ebook img

Modeling of ammonium dinitramide (ADN) monopropellant combustion with coupled condensed ... PDF

16 Pages·2013·1.46 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling of ammonium dinitramide (ADN) monopropellant combustion with coupled condensed ...

CombustionandFlame161(2014)347–362 ContentslistsavailableatScienceDirect Combustion and Flame journal homepage: www.elsevier.com/locate/combustflame Modeling of ammonium dinitramide (ADN) monopropellant combustion with coupled condensed and gas phase kinetics ⇑ Piyush Thakre , Yi Duan, Vigor Yang SchoolofAerospaceEngineering,GeorgiaInstituteofTechnology,Atlanta,GA30332-0150,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Acomprehensivemulti-phasecombustionmodelhasbeendevelopedtostudythephysiochemicalpro- Received28May2013 cessesinvolvedinthecombustionofammoniumdinitramide(ADN).Thenumericalmodelisbasedon Receivedinrevisedform12August2013 theconservationequationsofmass,speciesconcentration,andenergy,andtakesintoaccountfinite-rate Accepted12August2013 chemicalkineticsinbothcondensedandgasphases.Basedonanextensivereviewoftheliteratureon Availableonline24September2013 ADNthermaldecomposition,threeglobaldecompositionreactionsinthecondensedphaseofADNare included.A detailed chemical kineticsscheme involving 34 species and 165reactions is employed in Keywords: the gas phase. Detailed combustion-wave structures and burning rate characteristics of ADN are Ammoniumdinitramide described.Theoptimizedgas-phasekineticsmechanismwasabletopredictthemulti-stageflamestruc- ADNpropellantcombustion ture.Goodagreementsbetweenthepredictedandmeasuredprofilesoftemperatureandspeciesmole fractionswereobtainedatdifferentpressures.Reasonableagreementsbetweencalculatedandmeasured valuesofpropellantburningratesandsurfacetemperatureswereobtainedoverabroadrangeofpressure from0.7to350atm.Theburningrateincreaseswithpressure,exceptinthemidrangeof(cid:2)60–100atm. Thecoupledcondensed-andgas-phaseanalysisemployedinthecurrentmodelisabletocapturethis irregular/unstable combustion behavior in the mid range, where the burning rate decreases with the increaseinpressure. (cid:2)2013TheCombustionInstitute.PublishedbyElsevierInc.Allrightsreserved. 1.Introduction trophotometry [23,24], molecular beam mass-spectrometry (MBMS) [12,25], differential scanning calorimetry (DSC) [13,26], Ammonium dinitramide (ADN) is a novel energetic material thermal gravimetry combined with mass spectrometry (TG-MS) that can be used as a liquid monopropellant or as an ingredient [13,26],opticalpolarizinglightmicroscopy,laser-Ramanspectros- in solid-rocket propellants [1]. It is a low-signature environmen- copy,andenergydispersiveX-raydiffractiontechniques[27].The tallyfriendlypropellant,withchlorine-free combustionproducts. theoreticalmethodsincludeabinitiocalculationbasedonquantum Becauseitoffershigherperformancethanconventionaloxidizers, chemistry[14–16]andnumericalmodelsbasedondetailedchem- ADN is a promising alternative to Ammonium Perchlorate (AP) istry[17–21].Bothself-sustained[22–27]andlaser-inducedcom- andAmmoniumNitrate(AN)[1]. bustion[28,29]havebeenmodeled.Areviewoftheliteratureon ADN, which is an ionic compound (NHþ½NðNO Þ (cid:3)(cid:4)), was first ADN thermal decomposition and its combustion behavior up to 4 2 2 synthesizedin1971attheZelinskyInstituteofOrganicChemistry 2005isdetailedbyYangetal.