Modeling Physical Processes at Galactic Scales and Above NickolayY.Gnedin 4 1 0 2 c e D 6 1 ] A G . h p - o r t s a [ 1 v 4 8 1 5 . 2 1 4 1 : v i X r a NickolayY.Gnedin Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA, e-mail:[email protected];KavliInstituteforCosmologicalPhysicsandDepartmentofAs- tronomy&Astrophysics,TheUniversityofChicago,Chicago,IL60637USA 1 Contents ModelingPhysicalProcessesatGalacticScalesandAbove ............. 1 NickolayY.Gnedin 1 InLieuofIntroduction..................................... 4 2 PhysicsoftheIGM........................................ 5 2.1 LinearHydrodynamicsintheExpandingUniverse...... 5 2.2 Lyman-α Forest................................... 7 2.3 ModelingtheIGM................................. 16 2.4 WhatObservationsTellUs.......................... 17 3 FromIGMtoCGM ....................................... 24 3.1 LargeScaleStructure .............................. 24 3.2 HowGasGetsOntoGalaxies ....................... 26 3.3 CoolStreams ..................................... 27 3.4 GalacticHalos .................................... 29 3.5 Diversion:Coolingofrarefiedgases.................. 31 3.6 BacktoGalacticHalos ............................. 37 4 ISM:GasInGalaxies...................................... 41 4.1 GalaxyFormationLite ............................. 41 4.2 GalacticDisks .................................... 43 4.3 Ionized,Atomic,andMolecularGasinGalaxies ....... 47 4.4 MolecularISM.................................... 55 5 StarFormation ........................................... 66 5.1 Kennicutt-SchmidtandAll,All,All .................. 66 5.2 ExcursionSetFormalisminStarFormation............ 72 6 StellarFeedback .......................................... 75 6.1 WhatEscapesfromStars ........................... 75 6.2 UnconventionalMarriage:FeedbackandStarFormation. 79 6.3 TowardTheFuture ................................ 82 7 AnswersToBrainTeasers .................................. 84 References..................................................... 85 3 1 InLieuofIntroduction What should these lectures be? The subject assigned to us is so broad that many bookscanbewrittenaboutit.So,inplanningtheselecturesIhadseveraloptions. One would be to focus on a narrow subset of topics and to cover them in great detail.Suchasubsetnecessarilywouldbehighlypersonalandusefultoafewread- ersatbest.Anotheroptionwouldbetogiveaveryshallowoverviewofthewhole field,butthenitwon’tbeverymuchdifferentfromahighlycompressedversionof auniversitycourse(whichanyonecantakeiftheywishso). So,IdecidedtobeselfishandtopreparetheselecturesasifIwasteachingmy owngraduatestudent.Givenmyresearchinterests,Iselectedwhatthestudentwould need to know to be able to discuss science with me and to work on joint research projects.So,thestorypresentedbelowisbothpersonalandincomplete,butitdoes coverseveralsubjectsthatarepoorlyrepresentedintheexistingtextbooks(ifatall). SomeoftopicsIfocusonbelowarecloselyconnected,othersaredisjoint,some arejustsidedetoursonspecifictechnicalquestions.Thereisanoverlappingtheme, however.Ourgoalistofollowthecosmicgasfromlargescales,lowdensities,(rel- atively)simplephysicstoprogressivelysmallerscales,higherdensities,closerrela- tiontogalaxies,andmorecomplexanduncertainphysics.So,we(you-thereader, andme-theauthor)aregoingtofollowa“yellowbrickroad”fromthegaswellbe- yondanygalaxyconfinestotheactualsitesofstarformationandstellarfeedback. On the way we will stop at some places for a tour and run without looking back throughsomeothers.So,theroadwillbeuneven,butIhopethatsomereadersfind ituseful. 2 PhysicsoftheIGM Mostofthevolumeoftheuniverseisoccupiedbygasoutsidegalaxies,theso-called intergalacticmedium(IGM).Itmayseemthisgasislocatedfarfromgalaxies,and shouldnotberelevanttoformationofgalaxiesandstars.Wrong!-IGMisthegas that eventually gets accreted by galaxies and turns into stars. After all, before the firstgalaxyformed,thewholeuniversewasjustIGM. Hence,aswefollowthe“yellowbrickroad”toourgoalofmodelingstarforma- tioningalaxies,wepassthroughtheIGMlandfirst... 