ebook img

Modelling Anaerobic Digesters in Three Dimensions PDF

450 Pages·2013·5.88 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modelling Anaerobic Digesters in Three Dimensions

Modelling Anaerobic Digesters in Three Dimensions: Integration of Biochemistry with Computational Fluid Dynamics by David L. F. Gaden A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of DOCTOR OF PHILOSOPHY Department of Mechanical and Manufacturing Engineering University of Manitoba Winnipeg Copyright © 2013 by David L. F. Gaden Microsoft Office 2007 is copyright Microsoft Corporation 2007 Excel, Word and Visual Basic are registered trademarks of Microsoft Corporation MATLAB is copyright The Math Works, Inc. 1994-2011 CFX is copyright ANSYS, Inc. 2011 Fluent is copyright ANSYS, Inc. 2011 OpenFOAM is a registered trademark of ESI Group i Abstract Anaerobic digestion is a process that simultaneously treats waste and produces renewable energy in the form of biogas. Applications include swine and cattle waste management, which is still dominated by aerobic digestion, a less environmental alternative. The low adoption rates of anaerobic digestion is partly caused by the lack of modelling basis for the technology. This is due to the complexity of the process, as it involves dozens of interrelated biochemical reactions driven by hundreds of species of micro-organisms, immersed in a three-phase, non-Newtonian fluid. As a consequence, no practical computer models exist, and therefore, unlike most other engineering fields, the design process for anaerobic digesters still relies heavily on traditional methods such as trial and error. The current state- of-the-art model is Anaerobic Digestion Model No. 1 (ADM1), published by the International Water Association in 2001. ADM1 is a bulk model, therefore it does not account for the effects of concentration gradients, stagnation regions, and particle settling. To address this, this thesis works toward the creation of the first three-dimensional spatially resolved anaerobic digestion model, called Anaerobic Digestion Model with Multi-Dimensional Architecture (ADM-MDA), by developing a framework. The framework, called Coupled Reaction-Advection Flow Transient Solver (CRAFTS), is a general reaction solver for single-phase, incompressible fluid flows. It is a novel partial differential and algebraic equation (PDAE) solver that also employs a novel programmable logic controller (PLC) emulator, allowing users to define their own control logic. All aspects of the framework are verified for proper function, but still need validation against experimental results. The biochemistry from ADM1 is input into CRAFTS, resulting in a manifestation of ADM-MDA; however the numerical stiffness of ADM1 is found to conflict with the second order accuracy of CRAFTS, and the resulting model can only operate under restricted conditions. Preliminary results show spatial effects predicted by the CRAFTS model, and non-observable in the bulk model, impact the digester in a non-trivial manner and lead to ii measurable differences in their respective outputs. A detailed discussion of suggested work to arrive at a practical spatially resolved anaerobic digestion model is also provided. iii Acknowledgments I would like to acknowledge the generous funding provided by Manitoba Hydro and NSERC. I would like to thank the members of the grad committee, Dr. D. Bagley, Dr. N. Cicek and Dr. H. Soliman for their patience and their guidance. Dr. D. Batstone from the University of Queensland provided me with the code and assistance for ADM1, and our discussions were insightful into the model development. I shared an office and several courses with Amir Birjandi, and he made coming into work fun and enjoyable. Amir and Jonathon Serhal helped me perform my early experimental work with the stirplate, and I am greatly appreciative of those long hours they laboured with me. Dr. S. Ormiston was neither a member of the grad committee, nor an advisor, but his contributions were significant: his technical help in designing the algorithm was invaluable in achieving a working solver, as I implemented everything he suggested; and he even let me deliver a couple of lectures in his Heat Transfer class for my professional development. I would like to thank my advisor, Dr. E. Bibeau, for his trust, patience, and frequent injections of perspective. When he suggested I study manure for my PhD, I thought he was kidding. I would like to acknowledge the assistance I received from the OpenFOAM community. Whenever an OpenFOAM problem refused to give way, Dr. H. Jasak always took time out of his busy schedule to send me simple three-line emails that lead me straight to the solution. Late in the model development, I encountered a show-stopping bug, but I was not alone in trying to fix it, with thanks to Ivor Clifford for his collaboration. Finally, I would like to thank my wife, Ashley. Without her, this PhD thesis would never have been written. She worked a job so I could work on the thesis. She supported me in every way imaginable. It is as much her accomplishment as it is mine. Thank-you. iv Table of Contents Abstract ....................................................................................................................................... ii Acknowledgments ............................................................................................................................. iv List of Figures .................................................................................................................................. xiv List of Tables ................................................................................................................................... xix Abbreviations ................................................................................................................................... xx Nomenclature .................................................................................................................................xxii Chapter 1 Introduction.....................................................................................................................1 1.1 Purpose and objective ..........................................................................................................1 1.2 Overview .............................................................................................................................2 1.3 Proposed research limitations...............................................................................................4 1.4 Livestock industry waste management ..................................................................................4 1.4.1 Characterizing manure ..................................................................................................5 1.4.2 Waste management strategies ......................................................................................6 1.4.2.1 Aerobic digestion versus anaerobic digestion..............................................................7 1.5 Introduction to anaerobic digestion ......................................................................................8 1.5.1 History of anaerobic digesters .......................................................................................9 1.5.2 Types of anaerobic digesters .........................................................................................9 1.5.2.1 Configuration..........................................................................................................10 1.5.2.2 Microorganism growth strategy ...............................................................................11 1.5.2.3 Temperature operating range ..................................................................................12 1.5.3 Inputs and outputs .....................................................................................................13 1.5.4 Biochemistry ..............................................................................................................13 1.5.4.1 Disintegration .........................................................................................................14 1.5.4.2 Hydrolysis ...............................................................................................................14 1.5.4.3 Acidogenesis...........................................................................................................14 1.5.4.4 Acetogenesis ..........................................................................................................15 