Modeling of Machine Life Using Accelerated Prognostics and Health Management (APHM) and Enhanced Deep Learning Methodology A dissertation submitted to the Graduate School Of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy In the Department of Mechanical and Materials Engineering Of the College of Engineering and Applied Science by Wenjing Jin August 2016 Committee Chair: Professor Jay Lee Committee Member: Professor Teik Lim Committee Member: Professor David Thompson Committee Member: Dr. Linxia Liao ABSTRACT Machine health monitoring has advanced significantly for improving machine uptime and efficiency by providing proper fault detection and remaining useful life (RUL) prediction information to machine users. Despite these advancements, conventional condition monitoring (CM) techniques face several challenges in machine prognostics, including the ineffective RUL prediction modeling for machine under dynamic working regimes, and the lack of complete lifecycle data for modeling and validation, among others. To address these issues, this research introduces Accelerated Degradation Tests (ADT) with a deep learning technique, which is a novel method to improve machine life prediction accuracy under different working regimes for Prognostics and Health Management applications. This dissertation work highlights the mathematical framework of deep learning based machine life modeling under an ADT environment, including Constant Stress Accelerated Degradation Testing (CSADT) and Step-Stress ADT (SSADT) conditions. Since most CM features show no trend or indication of failure until a machine is approaching the end of its life, current RUL prediction techniques are not applicable in that they are only effective when incipient degradation is detected. This dissertation work applies feature enhancement to condition-based features using the enhanced Restricted Boltzmann Machine (RBM) method with a prognosability regularization term; afterwards, a similarity- based method is applied to predict machine life with the enhanced RBM features. In addition, this research has added varying stress conditions during experiments to replicate dynamic operation regimes. The stress variable, a type of regime variables, is ii input into Mixed-Variate RBM (MV-RBM) model. Therefore, a Regime Matrix based RBM (RM-RBM) is proposed to improve the feature prognosability and reduce the impact that the working stresses have on the features. Then the RBM features can be fused into a single health value which reflects the machine degradation. Finally, the developed machine “life-stress-degradation” model can effectively estimate the machine life under any given stress. The feasibility study is demonstrated through three groups of rotary machinery components run-to-failure tests datasets. The first two case studies focus on CSADT from two bearing run-to-failure test-beds. The first in-house bearing test demonstrates the effectiveness of applying an enhanced RBM with a prognosability regularization term to improve predictability of both the features and health value. The second bearing test dataset utilizes a similarity-based method to benchmark the RUL prediction results of the RBM features with other feature extraction methods. The third case study focuses on the issue of dynamic operating regimes; it is validated through a step-stress accelerated degradation test on a ball screw system. By integrating both the RM-RBM model and SSADT model in the PHM analysis framework, an innovative condition-based life-stress model for the linear motion system will be demonstrated. iii iv ACKNOWLEDGMENTS I would like to express great appreciation to Professor Jay Lee for his guidance and support through my Ph.D. dissertation at the University of Cincinnati. I am also grateful to Professor Teik Lim, Professor David Thompson, and Dr. Linxia Liao for serving on my doctoral dissertation committee. I would like to express my gratitude to Mr. Patrick Brown for all the help he provided with proposals, budgets, administrative aspects, and marketing material that made working in the IMS Center an enjoyable experience. In addition, I appreciate the organizational and administrative skills of Mr. Michael Lyons, who helped to organize customer meetings and several conferences, and allowed myself and other researchers to not worry about these administrative aspects. I am also thankful to Dr. Yan Chen, Dr. David Siegel, Dr. Edzel Lapira, Dr. Mohamed AbuAli, and Dr. Masoud Ghaffari, for the guidance they provided me during their time as post-doctoral researchers at the IMS Center. I also want to thank to my teammates great efforts and hard work on the linear motion system experiments, Mr. Matthew Buzza, Mr. Jianshe Feng, Mr. Pin Li, and Ms. Fally Titikpina. I also appreciate all the support and collaborative work I did with my colleagues during my Ph.D.’s studies, including Mr. Hossein Davari Ardakani, Mr. Chao Jin, Mr. Zhe Shi, Mr. Zongchang Liu, Mr. Behrad Bagheri, Mr. Yuan Di, Mr. Shanhu Yang, Mr. Xiaodong Jia, Ms. Laura Henkel, Mr. Shaojie Wang, Mr. Wenyu Zhao, Mr. Muhammad Rezvani, Ms. Ann Kao, Ms. Christina Lucas, Ms. Paige Weaver, Ms. Ellen Gamel, Mr. Arian Houshmand, Ms. Maria Holgado, Mr. Fangcheng Yuan, Dr. Jian Chen, v Ms. Kaitlin Burnam, Mr. Brian Phillips, Mr. Nick Manning, Mr. Chuan Jiang, Mr. Eric Huang, Ms. Xiaorui Tong, Mr. Tyler Skirtich, Mr. Feibai Zhu, Mr. Su Xu, Mr. Ziyi Wang, Mr. Shuo Chang, Dr. Lei Zhang, Dr. Yixiang Huang, Dr. Chein Chung Sun, Dr. Weihua Li, Ms. Meihui Wang, Dr. Yanming Li, Mr. Rodrigo José De Andrade Vieira, Mr. Iñaki Bravo and many others. I would like to thank TechSolve for providing data that was used in this research work, and in particular I would like to thank Dr. Radu Pavel for his collaboration. Part of the experimental work of this research was sponsored by HIWIN, and, in this respect I would like to thank Dr. Lawrence Huang, Dr. Jerry Chiu, Mr. Tereance Yu, Ms. Julia Wen, Mr. Omer Hung, Mr. Wayne Chu and Mr. Howard Tsai. I would like to thank my parents, my husband and his family, my friends Ms. Roxie Higgins and Ms. Nancy Boss for their great support for my study and my life. vi TABLE OF CONTENTS ABSTRACT .................................................................................................................................. II ACKNOWLEDGMENTS ............................................................................................................... V CHAPTER 1: INTRODUCTION ................................................................................................. 