[30]. in the former Soviet Union [2–4]. In 1989, it was independently Russelletal.[27]confirmedareversiblephasetransitionofan synthesizedbytheStanfordResearchInstitute[5,6].Overthepast ADNcrystal,asdescribedbyreaction fourdecades,significantresearchhasbeenconductedtostudythe combustion wave structure and burning-rate characteristics of a-ADN2(:0)GPab-ADN ðR1Þ ADN. Extensive experimental diagnostics [7–13] and theoretical Theb-ADNhasanewmonoclinicpolymorphicstructure.Themelt- modeling[14–21]havebeenreportedoverabroadrangeofoper- ing point of a-ADN is 365–368K [12,25], significantly lower than ating conditions. The experimental techniques include T-jump/ RDX (478K) [31], HMX (551K) [32], and AP (865K) [33]. The FTIR spectroscopy [22], micro-thermocouple [9,23,24], UV-spec- ADNpropellantmodeledinthepresentpaperisassumedtobea- ADN,withoutanycuringagent. ⇑ Figure1showsschematicallythephysiochemicalprocessesin- Correspondingauthor.Currentaddress:CD-adapco,Ltd.,Melville,NY11747, volved in ADN monopropellant combustion. The temperatures USA. mentionedinFig.1arerepresentativeofaflameat5atm.Inorder E-mail addresses: [email protected] (P. Thakre), [email protected] (V. Yang). tosimplifyanalysis,theentirecombustionwaveissegmentedinto 0010-2180/$-seefrontmatter(cid:2)2013TheCombustionInstitute.PublishedbyElsevierInc.Allrightsreserved. http://dx.doi.org/10.1016/j.combustflame.2013.08.006 348 P.Thakreetal./CombustionandFlame161(2014)347–362 Nomenclature A cross-sectionalareaofpropellantsample u bulkvelocity A fractionalcross-sectionalareaconsistingofgasbubbles V diffusionvelocityofspeciesi g i intwo-phaseregion D effectivemass-diffusioncoefficientforspeciesi i A pre-exponentialfactorofrateconstantofreactionj D thermaldiffusionratio j Ti A interfaceareabetweenbubblesandliquidperunitvol- v(cid:2) averagenormalvelocitycomponentofvapormolecule s n ume W molecularweightofspeciesi i a pre-exponentialfactorofburning-ratelaw w_ massproductionrateofspeciesi i B temperatureexponentinrateconstantofreactionj w_ massproductionrateofreactionj j Rj C molarconcentrationofspeciesi X molarfractionofspeciesi i i C constant-pressurespecificheatofspeciesi Y massfractionofspeciesi pi i E activationenergyofreactionj j e internalenergy Greeksymbols Hv enthalpyofvaporization / voidfraction h enthalpy q density hi staticenthalpyofspeciesi k thermalconductivity h(cid:5)fi heatofformationofspeciesiunderstandardcondition x_ molarproductionrate k rateconstantofreactionj j m_00 massflux Subscripts N totalnumberofspecies 0+ gas-phasesideofpropellantsurface n pressureexponent 0(cid:4) foamlayersideofpropellantsurface N totalnumberofreactions R c condensedphase p pressure c–g