1.5.4.5 Methanogenesis .....................................................................................................15 1.6 Literature review ...............................................................................................................15 1.6.1 Experimental ..............................................................................................................15 1.6.1.1 Studies focusing on the overall process ....................................................................16 1.6.1.2 Studies focusing on the effluent ...............................................................................16 1.6.1.3 Studies focusing on fluid flow ..................................................................................17 1.6.1.4 Studies focusing on design.......................................................................................17 1.6.1.5 Studies focusing on control systems .........................................................................17 1.6.1.6 Studies focusing on microbiology .............................................................................17 1.6.2 Numerical ..................................................................................................................18 1.6.2.1 Modelling fluid flow ................................................................................................18 1.6.2.2 Modelling biochemistry ...........................................................................................19 1.6.2.3 Modelling fluid flow and biochemistry together ........................................................22 Chapter 2 Theory and method ........................................................................................................24 v 2.1 Numerical analysis theory...................................................................................................24 2.1.1 Root finding ...............................................................................................................24 2.1.2 Ordinary differential equations....................................................................................25 2.1.3 Adaptive timestep control ...........................................................................................26 2.1.4 Timescales and stiffness ..............................................................................................29 2.1.5 Differential algebraic equations ...................................................................................29 2.1.6 Partial differential equations .......................................................................................32 2.1.7 Partial differential algebraic equations .........................................................................34 2.1.8 Equation coupling .......................................................................................................35 2.1.8.1 Coupled solvers ......................................................................................................36 2.1.8.2 Segregated solvers ..................................................................................................38 2.1.9 Stabilisation coupling ..................................................................................................40 2.1.9.1 Point stabilisation coupling ......................................................................................41 2.1.9.2 Curve stabilisation coupling .....................................................................................42 2.1.9.3 Source term stabilisation coupling ...........................................................................43 2.2 ADM1 theory .....................................................................................................................44 2.2.1 Overview ...................................................................................................................44 2.2.2 Kinetic model .............................................................................................................45 2.2.3 Inhibition ...................................................................................................................48 2.2.4 Ion model...................................................................................................................48 2.2.5 Dissolved hydrogen gas concentration .........................................................................50 2.2.6 Gas model ..................................................................................................................51 2.3 CFD theory ........................................................................................................................52 2.3.1 Transport equations – general form.............................................................................52 2.3.2 Viscosity models .........................................................................................................53 2.3.3 Incompressible buoyancy model..................................................................................54 2.3.4 Transport equations – simplified form .........................................................................56 2.4 CRAFTS and ADM-MDA theory............................................................................................57 2.4.1 Process control ...........................................................................................................57 2.4.2 Algorithm-switching....................................................................................................58 2.4.3 Flow solution..............................................................................................................58 2.4.4 Coupled reaction model ..............................................................................................59 2.4.5 Algebraic routines.......................................................................................................59 2.4.6 Gas model ..................................................................................................................60 2.4.7 Energy equation .........................................................................................................60 2.4.8 Turbulence .................................................................................................................61 Chapter 3 Model development .......................................................................................................62 3.1 Project size ........................................................................................................................62 3.2 Programming environment.................................................................................................63 3.2.1 Bulk model programming environment ........................................................................63 3.2.2 CRAFTS programming environment .............................................................................63 3.3 Design philosophy ..............................................................................................................64 3.3.1 Flexibility ...................................................................................................................64 3.3.2 User-friendliness ........................................................................................................65 3.3.3 Extensibility................................................................................................................67 3.4 Process control and algorithm-switching .............................................................................68 3.5 Reaction library..................................................................................................................68 vi 3.5.1 Components...............................................................................................................69 3.5.2 Manager classes and the model class ...........................................................................69 3.5.3 Interfaces ...................................................................................................................70 3.5.4 Variable classes ..........................................................................................................72 3.5.4.1 Standard and implicit variables ................................................................................73 3.5.4.2 Derived variables ....................................................................................................73 3.5.5 Coefficient classes ......................................................................................................74 3.5.6 Reaction class .............................................................................................................75 3.5.6.1 Reaction rates.........................................................................................................75 3.5.6.2 Reaction rate inhibitions..........................................................................................76 3.5.7 Build dependencies ....................................................................................................77 3.6 Solver structures ................................................................................................................77 3.6.1 Components...............................................................................................................77 3.6.2 Solver application .......................................................................................................78 3.6.3 Flow solver .................................................................................................................78 3.6.3.1 Sub-stepping...........................................................................................................78 3.6.4 Coupled reaction model ..............................................................................................79 3.6.4.1 Coupled reaction model solver algorithms ................................................................80 3.6.4.2 Coupled reaction model class ..................................................................................81 3.6.4.3 Block matrix construction ........................................................................................81 3.6.5 Adaptive timestepping ................................................................................................84 3.6.6 State control ..............................................................................................................87 3.6.7 User-defined functions ...............................................................................................88 3.6.7.1 Function hooks .......................................................................................................89 3.6.7.2 Customizing input files ............................................................................................90 3.6.7.3 Standard variables ..................................................................................................91 3.6.7.4 Implicit variables .....................................................................................................91 3.6.7.5 Derived variables ....................................................................................................91 3.6.7.6 Coupling within UDFs ..............................................................................................92 3.6.7.7 Return values..........................................................................................................92 3.6.7.8 State control ...........................................................................................................94 3.6.7.9 Iterations................................................................................................................94 3.6.7.10 Ion model ...............................................................................................................95 3.6.8 Static equilibrium .......................................................................................................95 3.6.9 Gas model ..................................................................................................................96 3.6.9.1 Gas transfer boundary condition ..............................................................................97 3.6.9.2 Gas transfer algebraic routine ..................................................................................99 3.6.9.3 Gas flow rate ........................................................................................................ 100 3.6.9.4 Bubble model ....................................................................................................... 102 3.6.9.5 Gas model coupling ............................................................................................... 103 3.6.9.6 Pseudo Gas Model ................................................................................................ 103 3.7 Supporting structures....................................................................................................... 104 3.7.1 Dependencies........................................................................................................... 105 3.7.2 Bulk model ............................................................................................................... 105 3.7.3 equationReader........................................................................................................ 106 3.7.4 multiSolver............................................................................................................... 107 3.7.5 plcEmulator.............................................................................................................. 108 3.7.5.1 Outputs ................................................................................................................ 109 vii 3.7.5.2 Inputs................................................................................................................... 109 3.7.5.3 Logic .................................................................................................................... 110 3.7.5.4 Sequence of events ............................................................................................... 111 3.7.6 VectorN library ......................................................................................................... 112 3.7.7 Block matrix tools ..................................................................................................... 114 3.8 Code optimisation ............................................................................................................ 114 3.8.1 Indexing arrays ......................................................................................................... 114 3.8.2 Lazy-evaluation ........................................................................................................ 115 3.8.3 Pointer loops ............................................................................................................ 117 3.8.4 Jump tables .............................................................................................................. 118 3.8.4.1 Jump tables in equationReader .............................................................................. 118 3.8.4.2 Jump tables for derivative calculations ................................................................... 119 Chapter 4 Model verification and use ........................................................................................... 121 4.1 Verification and validation ................................................................................................ 121 4.2 Verification method ......................................................................................................... 121 4.3 Direct verification ............................................................................................................ 123 4.3.1 equationReader verification ...................................................................................... 124 4.3.2 multiSolver and plcEmulator verification .................................................................... 124 4.3.3 Reaction library verification....................................................................................... 124 4.3.4 Flow solver verification ............................................................................................. 124 4.3.5 Scalar transport verification ...................................................................................... 125 4.4 Indirect verification .......................................................................................................... 125 4.4.1 Bulk model verification ............................................................................................. 126 4.4.2 Biochemical reaction solver verification ..................................................................... 127 4.4.3 Gas model verification .............................................................................................. 