2.1 LinearHydrodynamicsintheExpandingUniverse Linear dynamics of the non-relativistic cold dark matter is almost trivial, density fluctuation δ (t,k) with a spatial wavenumber k satisfies a simple ordinary differ- X entialequation(ODE), d2 d δ (t,k)+2H δ (t,k)=4πGρ¯δ (t,k), (1) dt2 X dt X tot where a(t) is the cosmic scale factor, H(t) a˙/a is the Hubble parameter and ρ¯ ≡ is the mean density of the universe. If the universe only contained cold dark mat- ter, then δ =δ . A second order ODE has two solutions, one of them is always tot X growingwithtime, δ (t,k)=D (t)δ (k), (2) X + 0 whereD iscalled”thelineargrowingmode”. + In reality, the universe contains gas, which is also subject to pressure forces. Hence, in the linear regime the evolution of the dark matter and gas fluctuations (δ ,δ )isdescribedbyasystemoftwocoupledequations, X B d2δ dδ X +2H X =4πGρ¯(f δ +f δ ), (3) dt2 dt X X B B d2δ dδ c2 B +2H B =4πGρ¯(f δ +f δ ) Sk2δ , (4) dt2 dt X X B B −a2 B where f 0.84and f 0.16arethemassfractionsofdarkmatterandbaryons X B ≈ ≈ respectively,andc isthespeedofsoundinthegas. S Thissystemofequationsiscoupled,butifhighprecisionisnotrequired,onecan assume f f and ignore the baryonic contribution in the gravity terms in both B X (cid:28) equations. In that case the solution for the dark matter fluctuation is still given by equation(2),whiletheequationforthebaryonicfluctuationreducesto d2δ dδ c2 B +2H B =4πGρ¯δ Sk2δ . (5) dt2 dt X−a2 B Notice the difference between this equation and an equation for baryonic fluctua- tions in a static reference frame (a=const, no expansion of the universe) in the absenceofdarkmatter: d2δ c2 B =4πGρ¯δ Sk2δ . dt2 B−a2 B Weknowthatinthelattercasethecharacteristicscaleoverwhichbaryonicfluctua- tionsaresuppressedbythepressureforceistheJeansscale, a (cid:112) k 4πGρ¯. J ≡ cS Equation (5) cannot be solved analytically in a general case, but the important physicsweareafterishowbaryonicfluctuationsdeviatefromthedarkmatterones. Hence,aquantityofinterestistheratiooftwofluctuations,whichcanbeexpanded intheTaylorseriesofpowersofk2, δ (t,k) k2 B =r +O(k4), (6) δX(t,k) −kF2 where r =const and we will call k (t) a filtering scale. Because dark matter is F expectedtobemoreclusteredthatbaryons(itisnotasubjectofthepressureforce inthelinearregime),wecanexpectthat,inageneralcasek >k (inthepresence F J of dark matter baryonic fluctuations are less suppressed than in a purely baryonic case). Inthefollowingwewillonlyconsiderthecaseofr=1(baryonstracethedark matteronlargescales),sincethisisanexcellentapproximationforz<10.However, at higher redshifts this is not the case any more (Naoz & Barkana, 2007), as the different evolution of baryons and dark matter during the recombination epoch is notcompletelyforgottenatthesehighredshifts(forexample,r 1atz>1000). (cid:28) Substitutingequation(6)into(5),itispossibletoobtainanexpressionfork in F aclosedform(Gnedin&Hui,1998), 1 1 (cid:90) t D¨ (t )+2H(t )D˙ (t )(cid:90) t dt = dt a2(t ) + (cid:48) (cid:48) + (cid:48) (cid:48)(cid:48) . kF2(t) D+(t) 0 (cid:48) (cid:48) kJ2(t(cid:48)) t(cid:48) a2(t(cid:48)(cid:48)) Whilethisexpressionislongandugly,forreasonablethermalhistoriesoftheuni- verse a good rule of thumb at z 2 4 is k 2 k (the filtering scale is about F J ∼ − ≈ × halftheJeansscale). Figure 1 gives an example of scale-dependence of δ (t,k)/δ (t,k) for a repre- B X sentativethermalhistoryoftheuniverseatseveralredshifts(seeGnedinetal.,2003, for details). Fluctuations on small scales, where the pressure force dominates, are simplesoundwaves,andthetransitiontothebaryons-trace-the-dark-matterregime iswelldescribedbythefilteringscale. Fig.1 Solutionstoequations (4)forarepresentativether- malhistoryoftheuniverse atz=4(lightgray),z=1.5 (mediumgray),andz=0 (darkgray);thinlinesshow the exact solutions, thick lines give the approxima- tionδB/δX =exp(−k2/kF2) (adoptedfromGnedinetal. (2003)). Brain teaser #1: Pressure generates sound waves, and sounds waves in the ideal gas do not dissipate. Why, then, are fluctuations ”suppressed” by the pressureforce? 