fromcondensedphasetogasphase p pre-exponential factor of vapor pressure in Arrhenius 0 cond condensation form eq equilibriumcondition r propellantburningrate b evap evaporation R universalgasconstant u f mass-averagedquantityinfoamlayer T temperature g gasphase T meltingpointofADN melt l liquidphase T initialdecompositiontemperature d s propellantsurfaceorsolidphase T temperatureatpropellantsurface s v vapor T temperatureinaerosolzone a s stickingcoefficient t time threeregions:solidphase,foamlayer,andgasphase.ForRDXand reactions within bubbles make the physiochemical processes in HMX,thechemicalreactionsinthesolidphasecanbeignored,due thesolid-bubblelayerverychallengingtosimulate. tothehighliquefactiontemperature[34].ForADN,however, the WhenthetemperaturereachesthemeltingpointofADN,ther- situationismorecomplicated,asitundergoessignificantexother- modynamicphasetransitionoccursasdescribedbyR5. micreactionsinthesolidphase.Sharpexothermicityoccurredin- ADN !ADN ðR5Þ stantlywhenthefirstgasproductwasdetected[33].Brilletal.[22] solid liquid proposedtwosetsofinitialdecompositionpathways,accordingto The liquid-bubble layer (Fig. 1) starts at about 366K, close to the observedproductsratiosandtheheat-release.Itissuggestedthat meltingpointofADN.Thethermaldecompositionandevaporation Reaction (R2), which is mildly endothermic, dominates at lower ofADN,bubbleformation,gas-phasereactionswithinbubbles,and temperatureswhenthedecompositionrateislow. interfacialtransportofmassandenergybetweenthegasandcon- densedphasealsotakeplaceintheliquid-bubblelayer.Inthecur- ADN !NH þHNO þN O ðR2Þ ðsÞ 3 3 2 rent approach, since the physiochemical processes in the solid- Reaction(R3),whichisquiteendothermic,islikelytodominateun- bubble and liquid-bubble layers are similar, these two layers are derrapidthermolysisconditions. treatedtogetherasafoamlayer(alsoreferredtoasthesubsurface multi-phaseregion). ADNðsÞ!NH3þHNðNO2Þ2 ðR3Þ Thepropellantundergoesasequenceofrapidevaporationand decompositioninthenearfieldimmediatelyabovethefoamlayer. The product HN(NO ) , usually abbreviated as HDN, is not stable 22 Subsequentdegradationandrecombinationreactionsoccuramong andwilldecomposerapidlythroughreaction theprimaryproducts.Thesereactionsleadtofinalproductsanda HNðNO Þ !NO þHNNO ðR4Þ corresponding flame region. Reaction R6, R7, and R8 are some of 2 2 2 2 thepossiblechemicalpathwaysinthegas-phaseregion[30], Thegaseousdecompositionproductsformbubbleswithinthesolid ADN.InordertoaccuratelypredictADNcombustioncharacteristics, 4NH3þ4NO2!3N2þ2NOþ6H2O ðR6Þ thesolidADNhasbeensubdividedintotwosegments,apuresolid 2NH þ2NO !NH NO þN þH O ðR7Þ 3 2 4 3ðsÞ 2 2 ADNlayerandasolid-bubblelayer(Fig.1).Assumingthatthepure 2NH þ2NO !N OþN þ3H O ðR8Þ 3 2 2 2 2 solidADNlayerremainsthermallystable,anythermaldecomposi- tioncanbeneglected[35]. Onlyheatconductionistakenintoac- AglobalreactionforADNcondensed-phasethermaldecomposition count in this region. The solid-bubble layer starts around 333K isobtainedfromthesummationofallproposedreactions.Reaction [30]. ADNthermal decomposition,sublimation, and thegas-phase (R9)isalsoconsistentwiththemeasuredfinalcomposition[17]. P.Thakreetal./CombustionandFlame161(2014)347–362 349 Fig.1. Schematicofcombustion-wavestructureofADNmonopropellant(nottoscale). 101 the combustion process. The heat feedback from the gas phase can be ignored, on account of a low temperature gradient at the propellantburningsurface[9,24].Theyalsospeculatethatthecon- densed-phase species (ADN and AN) are dispersed into the gas m/s flame due to the high burning rate. The white aerosol zone [24] c and condensed material dispersion in other condensed-phase e, Rat 100 Sinditskii,251K dominating type of combustion [40] seem to support their g Atwood,298K assumption. AccordingtoSinditskii et al.[23,24], as the pressure n ni Strunin,298K increasesmore energy isrequired for ADNdissociation. Thecon- Bur Zenin,293K densed-phase heatrelease, however, stays nearlyconstant, while Price thegas-phaseheatfeedbackisstillinsignificant.Inthismid-pres- Fogelzang,293K surerange,thereappearstobeagapbetweentheenergyrequired Flanagan toheatupandevaporatethecondensed-phasematerialsandthe Korobeinichev 10-1 heat released in the condensed phase; this leads to oscillating 100 101 102 103 andunstablecombustionbehaviorandcausestheobservedburn- Pressure, atm ing-ratedatascatter.Thecompetitionbetweenthefastbutenergy- limitedheat-releaseprocessinthecondensedphaseandtheslow Fig.2. ADNburningratevs.pressurefromvariousmeasurements. butenergy-richheat-releaseprocessinthegasphaseisconsidered to be responsible for the burning-rate irregularity in the 40– 12ADN!3NH þ10N Oþ6NO þ15H Oþ2NOþ6N 100atmpressurerange.Athigherpressures,thegas-phaseflame 3 2 2 2 2 ismuchclosertotheburningsurface,resultinginasteeptemper- þHNO þ2NH NO ðR9Þ 3 4 3ðsÞ aturegradientandheatfeedbacktothecondensedphase;thegas- ADNhas ahigherburningratethanAP,RDX,andHMX.At 5atm, phaseheatfeedbackisadequatetosustainADNdeflagration. theADNburningrateof15mm/s[9]isabout(cid:2)10timeshigherthan InordertoanalyzetheADNcombustionwaveanditsburning thoseofHMX(1.2mm/s)[36]andRDX(1.5mm/s)[37].ADNexhib- characteristics,manycomputationalstudieshavebeenperformed itsauniqueburning-rateirregularityinthepressurerangeof40– basedondetailedchemicalreactionsbymanyresearchers[14–21]. 100atm, as confirmed by many researchers [4,9– Oneofthefirstdetailedgas-phasekineticsmechanismswasdevel- 11,23,24,27,38,39].Theburning-rateinthispressurerangenotonly opedbyErmolinin1990s[19]andimprovedin2004[30].Amech- has a lot of scatter, but also appears to decrease slightly with anismwith32speciesand152reactionswasproposedbyLinand increasingpressureasshowninFig.2[4,9–11,23,24,27,38,39]. ParkbasedontheirabinitioMO/cVRRKMcalculations[16].Incor- TwostablecombustionregionsofADNexistatpressuresbelow porating Park’s scheme and several H/N/O reactions, which have 20atm and above 100atm. According to Sinditskii et al. [23,24], beenwelldevelopedforRDXcombustion[35],amorecomprehen- the condensed-phase decomposition appears to dominate in the sive ADN gas-phase combustion kinetics mechanism was em- low-pressure region. Below 20atm, a significant amount of heat ployedbyLiauetal.