131 4.4.4 Coupled reaction model verification .......................................................................... 133 4.5 Using the model............................................................................................................... 136 4.5.1 Convergence criteria ................................................................................................. 136 4.5.1.1 Matrix solver tolerances ........................................................................................ 137 4.5.1.2 Timestep doubling convergence criteria ................................................................. 137 4.5.1.3 implicitAutoSolve convergence criteria................................................................... 138 4.5.1.4 Gas model convergence criteria ............................................................................. 138 4.5.2 Transport error......................................................................................................... 139 4.5.3 Variable limiters ....................................................................................................... 141 Chapter 5 Results and discussion .................................................................................................. 143 5.1 Numerical stiffness........................................................................................................... 143 5.1.1 Gas model ................................................................................................................ 145 5.1.2 Buoyancy ................................................................................................................. 145 5.1.3 Temperature Inhibition ............................................................................................. 146 5.2 Full model simulation ....................................................................................................... 147 5.2.1 Case setup ............................................................................................................... 147 5.2.2 Runtime information ................................................................................................ 149 5.2.3 Time-resolved data ................................................................................................... 149 5.2.3.1 Disintegration stage .............................................................................................. 150 5.2.3.2 Hydrolysis stage .................................................................................................... 151 5.2.3.3 Acidogenesis, acetogenesis and methanogenesis .................................................... 152 5.2.3.4 Carbon and nitrogen balances ............................................................................... 153 viii 5.2.3.5 Ion model ............................................................................................................. 154 5.2.3.6 Gas model ............................................................................................................ 157 5.2.3.7 Microbial populations ........................................................................................... 159 5.2.3.8 Discussion ............................................................................................................ 160 5.2.4 Spatially resolved data .............................................................................................. 165 5.2.5 Animations............................................................................................................... 168 Chapter 6 Conclusion ................................................................................................................... 169 Chapter 7 Contribution ................................................................................................................ 171 7.1 Source term stabilisation coupling .................................................................................... 171 7.2 PDAE solver ..................................................................................................................... 172 7.3 Integrated PLC emulation and algorithm-switching ............................................................ 173 7.4 General coupled liquid reacting solver............................................................................... 173 7.5 General three-dimensional implementation of ADM1 ........................................................ 175 Chapter 8 Suggested future work ................................................................................................. 176 8.1 General model improvements .......................................................................................... 176 8.1.1 Parallelisation........................................................................................................... 176 8.1.1.1 Parallelisation of the solver application .................................................................. 177 8.1.1.2 Parallelisation of the coupled reaction model ......................................................... 177 8.1.1.3 Parallelisation of multiSolver ................................................................................. 177 8.1.1.4 Parallelisation of the plcEmulator........................................................................... 178 8.1.1.5 Parallelisation of the gas model ............................................................................. 178 8.1.2 Mesh Motion ........................................................................................................... 178 8.1.3 Lagrange particle tracking ......................................................................................... 179 8.1.4 Non-Newtonian model.............................................................................................. 179 8.2 ADM1-specific improvements ........................................................................................... 179 8.2.1 Addressing the stiffness of ADM1 .............................................................................. 179 8.2.2 Coefficient and sensitivity analysis ............................................................................. 181 8.2.3 Mass-conserving model ............................................................................................ 181 8.2.4 Shear-induced decay model ...................................................................................... 182 Bibliography ................................................................................................................................... 183 Appendix A Additional literature review ......................................................................................... 202 A.1 Studies that focus on the overall process ........................................................................... 202 A.2 Studies focusing on the effluent ........................................................................................ 203 A.3 Studies focusing on fluid flow ........................................................................................... 204 A.4 Studies focusing on design................................................................................................ 204 A.5 Studies focusing on control systems .................................................................................. 205 A.6 Studies focusing on microbiology ...................................................................................... 205 Appendix B ODE theory ................................................................................................................. 207 B.1 ODE theory ...................................................................................................................... 207 B.1.1 Euler’s method ............................................................................................................... 207 B.1.2 Fourth-order Runge-Kutta method .................................................................................. 208 B.1.3 Semi-implicit Bulirsch-Stoer method (SIBS) ....................................................................... 208 Appendix C Source term stabilisation coupling................................................................................ 210 ix

Description:
shared an office and several courses with Amir Birjandi, and he made Amir and Jonathon Serhal helped me perform my early experimental work
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.