ebook img

Modeling the distribution of mountain permafrost in the Central Andes, San Juan, Argentina PDF

100 Pages·2015·5.05 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling the distribution of mountain permafrost in the Central Andes, San Juan, Argentina

MODELINGTHEDISTRIBUTIONOFMOUNTAINPERMAFROST INTHECENTRALANDES,SANJUAN,ARGENTINA by ErikaA.P.Schreiber AthesissubmittedtotheFacultyoftheUniversityofDelawareinpartial fulfillmentoftherequirementsforthedegreeofMasterofScienceinGeography Summer2015 ©2015ErikaA.P.Schreiber AllRightsReserved ProQuest Number: 1602371 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 1602371 Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 MODELINGTHEDISTRIBUTIONOFMOUNTAINPERMAFROST INTHECENTRALANDES,SANJUAN,ARGENTINA by ErikaA.P.Schreiber Approved: MichaelA.O’Neal,Ph.D. ProfessorinchargeofthesisonbehalfoftheAdvisoryCommittee Approved: TracyL.DeLiberty,Ph.D. ChairoftheDepartmentofGeography Approved: MohsenBadiey,Ph.D. ActingDeanoftheCollegeofEarth,Ocean,andEnvironment Approved: JamesG.Richards,Ph.D. ViceProvostforGraduateandProfessionalEducation ACKNOWLEDGMENTS I am immensely grateful for all of the support I have received throughout my two years at the University of Delaware. This thesis would not have been possible without a large number of people. First and foremost I would like to thank my advisor, Dr. Michael O’Neal, for the numerous research opportunities he has provided, as well as his invaluable guidanceandsupportindevelopingandimplementingthisproject. Iwouldalsoliketothank Dr. BrianHansonforhisassistancethroughoutthisprocessandforallhehastaughtmeasa professorandmentor. IamgratefulalsoforthefeedbackIreceivedfromDr. DanielLeathers and Dr. Andres Meglioli in completing this thesis. Furthermore I would like to extend my gratitudetoDr. TracyDeLiberty,Dr. DanaVeron,andtherestoftheGeographyDepartment facultyforcreatingsuchasupportiveenvironmentinwhichtoattainmydegree. The data utilized in this study would have been unattainable if not for the efforts and expertiseofDr. AndresMeglioli. Iamenormouslythankfultohimforgivingmetheoppor- tunity to conduct research in such a remote environment and for his assistance throughout thefieldcampaigns. Iamgrateful,too,forthefieldassistanceofDanielHubaczandRenato Kane, as well as Renato’s unending advice and support. I would also like to acknowledge Tessa Montini for her commiserations as we completed our degrees together, along with the rest of the Geography graduate student community for their continuing friendship and en- couragement. Additionally, I want to express my deep gratitude to Jimmy Moore and all other friends I have found here in Delaware. I could not have asked for a better network of wonderful people and I am extremely thankful to have had the opportunity to meet and learn from so many individuals in and out of my department. Finally, I wish to recognize my parents and siblings for their constant support and inspiration; without them I would not havemadeitsofaronthisacademicjourney. iii TABLEOFCONTENTS LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x Chapter 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 STUDYAREA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1 GroundSurfaceTemperatureMeasurements . . . . . . . . . . . . . . . . 5 3.2 TemperatureDataReduction . . . . . . . . . . . . . . . . . . . . . . . . 5 3.3 ModelRadiationandGeographicDataforSensorSites . . . . . . . . . . 6 3.4 StatisticalAnalysesofallField,Radiation,andGeographicData . . . . . 7 4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.1 GroundSurfaceTemperatureMeasurements . . . . . . . . . . . . . . . . 9 4.2 ModelRadiationandGeographicDataforSensorSites . . . . . . . . . . 9 4.3 SpatialModelingofTemperatureValues . . . . . . . . . . . . . . . . . . 10 4.4 PermafrostDistributionandComparisonwithObservations . . . . . . . . 11 5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1 AccuracyofModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1.1 ASTERvs. SRTM . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.1.2 MAGTvs. BTS . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 EvaluatingPermafrostasaWaterResource . . . . . . . . . . . . . . . . 17 5.3 Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 iv FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Appendix TEMPERATURESENSORRECORDS . . . . . . . . . . . . . . . . . . . . 64 v LISTOFTABLES 1 Summaryofchangestoelevationvaluesatsensorsitesduetoprobe locationadjustmentsintoneighboringDEMcells . . . . . . . . . . . . 52 2 Valuesofrootmeansquareerrorandmeanabsoluteerrorusedtoevaluate insolationmodelsuccessincapturingtheintegrationsofdirectradiation values(W/m2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3 Summaryofparametersusedforthelocalradiationmodel . . . . . . . 54 4 Coefficientsandrelatedstatisticsofmultiplelinearregressionequations derivedfromMAGTvalues . . . . . . . . . . . . . . . . . . . . . . . 