2.2 Lyman-α Forest AwellknownempiricalfactisthattheIGMishighlyionizedatlowandintermedi- ateredshifts,z<6(wewillcomebacktothatfact).Tokeepthecosmicgasionized, theuniversemustbefilledwithionizingradiation,theso-called“CosmicIonizing Background”(CIB). SincemostoftheIGMishydrogen,letusconsiderhydrogenfirst.Theionization balanceequationforhydrogenintheexpandinguniverseissimple, n˙ = 3Hn n Γ+R(T)n n , HI HI HI e HII − − where n , n , and n are number densities of neutral hydrogen, ionized hydro- HI HII e gen, and free electrons respectively, Γ is the photoionization rate and R(T) is a (temperature-dependent)recombinationcoefficient. Oftenitismoreconvenienttoconsidernottheactualnumberdensityofneutral orionizedhydrogen,buttheneutralfractionx n /n ,becausethentheHubble HI H ≡ expansiontermcancelsout, Fig.2 Typicalz 3quasarspectrumtogetherwiththepowerlawcontinuumfit(dashedredline) ∼ andthelocalcontinuumfit(blueline;adoptedfromDall’Aglioetal.(2008)). x˙= xΓ+R(T)n (1 x). (7) e − − Intheionizationequilibriumx˙=0,hence R(T) x = n (1 x ), eq e eq Γ − andsincetheIGMishighlyionized(x 1), (cid:28) R(T) x = (n¯ +2n¯ )(1+δ), eq H He Γ whereweassumedthatHeliumisfullyionized,n¯ =n¯ +2n¯ (densergasismore e H He neutral). Letusnowconsideralightsourcesomewhereintheuniverse(aquasar,agalaxy, agamma-rayburst,etc);thelightsourceisatredshiftz inourreferenceframe.Let e us also imagine that a photon with wavelength λ is emitted by the source. As it e propagatesthroughtheuniverse,thephotonisgoingtoberedshifted.Ataredshift z <z (fromourreferenceframe)thephotonhasawavelength a e 1+z a λ . e 1+z e Hence,forany1216A˚(1+z )<λ <1216A˚ thereissuchz that e e a 1+z λ a =1216A˚. e 1+z e When a photon with wavelength of 1216A˚ (= Lyman-α) hits a neutral hydrogen atom,itcangetabsorbedandexcitetheatomton=2level. Fig.3 Runsofneutralhydrogendensity(bottom)andgastemperature(middle)alongonelineof sightinanumericalsimulationofLyman-α forestatz 3.Theresultantabsorptionspectrumis ∼ showninthetoppanel. Indeed,thisisexactlywhathappensintherealuniverse.Figure2showsaspec- trumofatypicalz 3quasar.ThebroademissionlineinthemiddleistheLyman-α ∼ ofthequasaritself,andblueenvelopefortheobservedspectrumisthecontinuum- i.e.thelightthatthequasaritselfemitted.Blackabsorptionlinescomefromthegas betweenusandthequasar,andthenumerousforestofthematshorterwavelength isthehydrogenLyman-α absorptionfromtheneutralgasintheIGM,theso-called Lyman-α Forest. Figure 3 illustrates how fluctuations in the neutral hydrogen density and in the gas temperature combine to produce the Lyman-α forest of absorption features in thespectrum.Inordertounderstandhowonegoesfromthelowertwopanelstothe top one in that figure, we need to refresh the basics of resonant line absorption in theexpandinguniverse. Brainteaser#2:Hydrogenatomsdonotsitforeverinn=2state,theydecay backinton=1andaLyman-α photonisre-createdback.Howcantherebe anyLyman-α absorption? 2.2.1 IntroductionToResonantLineAbsorption Thecross-sectionforanatomatresttoabsorbaphotoninthefrequencyrangefrom ν toν+∆ν totheenergylevelwiththeenergyhν is 0 πe2 σ(ν)= fφ(ν) σ φ(ν), 0 mecν0 ≡ where f istheoscillatorstrengthforthetransitionand 1 wν φ(ν)= 0 ν δ(ν ν ), π (ν ν0)2+w2 ≈ 0 − 0 − where w is the natural line width in frequency units. For hydrogen Lyman-α the combinationoffundamentalconstants πe2 σ = f =4.5 10 18cm2. 0 − mecν0 × Atoms, though, are social creatures and rarely live alone. For a cloud of gas of densityn,sizeL,andtemperatureT weneedtointegrateoverallatomstocompute theopticaldepthofthetransitionatanyfrequencyν, (u u)2 (cid:90) 1 ν− (cid:48) τ(ν)=nL σ φ(ν ) e− b2 du, 0 (cid:48) (cid:48) √πb whereν =ν (1+u/c)andu isdefinedviatheexpressionν=ν (1+u /c).The (cid:48) 0 (cid:48) ν 0 ν quantity (cid:18) k T(cid:19)1/2 B b= 2 m H iscalledtheDopplerparameterandtheproductnListhecolumndensity. In an expanding universe it is not enough just to multiply by the cloud size L, sincedifferentlocationsalongtheline-of-sightareredshiftedrelativetotheobserver and project to different locations in the velocity (or frequency) space. Hence, we mustintegratealongtheline-of-sight, (u u )2 λ x τ(λ)=σ0(cid:90) n(x) c e− −b2x dx , (8) √πbx 1+zx
Description: