ebook img

Modeling, Optimization, and Detailed Design of a Hydraulic Flywheel-Accumulator A THESIS ... PDF

343 Pages·2014·5.84 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling, Optimization, and Detailed Design of a Hydraulic Flywheel-Accumulator A THESIS ...

Modeling, Optimization, and Detailed Design of a Hydraulic Flywheel-Accumulator A THESIS SUBMITTED TO THE FACULTY OF THE UNIVERISTY OF MINNESOTA BY Kyle Glenn Strohmaier IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Adviser: James Van de Ven, Ph.D. July 2014 © 2014 Kyle Glenn Strohmaier I would like to thank my adviser, Dr. James Van de Ven, for providing me the opportunity to partake in this fascinating research and for his guidance and patience throughout the process. This work was sponsored by the National Science Foundation through the Center for Compact and Efficient Fluid Power, grant EEC-0540834. i Abstract Improving mobile energy storage technology is an important means of addressing concerns over fossil fuel scarcity and energy independence. Traditional hydraulic accumulator energy storage, though favorable in power density, durability, cost, and environmental impact, suffers from relatively low energy density and a pressure- dependent state of charge. The hydraulic flywheel-accumulator concept utilizes both the hydro-pneumatic and rotating kinetic energy domains by employing a rotating pressure vessel. This thesis provides an in-depth analysis of the hydraulic flywheel-accumulator concept and an assessment of the advantages it offers over traditional static accumulator energy storage. After specifying a practical architecture for the hydraulic flywheel-accumulator, this thesis addresses the complex fluid phenomena and control implications associated with multi-domain energy storage. To facilitate rapid selection of the hydraulic flywheel- accumulator dimensions, computationally inexpensive material stress models are developed for each component. A drive cycle simulation strategy is also developed to assess the dynamic performance of the device. The stress models and performance simulation are combined to form a toolset that facilitates computationally-efficient model-based design. The aforementioned toolset has been embedded into a multi-objective optimization algorithm that aims to minimize the mass of the hydraulic flywheel-accumulator system and to minimize the losses it incurs over the course of a drive cycle. Two optimizations have been performed – one with constraints that reflect a vehicle-scale application, and one with constraints that reflect a laboratory application. At both scales, the optimization results suggest that the hydraulic flywheel-accumulator offers at least an order of magnitude improvement over traditional static accumulator energy storage, while operating at efficiencies between 75% and 93%. A particular hydraulic flywheel- accumulator design has been selected from the set of laboratory-scale optimization results and subjected to a detailed design process. It is recommended that this selection be constructed and tested as a laboratory prototype. ii Table of Contents List of Tables .......................................................................................................................... vi List of Figures ....................................................................................................................... viii 1 Introduction .............................................................................................................................. 1 1.1 Greenhouse Gas Emissions and Traditional Vehicles ..................................................... 1 1.2 Alternative Powertrains ................................................................................................... 2 1.3 Hydraulic Powertrain Components .................................................................................. 5 1.4 The Hydraulic Flywheel-Accumulator Concept .............................................................. 8 1.5 Research Goals and Approach ....................................................................................... 10 2 General Architecture and Operation ...................................................................................... 12 2.1 Architecture and Design Variables of the Hydraulic Flywheel-Accumulator ............... 12 2.2 Basic Kinetic and Pneumatic Energy Storage ................................................................ 17 2.3 Fluid Centrifugation ....................................................................................................... 19 2.4 Interaction of the Energy Storage Domains ................................................................... 22 2.5 Controlling the Hydraulic Flywheel-Accumulator ........................................................ 24 2.6 Optimization Objectives and Constraints ...................................................................... 27 3 Model-Based Structural Design ............................................................................................. 29 3.1 System-Level Considerations ........................................................................................ 29 3.2 Axle ................................................................................................................................ 34 3.3 End Caps ........................................................................................................................ 41 3.4 Piston ............................................................................................................................. 45 3.5 Housing .......................................................................................................................... 50 3.6 Bearing Selection ........................................................................................................... 58 3.7 Material Selection and Static Calculations .................................................................... 64 4 Energy Loss Mechanisms ...................................................................................................... 67 4.1 Bearing and Aerodynamic Drag .................................................................................... 68 4.2 Storage Pump-Motor Losses .......................................................................................... 72 4.3 Losses Related to the High-Speed Rotary Union ........................................................... 75 4.4 Vacuum Pumping Energy Consumption ........................................................................ 81 5 Internal Fluid Modeling ......................................................................................................... 86 5.1 Motivation for Fluid Modeling ...................................................................................... 86 iii 5.2 Theory and Assumptions ............................................................................................... 88 5.3 Modeling Approach ....................................................................................................... 94 5.4 Experimental Approach ................................................................................................. 96 5.5 Model Development ..................................................................................................... 