[17].TheanalysisofADNself-deflagrationat release from the condensed phase ADN decomposition sustains 6atm obtained a good agreement between predicted and 350 P.Thakreetal./CombustionandFlame161(2014)347–362 measuredresults. Based on a sub-mechanism(22 species and 98 Table2 reaction)fornitraminepropellantcombustionsuggestedbyYetter ThermodynamicandtransportpropertiesofADN. etal.[41]and74additionalreactionsforADNdecompositionprod- Parameter Units Value Ref.orComments uctsproposedbyParketal.[16],Korobeinichevetal.[42]devel- cp,ADN(s) cal/g/K 2.094(cid:6)10(cid:4)1+3.361(cid:6)10(cid:4)4T [44] oped a 33 species and 172 reaction kinetics mechanism. A cal/g/K 0.59 [45] kinetics mechanism includingmore than 100 reactions was used J/kg/K 1.26(cid:6)103 [46] byShmakovetal.tomodelthermaldecompositionofADNvapor cal/g/K 0.49 [24] inatwo-temperatureflowreactor[43]. cp,ADN(l) cp,ADN(l)=cp,ADN(s) NoneoftheADNcombustionmodelsmentionedabovelinkthe kp;ADNðsÞ cal/cm/s/K 1.238(cid:6)10(cid:4)3(cid:4)5.78(cid:6)10(cid:4)7T [44] cal/cm/s/K 0.00193 [45] condensed- and gas-phase kinetics, due to the lack of reliable J/m/s/K 0.419 [46] decomposition mechanism and data on the properties of ADN li- kp;ADNðlÞ kp;ADNðlÞ¼kp;ADNðsÞ quid and its intermediate products. The experimental data avail- qp,ADN(s) g/cm3 1.60–1.84 [46] able at the surface or in the gas phase were used as initial qp,ADN(l) g/cm3 1.55 [49] conditionsinthosedetailedgas-phasecombustionmodels.Inor- Hv,ADN kcal/mol 35.1–37.1 [43] Hmelting,ADN cal/g 32 [9] dertocircumventthelimitationsofthepreviouscombustionmod- kcal/mol 3.4 [5] els,animprovedmodelthatcouplesthecondensedandgas-phase kineticmechanismisneeded.Suchamodelshouldalsobeableto capturetheirregularityofADNburninginthemid-pressurerange. to those in the solid phase. Systematic parametric calculations The first model to couple a global condensed-phase reaction wereperformedinthecurrentwork,duetoavailabilityofvarious with detailed gas-phase kinetics was developed by Gross et al. thermodynamicdataforthecondensedphase.Thevaluesusedin [21,33] Reasonably good agreement of predicted and measured themodelappearinboldinTable2. burning rate in the low pressure (3–10atm) and high pressure (100–200atm) ranges was obtained. A proposed modification of 2.2.Foamlayerregion the interpretation of erratic combustionbehavior in the pressure range of 10–100atm offered by Sinditskii et al. [23,24] was pre- The foam layer consists of the solid-bubble and liquid-bubble sented.Table1summarizestheADNcombustionmodelsofseveral layers(Fig.1).Thephysiochemicalprocessesinthisregionareex- researchers. tremely complex, involving thermal decomposition, sublimation, evaporation,condensation,bubbleformation,gas-phasereactions 2.Theoreticalformulation inbubbles,andinterfacialtransportofmassandenergybetween thegasandcondensedphases.Atwo-phasefluiddynamicsmodel