountered when attempting to obtain the transfer functions for linearly . 4 Flame modelling in the presence of hydrodynamics: theory. 79 . Ghost fluid method: solving the non-linear hydrodynamic equations nu- .. reducing NOx emissions by 80% by 2020 (Argüelles et al., 2001).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.