1 1.1 INTRODUCTION ............................................................................................................................................. 1 1.2 FUNDAMENTAL ISSUES ................................................................................................................................ 3 1.3 MOTIVATION AND CHALLENGES .................................................................................................................. 6 1.4 RESEARCH OBJECTIVE ................................................................................................................................ 7 1.5 CONTRIBUTIONS AND BROADER IMPACT ..................................................................................................... 8 1.6 DISSERTATION LAYOUT ............................................................................................................................... 9 CHAPTER 2: LITERATURE SURVEY ON PROGNOSTICS USING DEEP LEARNING AND ACCELERATED LIFE TESTING METHOD ............................................................................... 12 2.1 PHM APPROACH FOR MACHINE LIFE PREDICTION .................................................................................. 13 2.2 FEATURE ENGINEERING AND FEATURE SELECTION ................................................................................. 16 2.2.1 FEATURE EXTRACTION .......................................................................................................................... 16 SENSOR-LESS TECHNIQUES ................................................................................................................................... 16 SENSOR-RICH TECHNIQUES ................................................................................................................................... 19 2.2.2 FEATURE SELECTION ............................................................................................................................ 21 CHOOSE DIAGNOSTIC FEATURES .......................................................................................................................... 21 CHOOSING PROGNOSTIC FEATURES ..................................................................................................................... 22 2.3 DEEP LEARNING METHODOLOGY .............................................................................................................. 26 WHAT IS DEEP LEARNING? ..................................................................................................................................... 26 WHY NEED DEEP LEARNING IN PHM? ................................................................................................................... 29 2.4 PROGNOSTIC METHODS FOR MACHINERY SYSTEMS ............................................................................... 31 2.5 ACCELERATED LIFE TESTING (ALT) ......................................................................................................... 35 2.5.1 ACCELERATED LIFE TESTING (ALT) MODELING UNDER CONSTANT STRESS CONDITIONS ............... 36 2.5.2 TIME-VARYING STRESS ACCELERATED LIFE TESTING ......................................................................... 44 2.5.3 ACCELERATED DEGRADATION TEST (ADT) ......................................................................................... 46 CHAPTER 3: INTEGRATING DEEP LEARNING METHOD AND ACCELERATED DEGRADATION TESTING IN MACHINE PROGNOSTICS ....................................................... 52 3.1 PROBLEM STATEMENT AND ASSUMPTIONS .............................................................................................. 52 3.2 HYPOTHESIS .............................................................................................................................................. 56 3.3 DEEP LEARNING ENABLED FEATURE EXTRACTION ................................................................................... 58 3.3.1 OVERVIEW OF RESTRICTED BOLTZMANN MACHINES (RBMS) ............................................................ 58 3.3.2 RESTRICTED BOLTZMANN MACHINES WITH REGULARIZATION TERMS ................................................ 64 PROGNOSTICS REGULARIZATION ........................................................................................................................... 64 BAYESIAN REGULARIZATION .................................................................................................................................. 67 OTHER REGULARIZATIONS ..................................................................................................................................... 68 vii SUMMARY ............................................................................................................................................................... 69 3.3.3 MIXED-VARIATE RESTRICTED BOLTZMANN MACHINES (MV-RBMS) .................................................. 70 MIXED-VARIATES RBMS INPUT TYPES .................................................................................................................. 70 REGIME MATRIX VARIATES .................................................................................................................................... 71 REGIME MATRIX BASED RBMS (RM-RBMS) ........................................................................................................ 72 3.3.4 FEATURE CONTRIBUTION ...................................................................................................................... 78 3.4 STEP-STRESS ACCELERATED DEGRADATION TESTS WITH PHM TECHNIQUES ...................................... 79 3.4.1 OVERVIEW OF STEP-STRESS ADT MODELING .................................................................................... 79 3.4.2 DEGRADATION MODELING AND TIME CONVERSION ............................................................................. 82 3.4.3 THEORETIC BALL SCREW LIFE CALCULATION ...................................................................................... 86 3.5 FRAMEWORK OF DEEP LEARNING BASED MACHINE LIFE PREDICTION UNDER CONSTANT STRESS ACCELERATED DEGRADATION TESTS .................................................................................................................... 88 3.5.1 OVERALL METHODOLOGY OF APPLYING ENHANCED RBM WITH PROGNOSABILITY REGULARIZATION ON MACHINE LIFE PREDICTION .............................................................................................................................. 88 3.5.2 BUILD HEALTH VALUE TRAJECTORY LIBRARY ...................................................................................... 90 3.5.3 SIMILARITY-BASED LIFE PREDICTION .................................................................................................... 91 3.6 FRAMEWORK OF DEEP LEARNING BASED ACCELERATED PROGNOSTICS AND HEALTH ASSESSMENT USING STEP-STRESS ADT METHOD ..................................................................................................................... 93 CHAPTER 4: CASE STUDY–VALIDATION OF ENHANCED RBM WITH PROGNOSABILITY REGULARIZATION FOR BEARING HEALTH ASSESSMENT ................................................. 96 4.1 INTRODUCTION ........................................................................................................................................... 96 4.2 TEST RIG SETUP AND DATA DESCRIPTION ............................................................................................... 97 4.3 DATA PROCESSING METHODS .................................................................................................................. 99 4.3.1 FEATURE PREPARATION ....................................................................................................................... 99 4.3.2 APPLY ENHANCED RBM TO FEATURE EXTRACTION .......................................................................... 100 4.4 UNDERSTANDING OF THE DEEP LEARNED FEATURES ............................................................................ 102 4.5 DISCUSSION OF RESULTS ....................................................................................................................... 104 CHAPTER 5: CASE STUDY–ENHANCED RBM BASED PROGNOSTICS FOR BEARING LIFE PREDICTION ................................................................................................................... 105 5.1 INTRODUCTION ......................................................................................................................................... 105 5.2 TEST RIG SETUP AND DATA DESCRIPTION ............................................................................................. 105 5.3 HEALTH ASSESSMENT COMPARISON ...................................................................................................... 108 5.4 SCORE AND RESULTS .............................................................................................................................. 109 5.5 DISCUSSION OF RESULTS ....................................................................................................................... 112 CHAPTER 6: CASE STUDY–STEP-STRESS ADT OF LINEAR MOTION SYSTEM BASED ON CATEGORICAL REGIME RBM METHOD ......................................................................... 114 6.1 INTRODUCTION ......................................................................................................................................... 115 6.2 TEST-BED SETUP AND DATA DESCRIPTION ............................................................................................ 116 6.3 DATA PROCESSING METHODS ................................................................................................................ 119 6.3.1 DATA VISUALIZATION AND VALIDATION ............................................................................................... 119 6.3.2 CONDITION MONITORING FEATURE EXTRACTION .............................................................................. 122 viii 6.3.3 FEATURE ENHANCEMENT WITH RM-RBM ......................................................................................... 124 6.3.4 HEALTH ASSESSMENT WITH RM-RBM FEATURES ............................................................................ 125 6.3.5 SSADT MODELING AND RUL PREDICTION RESULTS ........................................................................ 127 6.4 UNDERSTANDING OF THE DEEP LEARNED FEATURES IN LINEAR MOTION SYSTEM APPLICATION ........ 131 6.5 DISCUSSION OF RESULTS ....................................................................................................................... 132 6.6 APPLICATION AND DEMO ......................................................................................................................... 133 CHAPTER 7: CONCLUSIONS AND FUTURE WORK .......................................................... 134 7.1 CONCLUSION ........................................................................................................................................... 134 7.2 FUTURE WORK ........................................................................................................................................ 135 REFERENCE ........................................................................................................................... 137 ix
Description: