ebook img

Modeling Ramp Compression PDF

151 Pages·2011·25.1 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling Ramp Compression

SANDIA REPORT SAND2011-6845 Unlimited Release Printed December 2011 Modeling Ramp Compression Experiments using Large-Scale Molecular Dynamics Simulation !"#$%&'(&)*+,-.+%/&0(&1$22*34&5(&6$%3/&0+%$2*$%&7",,38,$%/&1"9*$3:&'(&53.;$8:$"./&<$8=&>(&<83.2/& ?33.3&@(&0+%3./&)*+,$.&?(&1$22..+%/&0383,=&!(&)3,-:32+% Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: (865) 576-8401 Facsimile: (865) 576-5728 E-Mail: [email protected] Online ordering: http://www.osti.gov/bridge Available to the public from U.S. Department of Commerce National Technical Information Service 5285 Port Royal Rd. Springfield, VA 22161 Telephone: (800) 553-6847 Facsimile: (703) 605-6900 E-Mail: [email protected] Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online 2 SAND2011–6845 UnlimitedRelease PrintedDecember2011 Modeling Ramp Compression Experiments using Large-Scale Molecular Dynamics Simulation AidanP.Thompson,J.MatthewD.Lane,JonathanZimmerman, MichaelP.Desjarlais,GaryS.Grest,ReeseE.Jones,ThomasR.Mattsson,JeremyA.Templeton SandiaNationalLaboratories P.O.Box5800 Albuquerque,NM 87185-1322 [email protected] ToddDitmire,HernanQuevedo CenterforHighEnergyDensityScienceTheUniversityofTexasatAustin MichaelI.Baskes UniversityofCalifornia,SanDiego YogendraM.Gupta,J.MichaelWiney InstituteforShockPhysicsWashingtonStateUniversity Abstract Moleculardynamicssimulation(MD)isaninvaluabletoolforstudyingproblemssensitivetoatom- scale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plasticdeformation.Inordertoapplythismethodtomodelingoframp-compressionexperiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extractionofcontinuumquantities. Wehavecompleteda3yearLDRDprojectwiththegoalofdevelop- ingmoleculardynamicssimulationcapabilitiesformodelingtheresponseofmaterialstorampcompres- sion. Thetechniqueswehavedevelopedfallintothreecategories(i)moleculardynamicsmethods(ii) interatomicpotentials(iii)calculationofcontinuumvariables. Highlightsincludethedevelopmentofan accurateinteratomicpotentialdescribingshock-meltingofBeryllium,ascalingtechniqueformodeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plasticstrainfromMDsimulations. AllofthesemethodshavebeenimplementedinSandia’sLAMMPS MDcode,ensuringtheirwidespreadavailabilitytodynamicmaterialsresearchatSandiaandelsewhere. 3 Contents I ShockCompression 7 1 Dynamiccompressionofpolymers 8 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 DensityFunctionalTheorywithAM05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Classicalreactiveinteractionpotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Classicalnon-reactiveinteractionpotentials . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Constructionofthesimulationcells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Modelingshockresponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Resultsindensepolymer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 ShockHugoniot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Chemicalstructure/dissociation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5 Resultsinpolymerfoam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 ShockHugoniot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Shocktemperatureandvoidcollapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 Dynamiccompressionofsiliconandgermanium 28 2.1 Introductionandmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2 Resultsanddiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Laser-drivendynamicmeltingofsilicon 34 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Experimentalsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Dynamiccompressionofaluminum 47 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 ComputationalMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 MDSimulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ContinuumVariablesfromMDSimulations . . . . . . . . . . . . . . . . . . . . . . . . . . 48 NonlinearElasticContinuumCalculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4 Elasticshockwaveprofiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 [100]Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 [111]Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 [110]Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 TemperatureCalculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.5 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 II RampCompression 76 5 DynamicCompressionofBeryllium 77 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 PhysicalProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3 PhaseDiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.4 DynamicCompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6 Time-PositionScalingrelationinramp-loading 88 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.2 Methodofcharacteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3 Methodofscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Kinematicanddynamicsimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Invarianceinthewaveequation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Rampscalinginthenonlinearelasticresponseregime . . . . . . . . . . . . . . . . . . . . . 100 Rampscalingintheplasticresponseregime . . . . . . . . . . . . . . . . . . . . . . . . . . 100 III Methods 106 7 ContinuumProperties 107 7.1 EulerianAtomistic-ContinuumFormulationbyHardy . . . . . . . . . . . . . . . . . . . . . 107 BalanceLaws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 DensitiesandLocalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 EnergyandForceAssumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 ContinuumExpressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.2 LagrangianAtomistic-ContinuumFormulation . . . . . . . . . . . . . . . . . . . . . . . . 111 BalanceLaws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 DensitiesandLocalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 EnergyandForceAssumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 ContinuumExpressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5 7.3 EvaluationandComparisonofSpatialandMaterialFrameExpressions . . . . . . . . . . . 113 Stressforaconstrainedfinitetemperaturesystem . . . . . . . . . . . . . . . . . . . . . . . 113 Finitetemperaturedeformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Tensilestretchingofacenter-crackedbody . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.4 Cauchy-BornStressandFreeEnergyCalculation . . . . . . . . . . . . . . . . . . . . . . . 122 Quasi-harmonicCauchy-Bornmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Quasi-harmonicmodelforpairwisepotentials . . . . . . . . . . . . . . . . . . . . . . . . . 125 Quasi-harmonicmodelforEAMpotentials . . . . . . . . . . . . . . . . . . . . . . . . . . 125 ExamplesoffreeenergyandCauchy-Bornstresscalculation . . . . . . . . . . . . . . . . . 127 7.5 PlasticDeformationGradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 IncrementalApproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 TotalStrainApproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Examplecalculation: uniaxialstretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Appendix: Thermodynamicintegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8 NewMethodsinLAMMPS 139 8.1 TheLAMMPSSHOCKPackage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Hugoniostat(fix nphug) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 MultiscaleSimulationTechnique(fix msst) . . . . . . . . . . . . . . . . . . . . . . . 142 DirectRamp-loading(fix wall/piston) . . . . . . . . . . . . . . . . . . . . . . . . . 145 Materialadditionandremoval(fix append atoms) . . . . . . . . . . . . . . . . . . . 146 8.2 ExtensionstoATCpackage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9 Communications 154 9.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9.2 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 10 Acknowledgements 156 6 Part I Shock Compression 1 Dynamic compression of polymers PrincipalAuthors: ThomasR.MattssonandJ.MatthewD.Lane Thissectioncontainsapaperentitled“First-PrinciplesandClassicalMolecularDynamicsSimulationof Shock Polymers ” that was published in Phys. Rev. B in 2010. It was authored by Thomas R. Mattsson, J. MatthewD.Lane,Kyle. R.Cochrane,MichaelP.Desjarlais,AidanP.Thompson,FlintPierce,andGaryS. Grest. [SAND2009-3918J] Abstract Organic polymers and nanocomposites are increasingly being subjected to extreme environments. Molecular-scalemodelingofthesematerialsoffersinsightintofailuremechanismsandresponse. Den- sity functional theory (DFT) molecular dynamics (MD) and classical MD simulations of the principal shock Hugoniot are presented for two hydrocarbon polymers, polyethylene (PE) and poly(4-methyl- 1-pentene) (PMP). DFT results are in excellent agreement with experiment data, which is currently available up to 80 GPa. Further, we predict the PE and PMP Hugoniots up to 350 GPa and 200 GPa, respectively. Forcomparison, westudiedtworeactiveandtwonon-reactiveinteractionpotentials. For the latter, the exp-6 interaction of Borodin et al. showed much better agreement with experiment than OPLS. For the reactive force fields, ReaxFF displayed decidedly better agreement than AIREBO. For shocks above 50 GPa, only the DFT results are of high fidelity, establishing DFT as a reliable method for shocked macromolecular systems. We extend these results to include low-density polymer foams using NEMD techniques. We find good quantitative agreement with both experiment and hydrocode simulations. Further,wehavemeasuredlocaltemperaturestoinvestigatetheformationofhotspotsand polymerdissociationnearfoamvoids. 1.1 Introduction Over the last few years, first-principles simulations in combination with increasingly accurate shock ex- periments at multi-Mbar pressure have yielded important insights into how matter behaves under extreme conditions. While comprehensive advances have been made for many light elements, for example deu- terium[2,3]andcarbon[4],progresshasbeenslowerforequallyimportant,albeitmorechallenging,mate- rialslikemolecularcrystalsandpolymers[5]. Modeling a macro-molecular material requires trade-offs in system size and fidelity of the atomic inter- action. Itisnotclearapriorihowtobeststrikethebalancebetweenthecompetingrequirements,sincethe criticalvariabledeterminingsystemresponsemayinsomecasesbethesize-specificstructure/geometry,or in other cases the bond reactivity and interaction fidelity. In order to resolve this important question, we havesimulatedshockcompressionoftwodifferentpolymersusingfirst-principlesDensityFunctionalThe- ory[6](DFT)andclassicalmoleculardynamics(MD)simulationsusingfourdifferentinteractionpotentials: ReaxFF[7],AIREBO[8],OPLS[9],andBorodinetal.’sexp-6potentials[10]. Polymerfoamisacrucialpartofthedynamichohlraumplatformusedtogenerateintensex-rayradiation atSandia’sZ-machine[11–13]anddesignsforInertialConfinedFusion(ICF)ofteninvolvefoams. Asex- perimentaldesignsarebeingrefined–primarilyasaresultofaninterplaybetweenradiation-hydrodynamics 7 modeling,improveddiagnostics,andimproveddrivers–theimportanceofhavingaccuratematerialmodels based on a fundamental understanding of the material’s behavior is becoming increasingly clear. Model- ing both the qualitative and quantitative aspects of shock propagation in polymers and polymer foams is thereforeofsignificantimportance. Figure 1: Simulation snapshots of the initial foam structure (top) and of the propagating shock front (bot- tom). Theshockshownisstrongenoughtodissociatetheatomsofthepolymer,whichcanbeseenvaporized withinthevoidspaceaheadofthefront. Thesnapshotsareshadedtoindicatedepth. Blackspacesareareas inwhichvoidmergersallowunobstructedviewsthroughtheentiresample. For generality, we chose to study two polymers, polyethylene (PE) and poly(4-methyl-1-pentene) (PMP or TPX). PE is an extensively used general-purpose plastic with the simplest possible linear alkane struc- ture. Atactic PMP is commonly used in shock studies as a low-density polymer foam and has specialized applicationsintargetmaterialsforinertiallyconfinedfusion(ICF)studies. PMPisabranchedalkanewitha bulkysidechain. Thetwopolymerswereselectedtoberepresentativeoftwodifferentclassesofpolymers, as PMP is amorphous at room temperature, while PE is semi-crystalline. We believe the results are likely to be widely applicable to other macromolecular materials. Several experimental studies of shocked PE havebeenreported[14–17]inadditiontothequantitativedataforbothPEandPMPfromtheLASLshock handbook[18]. In expanding our work to foams, we note the inherent difficulty presented by the multiple length scales responsible for the shock response in foams. In addition to the atomic length scale response which we have shown DFT and MD can capture well, foams introduce the larger scale of the void structure, wall thickness, and even longer range density inhomogeneity within samples. The likely need to model these larger scales drove us to shift our modeling from DFT/MD to MD/Mesoscale. Thus, although DFT was notablysuccessfulinmodelingdensepolymers,wedidnotapplythesetechniquestofoamsystems. Onthe mesoscalewereportbrieflyoncontinuumhydrocoderesultsforcomparisonwithMD.Completecontinuum analysis[19]andexperimentalresults[20]willbereportedelsewhere. 1.2 Methodology WhileDFTisacomputationallycostlymethodinwhichitisnecessarytoreducethenumberofsimulation atomstoseveralhundredatmost,itallowsforahigh-fidelitydescriptionofchemicalbondsandinter-atomic 8 repulsion. Reactiveforce-fieldslikeReaxFF[7]andAIREBO[8],whichhavebeenappliedtostudyshocks inhydrocarbons[21–23],cannotaccuratelycapturetherangeofresponsescomparedtoDFT,howeverthey allowforchemicalreactionsandsignificantlylargersystemsizes. Non-reactiveforce-fields,liketheOPLS potential of Jorgensen et al. [9] and the exp-6 potential of Borodin et al. [10], are computationally much more efficient and allow for even larger system sizes, but do not allow covalent bonds to break or form, which can become important for strong shocks. The relative speed of the different methods is naturally of interest,OPLSandexp-6arethefastestpotentials,AIREBOisapproximatelytwiceasslowwhileReaxFF is30timesslowerthanOPLSandexp-6. AllclassicalMDsimulationswereruninLAMMPS[1,24]while theDFT-MDsimulationswereperformedwithVASP5.1.40[25,26]. 1.2.1 DensityFunctionalTheorywithAM05 DFT is a formally exact representation of the Schro¨dinger equation. However, in practice, the choice of exchange-correlation functional determines the accuracy. We employed the recently developed multi- purpose Armiento-Mattsson (AM05) functional [27], it is a functional with no empirically determined pa- rameters. Itimprovesuponthelocaldensityapproximation(LDA)byreproducingtwomodelsystemswith known solutions: the uniform electron gas and the surface jellium [27,28]. AM05 has demonstrated high fidelity for many solids [28,29]; in reference [28], the performance of seven functionals was compared for twenty representative semiconductors, simple metals, transition metals, alkali-halides, and oxides. For AM05,thepredictionbias(meanaverageerror)inlatticeconstantissmallwhileLDAandPBEbothexhibit significantbias. Onaverage,AM05isbetterthanchoosingbetweenLDAandPBEforeachsolidseparately (TableIofreference[28])anddoesaswellasthedecidedlymorecomputationallydemandinghybridfunc- tionals studied in Refs. [30] and [31]. Furthermore, AM05 also works well for hydrogen bonding in the waterdimer[32]andforchemicalreactionenergiesforalargenumberofmolecularreactions[33]. Both polyethylene and poly(4-methyl-1-pentene) are materials where van der Waals forces are impor- tant. AlthoughpreviousworkusingDFTbyByrdandRicedemonstratedadifficultyinmodelingenergetic molecularsolidsatlowpressure,theyfoundanincreasingaccuracyastheexternalpressureincreases[34], andthebehaviorunderstrongshocksisdominatedbythehighpressureresponse. Furthermore,thelackof van der Waals attraction in AM05 [29] makes it decidedly different from most other exchange-correlation functionals. Sincethefunctionaldisplaysamonotonicbehavioruponexpansionandcompression[29],itis arguablysuitableforstudyingcompressioninvanderWaalssystems. TheapplicabilityofAM05toshocked