ebook img

Modeling Physical Processes at Galactic Scales and Above PDF

87 Pages·2014·7.93 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling Physical Processes at Galactic Scales and Above

Modeling Physical Processes at Galactic Scales and Above NickolayY.Gnedin 4 1 0 2 c e D 6 1 ] A G . h p - o r t s a [ 1 v 4 8 1 5 . 2 1 4 1 : v i X r a NickolayY.Gnedin Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA, e-mail:[email protected];KavliInstituteforCosmologicalPhysicsandDepartmentofAs- tronomy&Astrophysics,TheUniversityofChicago,Chicago,IL60637USA 1 Contents ModelingPhysicalProcessesatGalacticScalesandAbove ............. 1 NickolayY.Gnedin 1 InLieuofIntroduction..................................... 4 2 PhysicsoftheIGM........................................ 5 2.1 LinearHydrodynamicsintheExpandingUniverse...... 5 2.2 Lyman-α Forest................................... 7 2.3 ModelingtheIGM................................. 16 2.4 WhatObservationsTellUs.......................... 17 3 FromIGMtoCGM ....................................... 24 3.1 LargeScaleStructure .............................. 24 3.2 HowGasGetsOntoGalaxies ....................... 26 3.3 CoolStreams ..................................... 27 3.4 GalacticHalos .................................... 29 3.5 Diversion:Coolingofrarefiedgases.................. 31 3.6 BacktoGalacticHalos ............................. 37 4 ISM:GasInGalaxies...................................... 41 4.1 GalaxyFormationLite ............................. 41 4.2 GalacticDisks .................................... 43 4.3 Ionized,Atomic,andMolecularGasinGalaxies ....... 47 4.4 MolecularISM.................................... 55 5 StarFormation ........................................... 66 5.1 Kennicutt-SchmidtandAll,All,All .................. 66 5.2 ExcursionSetFormalisminStarFormation............ 72 6 StellarFeedback .......................................... 75 6.1 WhatEscapesfromStars ........................... 75 6.2 UnconventionalMarriage:FeedbackandStarFormation. 79 6.3 TowardTheFuture ................................ 82 7 AnswersToBrainTeasers .................................. 84 References..................................................... 85 3 1 InLieuofIntroduction What should these lectures be? The subject assigned to us is so broad that many bookscanbewrittenaboutit.So,inplanningtheselecturesIhadseveraloptions. One would be to focus on a narrow subset of topics and to cover them in great detail.Suchasubsetnecessarilywouldbehighlypersonalandusefultoafewread- ersatbest.Anotheroptionwouldbetogiveaveryshallowoverviewofthewhole field,butthenitwon’tbeverymuchdifferentfromahighlycompressedversionof auniversitycourse(whichanyonecantakeiftheywishso). So,IdecidedtobeselfishandtopreparetheselecturesasifIwasteachingmy owngraduatestudent.Givenmyresearchinterests,Iselectedwhatthestudentwould need to know to be able to discuss science with me and to work on joint research projects.So,thestorypresentedbelowisbothpersonalandincomplete,butitdoes coverseveralsubjectsthatarepoorlyrepresentedintheexistingtextbooks(ifatall). SomeoftopicsIfocusonbelowarecloselyconnected,othersaredisjoint,some arejustsidedetoursonspecifictechnicalquestions.Thereisanoverlappingtheme, however.Ourgoalistofollowthecosmicgasfromlargescales,lowdensities,(rel- atively)simplephysicstoprogressivelysmallerscales,higherdensities,closerrela- tiontogalaxies,andmorecomplexanduncertainphysics.So,we(you-thereader, andme-theauthor)aregoingtofollowa“yellowbrickroad”fromthegaswellbe- yondanygalaxyconfinestotheactualsitesofstarformationandstellarfeedback. On the way we will stop at some places for a tour and run without looking back throughsomeothers.So,theroadwillbeuneven,butIhopethatsomereadersfind ituseful. 2 PhysicsoftheIGM Mostofthevolumeoftheuniverseisoccupiedbygasoutsidegalaxies,theso-called intergalacticmedium(IGM).Itmayseemthisgasislocatedfarfromgalaxies,and shouldnotberelevanttoformationofgalaxiesandstars.Wrong!-IGMisthegas that eventually gets accreted by galaxies and turns into stars. After all, before the firstgalaxyformed,thewholeuniversewasjustIGM. Hence,aswefollowthe“yellowbrickroad”toourgoalofmodelingstarforma- tioningalaxies,wepassthroughtheIGMlandfirst... 2.1 LinearHydrodynamicsintheExpandingUniverse Linear dynamics of the non-relativistic cold dark matter is almost trivial, density fluctuation δ (t,k) with a spatial wavenumber k satisfies a simple ordinary differ- X entialequation(ODE), d2 d δ (t,k)+2H δ (t,k)=4πGρ¯δ (t,k), (1) dt2 X dt X tot where a(t) is the cosmic scale factor, H(t) a˙/a is the Hubble parameter and ρ¯ ≡ is the mean density of the universe. If the universe only contained cold dark mat- ter, then δ =δ . A second order ODE has two solutions, one of them is always tot X growingwithtime, δ (t,k)=D (t)δ (k), (2) X + 0 whereD iscalled”thelineargrowingmode”. + In reality, the universe contains gas, which is also subject to pressure forces. Hence, in the linear regime the evolution of the dark matter and gas fluctuations (δ ,δ )isdescribedbyasystemoftwocoupledequations, X B d2δ dδ X +2H X =4πGρ¯(f δ +f δ ), (3) dt2 dt X X B B d2δ dδ c2 B +2H B =4πGρ¯(f δ +f δ ) Sk2δ , (4) dt2 dt X X B B −a2 B where f 0.84and f 0.16arethemassfractionsofdarkmatterandbaryons X B ≈ ≈ respectively,andc isthespeedofsoundinthegas. S Thissystemofequationsiscoupled,butifhighprecisionisnotrequired,onecan assume f f and ignore the baryonic contribution in the gravity terms in both B X (cid:28) equations. In that case the solution for the dark matter fluctuation is still given by equation(2),whiletheequationforthebaryonicfluctuationreducesto d2δ dδ c2 B +2H B =4πGρ¯δ Sk2δ . (5) dt2 dt X−a2 B Notice the difference between this equation and an equation for baryonic fluctua- tions in a static reference frame (a=const, no expansion of the universe) in the absenceofdarkmatter: d2δ c2 B =4πGρ¯δ Sk2δ . dt2 B−a2 B Weknowthatinthelattercasethecharacteristicscaleoverwhichbaryonicfluctua- tionsaresuppressedbythepressureforceistheJeansscale, a (cid:112) k 4πGρ¯. J ≡ cS Equation (5) cannot be solved analytically in a general case, but the important physicsweareafterishowbaryonicfluctuationsdeviatefromthedarkmatterones. Hence,aquantityofinterestistheratiooftwofluctuations,whichcanbeexpanded intheTaylorseriesofpowersofk2, δ (t,k) k2 B =r +O(k4), (6) δX(t,k) −kF2 where r =const and we will call k (t) a filtering scale. Because dark matter is F expectedtobemoreclusteredthatbaryons(itisnotasubjectofthepressureforce inthelinearregime),wecanexpectthat,inageneralcasek >k (inthepresence F J of dark matter baryonic fluctuations are less suppressed than in a purely baryonic case). Inthefollowingwewillonlyconsiderthecaseofr=1(baryonstracethedark matteronlargescales),sincethisisanexcellentapproximationforz<10.However, at higher redshifts this is not the case any more (Naoz & Barkana, 2007), as the different evolution of baryons and dark matter during the recombination epoch is notcompletelyforgottenatthesehighredshifts(forexample,r 1atz>1000). (cid:28) Substitutingequation(6)into(5),itispossibletoobtainanexpressionfork in F aclosedform(Gnedin&Hui,1998), 1 1 (cid:90) t D¨ (t )+2H(t )D˙ (t )(cid:90) t dt = dt a2(t ) + (cid:48) (cid:48) + (cid:48) (cid:48)(cid:48) . kF2(t) D+(t) 0 (cid:48) (cid:48) kJ2(t(cid:48)) t(cid:48) a2(t(cid:48)(cid:48)) Whilethisexpressionislongandugly,forreasonablethermalhistoriesoftheuni- verse a good rule of thumb at z 2 4 is k 2 k (the filtering scale is about F J ∼ − ≈ × halftheJeansscale). Figure 1 gives an example of scale-dependence of δ (t,k)/δ (t,k) for a repre- B X sentativethermalhistoryoftheuniverseatseveralredshifts(seeGnedinetal.,2003, for details). Fluctuations on small scales, where the pressure force dominates, are simplesoundwaves,andthetransitiontothebaryons-trace-the-dark-matterregime iswelldescribedbythefilteringscale. Fig.1 Solutionstoequations (4)forarepresentativether- malhistoryoftheuniverse atz=4(lightgray),z=1.5 (mediumgray),andz=0 (darkgray);thinlinesshow the exact solutions, thick lines give the approxima- tionδB/δX =exp(−k2/kF2) (adoptedfromGnedinetal. (2003)). Brain teaser #1: Pressure generates sound waves, and sounds waves in the ideal gas do not dissipate. Why, then, are fluctuations ”suppressed” by the pressureforce? 