Modeling Population Dynamics Andr´e M. de Roos Modeling Population Dynamics Andr´e M. de Roos Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Science Park 904, 1098 XH Amsterdam, The Netherlands E-mail: [email protected] December 4, 2019 Contents I Preface and Introduction 1 1 Introduction 3 1.1 Some modeling philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II Unstructured Population Models in Continuous Time 5 2 Modelling population dynamics 7 2.1 Describing a population and its environment . . . . . . . . . . . . . . . . . . 7 2.1.1The population or p-state . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2The individual or i-state . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3The environmental or E-condition . . . . . . . . . . . . . . . . . . . . . 9 2.2 Population balance equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Characterizing the population . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Population-level and per capita rates . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Model building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5.1Exponential population growth . . . . . . . . . . . . . . . . . . . . . . . 15 2.5.2Logistic population growth. . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.3Two-sexes population growth . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6 Parameters and state variables . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.7 Deterministic and stochastic models . . . . . . . . . . . . . . . . . . . . . . . 19 3 Single ordinary differential equations 21 3.1 Explicit solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Analyzing flow patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Steady states and their stability . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.5 Units and non-dimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.6 Existence and uniqueness of solutions . . . . . . . . . . . . . . . . . . . . . . 35 3.7 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 Competing for resources 37 4.1 Intraspecific competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 i ii CONTENTS 4.1.1Growth of yeast in a closed container . . . . . . . . . . . . . . . . . . . . 38 4.1.2Bacterial growth in a chemostat . . . . . . . . . . . . . . . . . . . . . . . 40 4.1.3Asymptotic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1.4Phase-plane methods and graphical analysis . . . . . . . . . . . . . . . . 44 4.2 Interspecific competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.1Lotka-Volterra competition model . . . . . . . . . . . . . . . . . . . . . . 52 4.2.2Competition for resources . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5 Systems of ordinary differential equations 77 5.1 Computation of steady states . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 Linearization of dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Characteristic equation, eigenvalues and eigenvectors . . . . . . . . . . . . . . 81 5.4 Phase portraits of dynamics in planar systems . . . . . . . . . . . . . . . . . . 84 5.4.1Two real eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.4.2Two complex eigenvalues. . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.5 Stability of steady states in planar ODE systems . . . . . . . . . . . . . . . . 94 5.6 Models with 3 or more variables. . . . . . . . . . . . . . . . . . . . . . . . . . 96 6 Predator-prey interactions 99 6.1 The Lotka-Volterra predator-prey model . . . . . . . . . . . . . . . . . . . . . 100 6.1.1Incorporating prey logistic growth . . . . . . . . . . . . . . . . . . . . . 104 6.1.2Incorporating a predator type II functional response . . . . . . . . . . . 108 6.2 Confronting models and experiments . . . . . . . . . . . . . . . . . . . . . . . 117 6.2.1Predator-controlled, steady state abundance of prey . . . . . . . . . . . 119 6.2.2Oscillatory dynamics at high prey carrying capacities . . . . . . . . . . . 123 6.2.3Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 III Bifurcation theory 129 7 Continuous time models 131 7.1 General setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.2 Transcritical bifurcation and branching point . . . . . . . . . . . . . . . . . . 140 7.3 Saddle-node bifurcation and limit point . . . . . . . . . . . . . . . . . . . . . 141 7.4 Hopf bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 7.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 IV Exercises 145 8 Exercises 147 8.1 ODEs (differential equations) in 1 dimension . . . . . . . . . . . . . . . . . . 147 8.1.1Population size and population growth rate . . . . . . . . . . . . . . . . 147 CONTENTS iii 8.1.2Graphical analysis of differential equations . . . . . . . . . . . . . . . . . 147 8.1.3Formulation and graphical analysis of a model . . . . . . . . . . . . . . . 149 8.2 Equilibria in 1D ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 8.2.1Mathematical analysis of a differential equation . . . . . . . . . . . . . . 151 8.3 Studying ODEs in two dimensions . . . . . . . . . . . . . . . . . . . . . . . . 153 8.3.1Graphical analysis of a system of differential equations . . . . . . . . . . 153 8.3.2Mathemetical analysis of a system of differential equations . . . . . . . . 154 8.4 Sample Exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 8.5 Answers to exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 V Computer Labs 173 9 Computer Labs 175 9.1 Harvesting Cod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 9.2 The spruce-budworm(Choristoneura fumiferana) . . . . . . . . . . . . . . . . 179 9.3 Interspecific competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 9.4 Vegetation catastrophes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 9.5 Lotka-Volterra Predation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 9.6 The Paradox of Enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 9.7 The Return of the Paradox of Enrichment . . . . . . . . . . . . . . . . . . . . 186 9.8 Cannibalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 9.9 A predator-prey model with density-dependent prey development . . . . . . . 189 9.10 Chaotic dynamics of Hare and Lynx populations . . . . . . . . . . . . . . . . 190 Bibliography 193 iv CONTENTS List of Figures 2.1 Growth of the world population over the last century . . . . . . . . . . . . . . 8 2.2 Population age distribution in the Netherlands in 1950, 1975 and 2000 . . . . 9 2.3 Total number of births and death per 5 year age class in the Netherlands in 1999 10 4.1 Growth of the yeast Schizosaccharomyces kephir over a period of 160 h . . . . 38 4.2 Schematic layout of a chemostat for continuous culture of micro-organisms . . 41 4.3 Geometric representation of a system of ODEs in the phase plane . . . . . . . 46 4.4 The phase plane of the bacterial growth model in a chemostat . . . . . . . . . 50 4.5 Operating diagram of a chemostat . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6 Four isocline cases for the Lotka-Volterra competition model. . . . . . . . . . 54 4.7 Four isocline cases with steady states and flow patterns for the Lotka-Volterra competition model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.8 Michaelis-Menten relationship as a function of resource concentration . . . . . 59 4.9 Zero net growth isoclines for a one consumer-two resource model . . . . . . . 62 4.10 Steady state location in a one consumer-two resource model . . . . . . . . . . 63 4.11 Steady state location in a two consumer-two resource model . . . . . . . . . . 66 4.12 Predicted and observed outcomes of competition for phosphate and silicate by Asterionella formosa and Cyclotella meneghiniana . . . . . . . . . . . . . . . 70 4.13 Single-species Monod growth experiments for four diatoms under conditions of limited silicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.14 Single-species Monod growth experiments for four diatoms under conditions of limited phosphate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.15 Predicted and observed outcomes of competition between Asterionella formosa and Synedra filiformis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.16 Predicted and observed outcomes of competition between Asterionella formosa and Tabellaria flocculosa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.17 Predicted and observed outcomes of competition between Asterionella formosa and Fragilaria crotonensis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.18 Predicted and observed outcomes of competition between Synedra andFragilaria 74 4.19 PredictedandobservedoutcomesofcompetitionbetweenSynedra andTabellaria 75 4.20 Predicted and observed outcomes of competition between Fragilaria and Tabel- laria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.21 The four cases of resource competition in a two consumer-two resource model 76 v vi LIST OF FIGURES 5.1 Geometric representation of two real-valued eigenvectors in a planar system . 87 5.2 Characteristic flow patterns in the neighborhood of the steady state with real- valued eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3 Geometricrepresentationofthetwobasisvectorsinaplanarsystemwithcomplex eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.4 Characteristicflowpatternsintheneighborhoodofthesteadystatewithcomplex eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.5 Summary of stability properties for planar ODE systems . . . . . . . . . . . . 95 6.1 Solution curves in the phase plane of the Lotka-Volterra predator-prey model 102 6.2 Prey dynamics predicted by the Lotka-Volterra predator-prey model . . . . . 103 6.3 SolutioncurvesinthephaseplaneoftheLotka-Volterrapredator-preymodelwith logistic prey growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.4 Functional response of Daphnia pulex on three algal species . . . . . . . . . . 109 6.5 Nullclines of the Rosenzweig-MacArthur, predator-prey model . . . . . . . . . 112 6.6 Solution curves in the phase plane of the Rosenzweig-MacArthur predator-prey model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.7 Solution curve in the phase plane of the Rosenzweig-MacArthur predator-prey model for high carrying capacity . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.8 Oscillatory dynamics of the Rosenzweig-MacArthur predator-prey model for high carrying capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.9 Daphnia pulex carrying asexual eggs in the brood pouch . . . . . . . . . . . . 119 6.10 Schematic setup of the experiments by Arditi et al. (1991) . . . . . . . . . . . 120 6.11 Population dynamics of Daphnia, Ceriodaphnia and Scapholeberis in a chain of semi-chemostats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.12 PopulationequilibriaofDaphnia andCeriodaphnia inachainofsemi-chemostats 123 6.13 Predicted and observed equilibrium values of algae in the presence of Daphnia 124 6.14 Population dynamics of the snowshoe hare and the lynx in northern Canada . 125 6.15 Population dynamics of two species of voles in northern Finland . . . . . . . 125 6.16 Cycle amplitudes (log) observed for Daphnia and algal populations from lakes and ponds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.17 Examples of the dynamics of Daphnia and algae in nutrient-rich and nutrient- poor, experimental tanks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.18 Large- and small-amplitude cycles of Daphnia and edible algae in the same global environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.19 Energy channelling towards sexual reproduction prevents the occurrence of large- amplitude predator-prey cycles in Daphnia . . . . . . . . . . . . . . . . . . . 128 7.1 Eigenvalue positions in the complex plane corresponding to a stability change in a 2 ODE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.2 Bifurcation structure of the cannibalism model for α < ρ . . . . . . . . . . . . 138 7.3 Bifurcation structure of the cannibalism model for α > ρ . . . . . . . . . . . . 139 7.4 Schematic,3-dimensionalrepresentationoftheHopf-bifurcationintheRosenzweig- MacArthur model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Description: