ebook img

Modeling past and future variations of the Antarctic Ice Sheet PDF

37 Pages·2016·4.66 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling past and future variations of the Antarctic Ice Sheet

Modeling past and future variations of the Antarctic Ice Sheet David Pollard1 and Robert DeConto2 1Pennsylvania State Univ. 2Univ. of Massachusetts NCAR CESM/LIWG meeting, June 22, 2016 Outline ?????? ?????? ?????? time ~3 Ma +5 kyr modern 20 ka (~LGM) (mid Pliocene) (future) (1) Calibration vs. last 20,000 years with Large Ensembles (2) Add drastic warm-climate mechanisms to capture Pliocene sea-level rise (3) Apply to future 5000 years, for RCP 2.6 to 8.5 scenarios Introduction: Steps in Large-Ensemble modeling Statistical LE Run model from RRReeepppeeeaaattt fffooorrr 666222555 rrruuunnnsss,,, AAAggggggrrreeegggaaattteee ssscccooorrreee fffooorrr Staatnisatliycsails 30 kyr BP to sssyyysssttteeemmmaaatttiiicccaaallllllyyy vvvaaarrryyyiiinnnggg eeeaaaccchhh rrruuunnn vvvsss... mmmooodddeeerrrnnn present mmmooodddeeelll pppaaarrraaammmeeettteeerrrsss aaannnddd gggeeeooolllooogggiiiccc dddaaatttaaa L•EP raonbaabliylitsy is densities of model parameter values • Envelopes of future ice retreat and sea-level rise Aggregate score: S = (S S S S S S S ) 1/7 1 2 3 4 5 6 7 × 625 S1. Modern area of grounded ice S . Modern grounded-ice 2 thickness S . Past 1-D grounding-line 3 distance along PIG, Ross, Ronne centerlines Reconstructions of grounding lines by RAISED Consortium (QSR, 2014) S . Past 2-D grounding line 4 positions Ice sheet model: S . Past Relative Sea Level (Pollard et al., 2012) 5 records • 20 km grid. • SSA+SIA dynamics, grounding S6. Past elevation-age data line flux (Schoof, 2007). S . Modern uplift rates • Atmospheric forcing: uniform 7 shifts.of modern climatology Data compilations by Briggs and • Oceanic forcing: Liu et al., Tarasov (2013), Whitehouse et al. Science, 2009, CSM 22 kyrs. (2012). Equivalent sea-level envelopes Probability density maps Probability of grounded ice (0 to 1) Showing all 625 runs (grey: score S = zero) = Σ(S with grounded ice at x,y,t) / Σ(S, i =1 to 625) i i 20 ka 15 ka 14 ka Score-weighted mean 13 ka 12 ka 11 ka and1-σ deviations 10 ka 5 ka 0 ka Pollard et al., GMD, 2016. Other recent Antarctic ~LE modeling: Whitehouse et al., 2012a,b. Briggs and Tarasov, 2013-14. Golledge et al., 2014. Maris et al., 2014. Black lines: grounding line reconstructions, RAISED Consortium, QSR, 2014 4 model parameters calibrated Large Ensemble, 5 values for each of 4 parameters (625 runs) CALV ice OCFAC TAUAST ocean bed OCFAC: CSHELF: Pollard et al., GMD, Chang et al., J. Amer. Stat. Assoc., 2016. 2016. Simple score- State-of-the-art Bayesian approach: averaging. emulation, likelihood functions, MCMC. TAUAST: CALV: Outline ?????? ?????? ?????? time ~3 Ma 20 ka (~LGM) modern +5 kyr (mid Pliocene) (future) (1) Calibration vs. last 20,000 years with Large Ensembles (2) Add drastic warm-climate mechanisms to capture Pliocene sea-level rise (3) Apply to future 5000 years, for RCP 2.6 to 8.5 scenarios Adding hydrofracture & cliff failure, to produce large Pliocene sea-level rise Rovere et al., EPSL, 2014: mid-Pliocene shore-line elevations > ~20 m. But note uncertainty due to GIA and tectonic uplift (Austermann et al., Geol., 2015) •• GGeeoollooggiicc eevviiddeennccee ooff PPlliioocceennee,, MMiioocceennee eeppiissooddeess uupp ttoo ~~2200mm SSLLRR -- MMaayy bbee lleessss,, dduuee ttoo GGIIAA aanndd ddyynnaammiicc ttooppooggrraapphhyy eeffffeeccttss ((llaatteerr)) •• EEaarrlliieerr mmooddeellss ssiimmuullaattee MMaarriinnee IIccee SShheeeett IInnssttaabbiilliittyy oonnllyy iinn WWeesstt AAnnttaarrccttiiccaa dduurriinngg wwaarrmm cclliimmaatteess,, <~ 5~ 5m m e qeuqivu.i vs.e sae-ale-vleevl erils reis e •• 22 ddrraassttiicc rreettrreeaatt mmeecchhaanniissmmss aaddddeedd ttoo tthhiiss mmooddeell -- pprroodduucceess mmiidd--PPlliioocceennee rreettrreeaatt iinn EEaasstt AAnnttaarrccttiicc bbaassiinnss,, ++1177 mm SSLLRR old model +3m ESL new model +17m SLR Adding hydrofracture & cliff failure, to produce large Pliocene sea-level rise Two mechanisms to produce drastic EAIS basin retreat in warm Pliocene climates: (1) Surface melt and hydrofracture, (2) Large tidewater cliff failure LLaarrsseenn BB bbrreeaakkuupp,, 22000022 ~1000 km ((SSccaammbbooss eett aall.. 22000033)) (1) Hydro- fracture melt-enhanced calving > 1000 m ~ (2) Terminus of Helheim Glacier, E. Greenland. Cliff height above waterline is nearly ~ 100m. Cliff Photo: Knut Christianson, U. Washington. ~100 m failure <100 m (3) Maximum retreat Adding hydrofracture & cliff failure, to produce large Pliocene sea-level rise old model +3m ESL new model +17m SLR Pollard et al., EPSL, 2015 Outline ?????? ?????? ?????? time ~3 Ma 20 ka (~LGM) modern +5 kyr (mid Pliocene) (future) (1) Calibration vs. last 20,000 years with Large Ensembles (2) Add drastic warm-climate mechanisms to capture Pliocene sea-level rise (3) Apply to future 5000 years, for RCP 2.6 to 8.5 scenarios

Description:
(2) Add drastic warm-climate mechanisms to capture Pliocene sea-level rise. (3) Apply to future sea-level envelopes. Pollard et al., GMD, 2016. Geologic evidence of Pliocene, Miocene episodes up to ~20m SLR. - May be less
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.