ebook img

Modeling Transport Phenomena in Porous Media with Applications PDF

250 Pages·2018·7.155 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling Transport Phenomena in Porous Media with Applications

Mechanical Engineering Series Malay K. Das Partha P. Mukherjee K. Muralidhar Modeling Transport Phenomena in Porous Media with Applications Mechanical Engineering Series Series editor Francis A. Kulacki, University of Minnesota The Mechanical Engineering Series presents advanced level treatment of topics on the cutting edge of mechanical engineering. Designed for use by students, researchers and practicing engineers, the series presents modern developments in mechanical engineering and its innovative applications in applied mechanics, bioengineering, dynamic systems and control, energy, energy conversion and energy systems, fluid mechanics and fluid machinery, heat and mass transfer, manufacturingscienceandtechnology,mechanicaldesign,mechanicsofmaterials, micro- and nano-science technology, thermal physics, tribology, and vibration and acoustics.Theseriesfeaturesgraduate-leveltexts,professionalbooks,andresearch monographs in key engineering science concentrations. More information about this series at http://www.springer.com/series/1161 Malay K. Das Partha P. Mukherjee (cid:129) K. Muralidhar Modeling Transport Phenomena in Porous Media with Applications 123 Malay K.Das K.Muralidhar Department ofMechanical Engineering Department ofMechanical Engineering Indian Institute of Technology Kanpur Indian Institute of Technology Kanpur Kanpur,Uttar Pradesh Kanpur,Uttar Pradesh India India ParthaP. Mukherjee Schoolof MechanicalEngineering PurdueUniversity West Lafayette, IN USA ISSN 0941-5122 ISSN 2192-063X (electronic) MechanicalEngineering Series ISBN978-3-319-69864-9 ISBN978-3-319-69866-3 (eBook) https://doi.org/10.1007/978-3-319-69866-3 LibraryofCongressControlNumber:2017956310 ©SpringerInternationalPublishingAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface In recent years, transport phenomena in porous media have attracted significant attention from multiple branches of science and engineering. The reasons for such renewed interest are twofold. First, the past two decades have experienced the emergence of a variety of porous media applications, primarily involving energy, environment, and biological systems. Second, the rapid increase in computing powerhas facilitated theoreticaladvancement in porous media transport modeling. In this context, the present monograph appends classical theories of porous media transport with recent advancements in the domain. The monograph aims at pro- vidingastrongsupporttothegraduateandseniorundergraduatestudentsinterested in porous media research. Thisbookisprimarilydividedintotwoparts:theoryandapplications.Typesof porous media and the importance of mathematical modeling of transport through such media are discussed inChap. 1. While Chaps. 2 and 3discuss thetheories of transport phenomena in porous media, Chaps. 4–7 deal with engineering applica- tions and their modeling considerations. Finally, Chap. 8 summarizes the present understandingaswellastheimminentchallengesofmodelingtransportphenomena through porous media. Modeling of transport through porous media may be undertaken at various scales.Chapter2examinesthefundamentaldistinctionofcontinuum-topore-scale models. The chapter then follows the historical development from the Darcian transportmodeltothecontemporaryphenomenologicalformalisms.Chapter2also includes the treatment of multiphase flow and heat transfer through porous media. Finally, charge transport and chemical reactions are also included. In continuation with the continuum models developed in Chaps. 2 and 3 outlines the mesoscale models for transport in porous media. In particular, Chap. 3 delineates the appli- cationofLatticeBoltzmannmethod(LBM)inunderstandingtransportphenomena at the pore scale. The chapter compares relative advantages of LBM in complex geometries, particularly in porous media with the continuum formulation. Thetheoreticaldevelopment,discussedinChaps.2and3,providestheessential backgroundfortheapplicationscontainedinChaps.4–7.Chapters4and5describe models of transport phenomena in electrochemical and biological systems. While v vi Preface Chap. 4 includes the modeling offuel cells and batteries, Chap. 5 describes blood flowthroughaneurysmsinhumanarteries. Chapter6includesanovelapproachof modeling oscillatory flow in heat exchangers within a porous media framework. Finally, Chap. 7 encompasses the reservoir simulation for CO sequestration in 2 hydrate form. Overall, Chaps. 5–7 cover broad areas of contemporary applications inporousmedia,encouraginginterestedresearcherstodelveintotheirchosenareas. While this book provides theoretical and modeling support with examples to porous media researchers, it does not intend to substitute well-established mono- graphs on transport phenomena. Fundamental knowledge offluid mechanics, heat andmasstransfer,andelectrochemicalsystemsisnecessarytoefficientlyutilizethis book.Finally,thereferencesincludedinthisbookwillprovideadditionalresources of study for early researchers in the subject. TheauthorsgratefullyacknowledgetheCurriculum DevelopmentforTechnical Education (CDTE) cell of Indian Institute of Technology Kanpur for financial support.TheauthorsaregratefultotheinstituteauthoritiesatIITKanpurandTexas A&M University for providing a conducive research environment. Kanpur, India Malay K. Das West Lafayette, USA Partha P. Mukherjee Kanpur, India K. Muralidhar March 2017 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 K. Muralidhar 1.1 Physical Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Representative Elementary Volume . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Mathematical Modeling of Fluid Flow. . . . . . . . . . . . . . . . . . . . 4 1.4 Darcy’s Law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Microscale Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.7 Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.8 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Equations Governing Flow and Transport in Porous Media . . . . . . 