55 5 Coefficientsandrelatedstatisticsofmultiplelinearregressionequations derivedfromBTSvalues . . . . . . . . . . . . . . . . . . . . . . . . . 56 6 PercentagelandareaofmodeledpermafrostbasedonbothDEMsand methodsofcalculationateachstudysite . . . . . . . . . . . . . . . . . 57 7 Lowestelevationsreachedbymodeledpermafrostextent . . . . . . . . 58 vi LISTOFFIGURES 1 LocationsofElAltarandLosAzulesstudysitesinthehighAndesof Argentina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Marshy"vegas"locatedinavalleyatoneoftheresearchfieldsites . . . 20 3 Examplesofcryogeniclandformsfoundatthefieldsites . . . . . . . . 21 4 TemperaturesensordistributionacrosstheElAltarstudysite . . . . . . 22 5 TemperaturesensordistributionacrosstheLosAzulesstudysite . . . . 23 6 ElevationandaspectdistributionoftemperaturesensorsacrosstheEl AltarandLosAzulesfieldsites . . . . . . . . . . . . . . . . . . . . . 24 7 DistributionoftemperaturesensorsacrossElAltarandtheirusabilityfor temperaturemodeling . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8 DistributionoftemperaturesensorsacrossLosAzulesandtheirusability fortemperaturemodeling . . . . . . . . . . . . . . . . . . . . . . . . 26 9 Periodsofindividualtemperaturesensordatacollectionplottedagainst eachprobe’slocalelevation . . . . . . . . . . . . . . . . . . . . . . . 27 10 Comparisonsofmodeledandrecordedaveragedailyincomingsolar radiationvaluesatthethreeweatherstations . . . . . . . . . . . . . . . 28 ◦ 11 MAGTvalues( C)atElAltarsitebasedonthemultiplelinearregression equationdevelopedwiththeASTERDEM . . . . . . . . . . . . . . . 29 ◦ 12 MAGTvalues( C)atElAltarsitebasedonthemultiplelinearregression equationdevelopedwiththeSRTMDEM . . . . . . . . . . . . . . . . 30 ◦ 13 MAGTvalues( C)atLosAzulessitebasedonthemultiplelinear regressionequationdevelopedwiththeASTERDEM . . . . . . . . . . 31 vii ◦ 14 MAGTvalues( C)atLosAzulessitebasedonthemultiplelinear regressionequationdevelopedwiththeSRTMDEM . . . . . . . . . . 32 ◦ 15 BTSvalues( C)atElAltarsitebasedonthemultiplelinearregression equationdevelopedwiththeASTERDEM . . . . . . . . . . . . . . . 33 ◦ 16 BTSvalues( C)atElAltarsitebasedonthemultiplelinearregression equationdevelopedwiththeSRTMDEM . . . . . . . . . . . . . . . . 34 ◦ 17 BTSvalues( C)atLosAzulessitebasedonthemultiplelinearregression equationdevelopedwiththeASTERDEM . . . . . . . . . . . . . . . 35 ◦ 18 BTSvalues( C)atLosAzulessitebasedonthemultiplelinearregression equationdevelopedwiththeSRTMDEM . . . . . . . . . . . . . . . . 36 ◦ 19 Absolutedifferencesincalculatedtemperature( C)atElAltarsitebased onthemultiplelinearregressionequationsdevelopedusingASTERand SRTMinformationforBTSvalues . . . . . . . . . . . . . . . . . . . . 37 20 Differencesinelevation(m)betweentheASTERandSRTMdigital elevationmodelsattheElAltarsite . . . . . . . . . . . . . . . . . . . 38 21 Differencesinelevation(m)betweentheASTERandSRTMdigital elevationmodelsattheLosAzulessite . . . . . . . . . . . . . . . . . 39 22 DistributionofpermafrostacrossthelandscapeatElAltarbasedon MAGTthresholdsusingtheASTERDEM . . . . . . . . . . . . . . . . 40 23 DistributionofpermafrostacrossthelandscapeatElAltarbasedon MAGTthresholdsusingtheSRTMDEM . . . . . . . . . . . . . . . . 41 24 DistributionofpermafrostacrossthelandscapeatLosAzulesbasedon MAGTthresholdsusingtheASTERDEM . . . . . . . . . . . . . . . . 42 25 DistributionofpermafrostacrossthelandscapeatLosAzulesbasedon MAGTthresholdsusingtheSRTMDEM . . . . . . . . . . . . . . . . 43 26 DistributionofpermafrostacrossthelandscapeatElAltarbasedonBTS thresholdsusingtheASTERDEM . . . . . . . . . . . . . . . . . . . . 44 27 DistributionofpermafrostacrossthelandscapeatElAltarbasedonBTS thresholdsusingtheSRTMDEM . . . . . . . . . . . . . . . . . . . . 45 viii 28 DistributionofpermafrostacrossthelandscapeatLosAzulesbasedon BTSthresholdsusingtheASTERDEM . . . . . . . . . . . . . . . . . 46 29 DistributionofpermafrostacrossthelandscapeatLosAzulesbasedon BTSthresholdsusingtheSRTMDEM . . . . . . . . . . . . . . . . . . 47 30 ComparisonofknownElAltaricelocationswithpredictedpermafrost extentbasedonMAGT . . . . . . . . . . . . . . . . . . . . . . . . . 48 31 ComparisonofknownElAltaricelocationswithpredictedpermafrost extentbasedonBTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 32 Exampleofhowpermafrostdistributiondiffersbetweenmodelsbasedon ASTERandSRTMDEMs . . . . . . . . . . . . . . . . . . . . . . . . 50 33 ExtentofBTSpermafrostzonesbeyondMAGTpermafrostzonesatEl Altarsite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ix

Description:
Tessa Montini for her commiserations as we completed our degrees . regression equation developed with the ASTER DEM variable, dependent on factors such as insolation, elevation, and snow cover (Gruber and .. Notable differences in both the MAGT and BTS models, particularly along ridge-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.