energeticmaterialswillbethesubjectoffuturework[35]. Finally,AM05wasrecentlythebestsuitedfunctionaltomodelquartz[36]upto1TPainthedevelopment of a high-pressure shock impedance standard. Taken together, there are ample reasons not only to employ AM05,buttoexpecthigh-fidelityresultsforshockcompression. The DFT-MD simulations were performed with VASP 5.1.40 [25,26] using stringent convergence set- tings [3,37,38]. The plane wave cutoff was above 800 eV in order to converge the stress-tensor [3,39]. Pulayerrorsareminimalduetothehighcutoffandtheappreciablechangesinvolumeforthedifferentcal- culationsalongtheHugoniot[40]. Theionictimestepisbetween0.1and0.5fsdependingontemperature. Steady-state simulations in the NVT ensemble used a Nose´-Hoover thermostat with a time-constant of 80 timesteps. Velocitieswerescaledtocontroltemperatureintheramped-temperaturesimulations. Partitionof kinetic energy between hydrogen and carbon was verified by monitoring the temperature for each element separately [41]. Complex k-point sampling with mean-value point (1,1,1) was used due to its high accu- 4 4 4 racy for disordered structures at high temperature. Electronic states were occupied according to Mermin’s 9 finite-temperatureformulationofDFT[42],afactorthatisparticularlyimportantinthewarm-densematter regimewhereelectronsthermalexcitationsaresignificant. 1.2.2 Classicalreactiveinteractionpotentials ReaxFF and AIREBO are reactive potentials which allow the possibility of dynamic bond formation and breaking. ReaxFF uses bond-order and charge equilibration to model local chemical changes. It has been used to simulate a wide variety of materials and processes, including molecular solids under shock and detonation [23,43,44]. AIREBO is based on Brenner’s REBO potential augmented with explicit 6-12 dispersiontermsandhaspreviouslybeenusedtomodelshockpropagationinshortchainhydrocarbons[22, 45]. BoththeAIREBOandReaxFFcalculationswereperformedusingthestandardLAMMPSparallelimple- mentations [1], which have been validated against the original serial codes. For AIREBO, a 10.2 A˚ cutoff wasused. ForReaxFF,a10 A˚ cutoffwasusedandthechargeequilibrationconvergencetolerancewasset to10 6. ThespecificformoftheReaxFFpotentialinLAMMPSisdescribedinChenowethetal.[7]. The − ReaxFFparametervaluesarethesameasthoseusedbyStrachanetal.[43]. 1.2.3 Classicalnon-reactiveinteractionpotentials The OPLS and exp-6 potentials have pre-assigned non-breakable bonds. In these potentials, interactions within and between molecules are described by a set of atomic potentials which include van der Waals, electrostatic,molecularbond,angle,andtorsioninteractionterms. U = U +U +U +U (1) tot nonbond bond ang tor where U is the sum of the van der Waals and Coulomb potentials. The bond potential and angle nonbond potential are harmonic. The dihedral potentials for the OPLS and exp-6 force fields differ only slightly in form. Animportantdifferencebetweenthesepotentialsisintheformofthenonbondedinteractions. TheOPLS nonbondedpotentialiscomposedofstandard12-6Lennard-Jones(LJ)andCoulombpotentials[9,46],while theexp-6forcefieldofBorodinetal.[47,48]utilizesaBuckinghamexponential-6formforthenonbonded pairpotential. Nonbondedinteractionsarecalculatedbetweenallatompairswithindifferentmoleculesand betweendistantatomswithinthesamemolecule. Therespectivefunctionalformsare 12 6 σ σ q q UOPLS = 4￿ ij ij +k i j (2) nonbond ij r − r coul r ￿￿ ij￿ ￿ ij￿ ￿ ij and C exp-6 ij U = A exp( B r ) (3) nonbond ij − ij ij − r6 ij where ￿ sets the energy scale, σ sets the separation scale for the ij pair, q is partial charge. A is the ij ij ij strength of the potential’s repulsive component, Bi−j1 is the characteristic decay length, and Cij indicates the strength and range of the attractive component. The atoms in the exp-6 potential are uncharged. Both potentials were cut off at 12A˚ for the large simulation cells. An 8A˚ cutoff was used to equilibrate the 10

Description:
Aidan P. Thompson, J. Matthew D. Lane, Jonathan Zimmerman, Michael P. We extend these results to include low-density polymer foams.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.