15 K. Muralidhar 2.1 Darcy’s Law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 Cartesian and Cylindrical Coordinate Systems . . . . . . . . 18 2.1.2 Inhomogeneous Media . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.3 Anisotropic Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.4 Compressible Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.5 Effect of Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Brinkman-Corrected Darcy’s Law . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Forschheimer-Extended Darcy’s Law. . . . . . . . . . . . . . . . . . . . . 25 2.4 Non-darcy Model of Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.1 Non-dimensionalization . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.2 Special Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.3 Compressible Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.4 Turbulent Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5 Energy Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5.1 Thermal Non-equilibrium Model. . . . . . . . . . . . . . . . . . 39 2.5.2 Compressible Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 vii viii Contents 2.6 Unsaturated Porous Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.6.1 Oil–Water Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.6.2 Multiphase Multicomponent Flow. . . . . . . . . . . . . . . . . 49 2.7 Mass Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.8 Combined Heat and Mass Transfer . . . . . . . . . . . . . . . . . . . . . . 53 2.9 Flow, Heat, and Mass Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.10 Nanoscale Porous Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.11 Multiscale Porous Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.12 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3 Mesoscale Interactions of Transport Phenomena in Polymer Electrolyte Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Partha P. Mukherjee, Ankit Verma, and Aashutosh Mistry 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2 Description of Charge Transport in Porous Media . . . . . . . . . . . 68 3.2.1 Special Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3 Mesoscale Models in Porous Media. . . . . . . . . . . . . . . . . . . . . . 72 3.4 Microstructure Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5 Lattice Boltzmann Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.5.2 Representative Highlights . . . . . . . . . . . . . . . . . . . . . . . 78 3.6 Electrochemistry-Coupled Direct Numerical Simulation . . . . . . . 81 3.6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.6.2 Representative Results . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.7 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Porous Media Applications: Electrochemical Systems. . . . . . . . . . . . 93 Partha P. Mukherjee, Aashutosh Mistry, and Ankit Verma 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.2 Thermodynamic, Kinetic, and Transport Behavior of Li-Ion Battery Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2.1 Open Circuit Potential . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2.2 Entropic Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2.3 Cell Capacity and C-Rate . . . . . . . . . . . . . . . . . . . . . . . 98 4.2.4 Intercalation Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2.5 Electrolyte Transport Properties. . . . . . . . . . . . . . . . . . . 100 4.3 Modeling Isothermal Operation of a Li-Ion Cell. . . . . . . . . . . . . 102 4.3.1 Macrohomogeneous Description . . . . . . . . . . . . . . . . . . 104 4.3.2 Comments on Mathematical Nature of Governing Equations and Solution. . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.3 Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . 107 Contents ix 4.4 Importance of Thermal Effects and Its Influence on Electrochemical Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4.1 Energy Equation to Define Temperature Changes. . . . . . 113 4.4.2 Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . 115 4.5 Direct Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.5.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.5.2 Microstructural Effects: Properties for Composite Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5 Porous Media Applications: Biological Systems . . . . . . . . . . . . . . . . 123 Malay K. Das and Chandan Paul 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.1.1 Aneurysm and the Treatment Options . . . . . . . . . . . . . . 123 5.1.2 Blood Flow in Coil-Embolized Aneurysm: Role of Modeling and Simulation . . . . . . . . . . . . . . . . . 124 5.2 Analytical Solutions of Flow in a Channel and a Tube . . . . . . . . 125 5.2.1 Pulsatile Flow Through a Tube with Clear Media . . . . . 125 5.2.2 Steady Flow Through a Channel Filled with Porous Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.2.3 Steady Flow Through a Tube Filled with Porous Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.2.4 Pulsatile Flow Through a Channel Filled with Porous Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.2.5 Pulsatile Flow Through a Tube Filled with Porous Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.3 Pulsatile Flow in a Porous Bulge. . . . . . . . . . . . . . . . . . . . . . . . 130 5.3.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.3.2 Flow Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.3.3 Pulsatile Flow in a Porous Bulge: Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.3.4 Validation of the Finite Volume Solver . . . . . . . . . . . . . 134 5.3.5 Pulsatile Flow in a Bulge . . . . . . . . . . . . . . . . . . . . . . . 139 5.3.6 Pulsatile Flow in a Patient-Specific Geometry . . . . . . . . 144 5.4 Rheology of Biological Fluids. . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.4.1 Role of RBC in Blood Rheology . . . . . . . . . . . . . . . . . 148 5.4.2 Realistic Blood Model . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.5 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.