2.2 Lyman-α Forest AwellknownempiricalfactisthattheIGMishighlyionizedatlowandintermedi- ateredshifts,z<6(wewillcomebacktothatfact).Tokeepthecosmicgasionized, theuniversemustbefilledwithionizingradiation,theso-called“CosmicIonizing Background”(CIB). SincemostoftheIGMishydrogen,letusconsiderhydrogenfirst.Theionization balanceequationforhydrogenintheexpandinguniverseissimple, n˙ = 3Hn n Γ+R(T)n n , HI HI HI e HII − − where n , n , and n are number densities of neutral hydrogen, ionized hydro- HI HII e gen, and free electrons respectively, Γ is the photoionization rate and R(T) is a (temperature-dependent)recombinationcoefficient. Oftenitismoreconvenienttoconsidernottheactualnumberdensityofneutral orionizedhydrogen,buttheneutralfractionx n /n ,becausethentheHubble HI H ≡ expansiontermcancelsout, Fig.2 Typicalz 3quasarspectrumtogetherwiththepowerlawcontinuumfit(dashedredline) ∼ andthelocalcontinuumfit(blueline;adoptedfromDall’Aglioetal.(2008)). x˙= xΓ+R(T)n (1 x). (7) e − − Intheionizationequilibriumx˙=0,hence R(T) x = n (1 x ), eq e eq Γ − andsincetheIGMishighlyionized(x 1), (cid:28) R(T) x = (n¯ +2n¯ )(1+δ), eq H He Γ whereweassumedthatHeliumisfullyionized,n¯ =n¯ +2n¯ (densergasismore e H He neutral). Letusnowconsideralightsourcesomewhereintheuniverse(aquasar,agalaxy, agamma-rayburst,etc);thelightsourceisatredshiftz inourreferenceframe.Let e us also imagine that a photon with wavelength λ is emitted by the source. As it e propagatesthroughtheuniverse,thephotonisgoingtoberedshifted.Ataredshift z <z (fromourreferenceframe)thephotonhasawavelength a e 1+z a λ . e 1+z e Hence,forany1216A˚(1+z )<λ <1216A˚ thereissuchz that e e a 1+z λ a =1216A˚. e 1+z e When a photon with wavelength of 1216A˚ (= Lyman-α) hits a neutral hydrogen atom,itcangetabsorbedandexcitetheatomton=2level. Fig.3 Runsofneutralhydrogendensity(bottom)andgastemperature(middle)alongonelineof sightinanumericalsimulationofLyman-α forestatz 3.Theresultantabsorptionspectrumis ∼ showninthetoppanel. Indeed,thisisexactlywhathappensintherealuniverse.Figure2showsaspec- trumofatypicalz 3quasar.ThebroademissionlineinthemiddleistheLyman-α ∼ ofthequasaritself,andblueenvelopefortheobservedspectrumisthecontinuum- i.e.thelightthatthequasaritselfemitted.Blackabsorptionlinescomefromthegas betweenusandthequasar,andthenumerousforestofthematshorterwavelength isthehydrogenLyman-α absorptionfromtheneutralgasintheIGM,theso-called Lyman-α Forest. Figure 3 illustrates how fluctuations in the neutral hydrogen density and in the gas temperature combine to produce the Lyman-α forest of absorption features in thespectrum.Inordertounderstandhowonegoesfromthelowertwopanelstothe top one in that figure, we need to refresh the basics of resonant line absorption in theexpandinguniverse. Brainteaser#2:Hydrogenatomsdonotsitforeverinn=2state,theydecay backinton=1andaLyman-α photonisre-createdback.Howcantherebe anyLyman-α absorption? 2.2.1 IntroductionToResonantLineAbsorption Thecross-sectionforanatomatresttoabsorbaphotoninthefrequencyrangefrom ν toν+∆ν totheenergylevelwiththeenergyhν is 0 πe2 σ(ν)= fφ(ν) σ φ(ν), 0 mecν0 ≡ where f istheoscillatorstrengthforthetransitionand 1 wν φ(ν)= 0 ν δ(ν ν ), π (ν ν0)2+w2 ≈ 0 − 0 − where w is the natural line width in frequency units. For hydrogen Lyman-α the combinationoffundamentalconstants πe2 σ = f =4.5 10 18cm2. 0 − mecν0 × Atoms, though, are social creatures and rarely live alone. For a cloud of gas of densityn,sizeL,andtemperatureT weneedtointegrateoverallatomstocompute theopticaldepthofthetransitionatanyfrequencyν, (u u)2 (cid:90) 1 ν− (cid:48) τ(ν)=nL σ φ(ν ) e− b2 du, 0 (cid:48) (cid:48) √πb whereν =ν (1+u/c)andu isdefinedviatheexpressionν=ν (1+u /c).The (cid:48) 0 (cid:48) ν 0 ν quantity (cid:18) k T(cid:19)1/2 B b= 2 m H iscalledtheDopplerparameterandtheproductnListhecolumndensity. In an expanding universe it is not enough just to multiply by the cloud size L, sincedifferentlocationsalongtheline-of-sightareredshiftedrelativetotheobserver and project to different locations in the velocity (or frequency) space. Hence, we mustintegratealongtheline-of-sight, (u u )2 λ x τ(λ)=σ0(cid:90) n(x) c e− −b2x dx , (8) √πbx 1+zx

Description:
Unconventional Marriage: Feedback and Star Formation . 79 a university course (which anyone can take if they wish so). and me - the author) are going to follow a “yellow brick road” from the gas well be- After all, before the . A well known empirical fact is that the IGM is highly ionized at
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.