102 5.6 Model Validation ......................................................................................................... 109 5.7 Closing Remarks about the Internal Fluid Modeling ................................................... 116 6 Drive Cycle Simulation ........................................................................................................ 118 6.1 Road Loads and Vehicle Parameters ........................................................................... 118 6.2 Control Strategy and Pump-Motor Selection ............................................................... 121 6.3 Studies on the Band Control Strategy Parameters ....................................................... 125 6.4 Calculation Sequence ................................................................................................... 132 6.5 Calculation of Performance Metrics ............................................................................ 139 7 Design Optimization ............................................................................................................ 141 7.1 Optimization Strategy .................................................................................................. 141 7.2 Posing the Optimization Problem ................................................................................ 144 7.3 Vehicle-Scale Optimization Results ............................................................................ 147 7.4 Laboratory-Scale Optimization Results ....................................................................... 159 7.5 Contextualizing the Optimization Results ................................................................... 168 7.6 Selection of a Design Solution for the Laboratory Prototype ...................................... 174 8 Detailed Design .................................................................................................................... 179 8.1 Torque Transmission Mechanisms .............................................................................. 179 8.2 End Caps ...................................................................................................................... 184 8.3 Piston ........................................................................................................................... 197 8.4 Housing ........................................................................................................................ 201 8.5 Axle .............................................................................................................................. 205 8.6 High-Speed Rotary Union Case ................................................................................... 208 8.7 Relative Radial Strain Analysis ................................................................................... 213 9 Conclusions and Recommendations .................................................................................... 221 9.1 Summary of the Research ............................................................................................ 221 9.2 Conclusions .................................................................................................................. 222 9.3 Future Work ................................................................................................................. 224 Bibliography ........................................................................................................................ 227 Appendix A: Nomenclature ................................................................................................. 233 iv Appendix B: MATLAB© Code for the Model-based Design and Simulation Toolset ........ 240 Appendix C: Complete Experimental Results from the Fluid Behavior Model Development ............................................................................................................................................. 286 Appendix D: Simulated Prototype Performance .................................................................. 320 Appendix E: Additional FEA Results .................................................................................. 324 v List of Tables Table 1: The Nine Design Variables which Constitute a Design Solution for the HFA ................ 16 Table 2: Load Cases for a Study on Stresses in a Hybrid Housing ................................................ 54 Table 3: Selected Materials and their Mechanical Properties [45] ................................................ 65 Table 4: Properties of the Composite Material for the Housing Wrap [35] ................................... 66 Table 5: List of Energy Loss Mechanisms and their Symbols (Given as Rates of Energy Dissipation), Categorized as Kinetic or Pneumatic ....................................................................... 67 Table 6: Volumetric and Mechanical Efficiency Definitions for Pumping and Motoring ............ 73 Table 7: Selected Loss Coefficients for the Storage Pump-Motor [54] ......................................... 74 Table 8: Selected Values for the Minor Loss Coefficients in the Axial Ports ............................... 77 Table 9: Minor Loss Coefficients in Pneumatic Charging and Discharging ................................. 77 Table 10: Assumptions for the Reduction of the Navier-Stokes Equations for Flow in the Circumferential Seal ...................................................................................................................... 79 Table 11: General Specifications for the Experimental Setup ....................................................... 97 Table 12: Specifications of the Equipment Used for the Experimental Setup ............................... 98 Table 13: Ranked Performance of the Viscous Dissipation Rate Correlations, Based on Coefficient of Determination ....................................................................................................... 105 Table 14: Ranked Performance of the Dynamic Time Constant Correlations, Based on Coefficient of Determination .......................................................................................................................... 107 Table 15: Characteristics of the Urban Dynamometer Driving Schedule (UDDS) ..................... 119 Table 16: Vehicle Characteristics for Drive Cycle Simulation, Selected to Represent a Typical Mid-Size Passenger Sedan ........................................................................................................... 121 Table 17: HFA Design Solution for the Control Strategy Study ................................................. 128 Table 18: Selected Control Strategy Parameter Values for the Control Strategy Study .............. 128 Table 19: Summary of the Genetic Algorithm Parameters .......................................................... 143 Table 20: Redefined Design Solution, Used for the Purposes of a Design Optimization ............ 145 Table 21: Design Variable Bounds for the Design Optimization ................................................ 146 Table 22: Summary of the Extreme Pareto-optimal Solutions from the Vehicle-Scale Optimization ................................................................................................................................ 149 Table 23: Summary of the Extreme Pareto-optimal Solutions from the Laboratory-Scale Optimization ................................................................................................................................ 163 Table 24: Results of the Energy Density Comparison Study ....................................................... 170 Table 25: Design Variable Values for the Selected Laboratory Prototype Design ...................... 176 Table 26: Non-design Variables of Interest for the Selected Laboratory Prototype Design ........ 177 Table 27: Static Performance Metrics for the Selected Laboratory Prototype Design ................ 178 Table 28: Drive Cycle (UDDS) Performance Metrics for the Selected Laboratory Prototype Design .......................................................................................................................................... 178 Table 29: Selected Shoulder Screws for the Pin System ............................................................. 182 Table 30: The Three Potential Worst-case Loading Scenarios for the Housing .......................... 202 Table 31: Loads and Radial Displacements for the Worst-case Leakage Scenario at the Axle- Piston Interface ............................................................................................................................ 215 vi Table 32: Loads and Radial Displacements for the Worst-case Binding Scenario at the Axle- Piston Interface ............................................................................................................................ 216 Table 33: Loads and Radial Displacements for the Worst-case Leakage Scenarios at the Piston- Housing Interface ......................................................................................................................... 217 Table 34: Loads and Radial Displacements for the Worst-case Binding Scenarios at the Piston- Housing Interface ......................................................................................................................... 218 Table 35: Loads and Radial Displacements for the Worst-case Leakage Scenario at the Axle-End Cap Interface ................................................................................................................................ 219 Table 36: Loads and Radial Displacements for the Worst-case Leakage Scenarios at the End Cap- Housing Interface ......................................................................................................................... 220 vii List of Figures Figure 1: Global Greenhouse Gas Emissions by Sector [1] ............................................................. 2 Figure 2: The Two Most Basic Hybrid Vehicle Powertrain Architectures, Series and Parallel. The ICE and secondary energy storage-conversion pairs are labelled “A” and “B,” respectively. ........ 3 Figure 3: Illustration of a Traditional Piston-type Hydraulic Accumulator [17] ............................. 6 Figure 4: Dimensionless Pressure as a Function of Dimensionless Energy for a Traditional Accumulator ..................................................................................................................................... 7 Figure 5: Pure Hydraulic Powertrain with a Hydraulic Flywheel Accumulator as the Sole Energy Storage Medium. Shown with a Fixed-Displacement Storage Pump-Motor .................................. 9 Figure 6: Illustration of the Parabolic Oil Pressure Distribution with System Pressure at the Vertex (Gas Pressure Distribution Not Shown) ............................................................................. 10 Figure 7: Hybrid Housing, Made of Metallic Liner and Composite Wrap .................................... 13 Figure 8: End Cap and Axle System .............................................................................................. 14 Figure 9: Illustration of the Spatial Relations between the Piston, Axle and End Caps ................ 14 Figure 10: Schematic of the High-Speed Rotary Union (HSRU) Concept .................................... 15 Figure 11: Force Balance on an Infinitesimal Fluid Element in a Rotating Fluid Volume [23] .... 19 Figure 12: Qualitative Illustration of the Gas (Left) and Oil (Right) Pressure Distributions for Different Angular Velocities, with the Arrows Indicating Increasing Angular Velocity .............. 22 Figure 13: Sign Convention for Tractive (Total) Power, Power in the Kinetic Domain, and Power in the Pneumatic Domain ............................................................................................................... 24 Figure 14: Three Possible Mounting Orientations for the HFA, Showing Forces that Contribute to Bearing Loads ................................................................................................................................ 30 Figure 15: Illustration of the HFA Mounting Architecture ............................................................ 31 Figure 16: Exploded View of the Retaining Ring System for Torque Transmission between the Axle and End Caps......................................................................................................................... 32 Figure 17: Illustration of the Pins (As Shown, 𝑵𝒔𝒔= 𝟐) which Produce an Axial and Tangential Constraint between the Housing and the Gas Side End Cap ......................................................... 33 Figure 18: Axle Dimensions .......................................................................................................... 34 Figure 19: Free Body Diagram of the Major Loads on the Axle-End Cap System ....................... 35 Figure 20: Free Body Diagram (Excluding Radial Forces) of the Lower Portion of the Axle ...... 37 Figure 21: Loading on the Portion of Axle that Forms the Circumferential Seal .......................... 39 Figure 22: Pressure Loading on the Oil Side End Cap (Retainer Pressure 𝑷𝒓 Acts on the Counterbore Surface) ..................................................................................................................... 43 Figure 23: Piston Design ................................................................................................................ 46 Figure 24: Packaging Region of the Piston Seals .......................................................................... 46 Figure 25: Maximum von Mises Stress (Non-dimensionalized) for the Same System Pressure at Different Angular Velocities; Two Piston Geometries Shown ...................................................... 48 Figure 26: Oil, Gas, and Net Pressure Distributions for Three Different Angular Velocities which Produce the Same Maximum von Mises Stress for a Given HFA Geometry and System Pressure ....................................................................................................................................................... 49 Figure 27: Non-dimensional Radial and Circumferential Stress Distributions due to Centrifugation of an Isotropic Hollow Cylinder ............................................................................ 51 viii

Description:
thesis addresses the complex fluid phenomena and control implications associated with multi-domain . Architecture and Design Variables of the Hydraulic Flywheel-Accumulator 12. 2.2 Figure 59: Trends in Storage PM, Aerodynamic, and Bearing Losses as Functions of System. Mass .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.