Tofacilitateanalysis,thecoordinatesystemisfixedattheADN based on a spatial averaging technique is employed to formulate propellantburningsurface.Aquasione-dimensionalmodelisfor- these complicated phenomena [35]. The analysis is based on the mulatedasafirstapproximationoftheproblem.Abriefsummary integral form of the conservation laws for control volumes occu- ofthetheoreticalformulationof thephysiochemical processesin piedseparatelybythebubblesandcondensedphases.Inestablish- variousregionsisdescribedinthefollowingsections. ing the gas-phase formulation, the Dupuit-Forchheimer [47] fractional-volumevoidagedefinitionisemployed,givenby 2.1.Solidphaseregion A ¼/A ð2Þ g ThermaldecompositionofADNandradiationabsorptionisig- With the additional assumption that mass diffusion is negligible, noredinmodelingthesolid-phaseprocess.Onlyheatconduction theconservationequationsforbothcondensedphaseandgasphase governedbythefollowingequationisconsidered: canbecombinedandwrittenasfollows. Mass @T @T @ (cid:2) @T (cid:3) qscp;s @tsþqsuscp;s @xc¼@x ks @xs ð1Þ @½ð1(cid:4)/Þqcþ/qg(cid:3)þ @ ½ð1(cid:4)/Þq u þ/q u (cid:3)¼0 ð3Þ @t @x c c g g Aclosed-formsolutionofEq.(1)atsteadystateisavailable,subject Condensedspeciesconcentration toappropriateboundaryconditionsandthepropellantburningrate. Thevariouspropertiesemployedinthepresentworkaresum- @½ð1(cid:4)/Þq Y (cid:3) @ c ci þ ½ð1(cid:4)/Þq u Y (cid:3)¼w_ ði¼1;2;...;N Þ ð4Þ marized in Table 2. The thermal conductivity and specific-heat @t @x c c ci ci c capacity of solid ADN are available in various Refs. Gaseousspeciesconcentration [5,8,9,13,29,34,47,48].ThemeasurementofliquidADNproperties isdifficultbecausedecompositionusuallytakesplacebeforemelt- @ð/qgYgiÞþ@ð/qgugYgiÞ¼w_ ði¼1;2;...;N Þ ð5Þ ing,althoughthedensityofliquidhasbeenreportedbyVelardez @t @x gi g etal.[49].Hence,theliquidpropertiesareassumedtobeidentical Table1 ComparisonofADNcombustionmodels. Authors Num.ofspecies Num.ofreactions Characteristics Ref. Ermolin(1996) 26 256 Gasphasekinetic,experimentaldatawereemployedasboundaryconditions. [19] Parketal.(1998) 33 152 [16] Liauetal.(1998) 33 180 [17] Korobeinichevetal.(2001) 33 172 [42] Shmakovetal.(2001) >100 [43] Ermolin(2004) 34 218 [20] Grossetal.(2006) 33 173 Coupledcondensedandgasphasekinetics [21] Presentmodel 34 165 Optimizedgasphasekinetics,coupledwithcondensedphasereactions P.Thakreetal./CombustionandFlame161(2014)347–362 351 Energy data for ADN vapor pressure correlations. The data employed by Grossetal.[21]isusedinthepresentwork. qc @Tf (cid:4)@pþquc @Tf ¼ @ (cid:2)k @Tf(cid:3)(cid:4)XNg w_ h Based on the chemical mechanism given by reactions (R10)– f f @t @t f f f @x @x f @x gi gi (R12), the species production terms in Eqs. (4) and (5) are listed i¼1 in Table 4. The production terms for reactions in Table 4 are de- (cid:4)XNg w_ h þXNg h Y w_ finedas ci ci gi gi c(cid:4)g i¼1 i¼1 w_ ¼ð1(cid:4)/Þq Y k ð11Þ R10 c c;1 1 (cid:4)XiN¼c1hciYciw_c(cid:4)g ð6Þ ww__R11¼¼ðA1ð(cid:4)k/Þ(cid:4)qckYc;2kÞ2¼Asv(cid:2) C (cid:2)Pv;eq(cid:4)X (cid:3) ðð1132ÞÞ R12 s 12f 12b s n ADN p g;3 Thepropertiesaremass-averagedasfollows (cid:2) Hv(cid:3) qfcf ¼½ð1(cid:4)/Þqcccþ/qgcg(cid:3) ð7Þ Wheres¼1; pv;eq¼p0exp (cid:4)R T ð14Þ u quc ¼½ð1(cid:4)/Þq uc þ/q u c (cid:3) ð8Þ f f f c c c g g g kf ¼½ð1(cid:4)/Þqcuckcþ/qgugkg(cid:3)=½ð1(cid:4)/Þqcucþ/qgug(cid:3) ð9Þ 2.3.Gasphaseregion XNc The species evolved from the burning propellant surface into c ¼ c Y ð10aÞ c ci ci thegasphaseincludevaporADNanditsdecompositionproducts. i¼1 Themodelingofthegasphaseisbasedonthemass,energy,and XNg speciestransportfor amulti-componentchemicallyreactingsys- c ¼ c Y ð10bÞ g gi gi temofNspecies,andaccommodatesfinite-ratechemicalkinetics i¼1 andvariablethermophysicalproperties.Ifbodyforces,viscousdis- XNc k ¼ k Y ð10cÞ sipation, and radiation absorption are ignored, the conservation c ci ci i¼1 equationsforanisobaricflowcanbewrittenasfollows.Itshould XNg benotedthatonlythegasphasewastakenintoaccountinthecur- kg ¼ kgiYgi ð10dÞ renttreatment. i¼1 Mass The mass and energy production terms depend on the specific @ðqAÞ @ þ ðquAÞ¼0 ð15Þ chemicalreactionmechanisms.Themodelaccommodatesthether- @t @x maldecompositionofADN,aswellassubsequentreactionsinthe Speciesconcentration foamlayer.Theformationofgasbubblesduetosublimation,evap- oration and thermal degradation is also considered. Two global @ðqAYiÞþ@½qAðuþViÞYi(cid:3)¼w_ ði¼1;2;...;NÞ ð16Þ decomposition reactions (R10 and R11) are employed for ADN @t @x i decomposition, as listed in Table 3. Reaction (R10) was proposed Energy byBrilletal.,basedonmeasuredcompositionattheburningsur- ! face[22].Itshouldbenotedthatreaction(R10)isidenticaltoreac- @ðqAeÞ @ðqAuhÞ @ @T XN þ ¼ kA (cid:4) qAYVh ð17Þ tion(R9).ReactionR10ishighlyexothermic,andprovidesamajor @t @x @x @x i i i i¼1 heatsourceinthecondensedphase.InRef.[21],theactivationen- ergyofADNdecompositionwasartificiallyincreasedattherateof Table4 100cal/mole per 5atm increase in pressure. The adjustment was Descriptionofspeciesformationinfoamlayer. necessary to obtain a smooth transition between the low- and i Species w_ciorw_gi high-pressure regions. In the current model, this adjustment was notnecessary.SomeofthesolidANparticlesproducedbyreaction 1 ADN(s) (cid:4)ðw_R10þw_R12Þ (R10) disperse into aerosol zone, while the remaining particles 2 AN(s) 16WW21w_R10(cid:4)w_R11 3 ADN(g) w_R12 dtieocno,maspocosemtpharroeudghtorereaacctitoionn(R(R1110),)w. hichisalessexothermicreac- 4 NH3 W4(cid:4)14w_WR110þ112w_WR121(cid:5) Thermodynamicphasetransition(R12)consistingofbothevap- 5 N2O W5(cid:4)ð56w_WR110þ254w_WR121(cid:5) oration (sublimation) and condensation of ADN, is considered to 6 H2O(g) W6(cid:4)ð54w_WR110þ2112w_WR121(cid:5) pemxrooasvcttidreeexstaeeancrotcmhoefprAlseDtseNeedemevsatcporoiaprgtairtoeionenothifsattnhoseotmmknaeoseswvtnarpawonrsitafhetirocneprrdtoaocieensstsyt.,aTbkhueest 78 NNO2 WW78(cid:4)(cid:4)ðð1612ww__WWRR111100þþ2121434ww__WWRR112211(cid:5)(cid:5) place. To achieve the right balance of the condensed- and gas- 9 HNO3(g) W9(cid:4)ð112w_WR110þ14w_WR121(cid:5) penhdasoethheeramtiflcuAxDaNttehveapsourrafaticoen,.itTahpepreeaarrsenseecveesrsaalrsyettosoalfloawvaisloamblee 10 NO2 W10(cid:4)ð12w_WR110þ18w_WR121(cid:5) Table3 Subsurfacechemicalreactionsandrateparameters. No. Reactions A E(kcal/mol) Ref. R10 ADNðsÞ!0:25NH3þð5=6ÞN2Oþ0:5NO2þ1:25H2Oþð1=6ÞNOþ0:5N2þð1=12ÞHNO3þð1=6ÞANðsÞ 3.5e15s(cid:4)1 32 [25] R11 ANðsÞ!ð1=12ÞNH3þð5=24ÞN2Oþð1=8ÞNO2þð21=12ÞH2Oþð1=24ÞNOþð13=24ÞN2þ0:25HNO3 2.5e14s(cid:4)1 47.2 [50] R12 ADNðsÞ()ADNðgÞ 5.0e17Pa 40 [21] 5.1e21Pa 37 [25] 2.8e20Pa 40 [43] 2.5e23Pa 40 [17] 352 P.Thakreetal./CombustionandFlame161(2014)347–362 Thespecificenthalpyofamixtureisthemass-weightedsumofthe @q¼@u¼@Yi¼@T¼0 atx!1 ð26Þ speciesenthalpyh, @x @x @x @x i h¼Xi¼N1hiYi andhi¼ZTrTefcpidTþh(cid:5)fi ð18Þ maGTtchaheseppdhhaaytssetichaaenldpprrfooopacemesllsaleansyteinbruitnhrtneeirngfagascsepuhrfaasceea,ntodpforoamvidleaytehrembuoustnbde- Consequently,thespecificinternalenergybecomes ary conditions for each region. This procedure requires balances ofmassandenergy,andeventuallydeterminestheburningsurface p e¼h(cid:4) ð19Þ conditionsandburningrate.Withtheapplicationofconservation q lawstotheburningsurface,thematchingconditionsareexpressed The mass diffusion velocity V consists of contributions from both asfollows: i concentrationandtemperaturegradients, Mass V ¼(cid:4)D 1 @XiþD DTi 1@T ð20Þ ½ð1(cid:4)/Þqcucþ/qgug(cid:3)0(cid:4) ¼ðquÞ0þ ð27Þ i iX @x i X T @x i i Speciesconcentration Finally,theequationofstateforamulti-componentsystemisde- ½ð1(cid:4)/Þq u Y þ/q u Y (cid:3) ¼½qðuþVÞY(cid:3) ð28Þ rivedtoclosetheformulation. c c ci g g gi 0(cid:4) i i0þ Energy p¼qRuTXi¼N1WYii ð21Þ (cid:6)kfddTxf þð1(cid:4)/ÞqcucYADNðcÞhADNc—g(cid:7) ¼(cid:2)kgddTxg(cid:3) ð29Þ 0(cid:4) 0þ ForasetofN elementaryreactionsinvolvingNspecies,thereac- R Thetemperatureisidenticalonbothsidesoftheinterface,butspe- tionequationscanbewritteninthefollowinggeneralform cies mass fractions could be different. A distinct phase transition XN m0M (k)fj XN m00M; j¼1;2;...;N ð22Þ from liquid to vapor ADN is assumed to prevail at the interface i¼1 ij i kbj i¼1 ij i R [35],giving (cid:6) (cid:2)p (cid:3)(cid:7) awphpeeraerimn0igj aansdamre0i0jaactraentthientshtoeicjthhiofmorewtraircdcaonedffibcaiecnktwsafrodrrsepaecctiioenssi, ½ð1(cid:4)/ÞqcucYADNðcÞ(cid:3)0(cid:4) ¼ sv(cid:2)nCADNðgÞ vp;eq(cid:4)XADNðgÞ 0þ ð30Þ respectively,andMiisthechemicalsymbolforspeciesi.Thereac- Eqs. (27)–(30), coupled with the assumption that qu =q u and l l g g tion rate constant k (either k or k ) is given empirically by the j fj bj T=T [48], are sufficient to solve the set of unknowns (u,T,/,Y) l g c s i Arrheniusexpression atthepropellantsurface. kj¼AjTBjexpð(cid:4)Ej=RuTÞ ð23Þ Foamlayerandsolidphaseinterface The boundary conditions at the interface between solid phase Therateofchangeofmolarconcentrationofspeciesibyreactionjis andfoamlayer(meltingfront)are: ! C_ ¼ðm0 (cid:4)m00Þ k YN Cm0ij(cid:4)k YN Cm0i0j ð24Þ Tc¼Tf ¼Td; and/¼0atx¼xd ð31Þ ij ij ij fj i bj i i¼1 i¼1 Unreactedpropellantboundary(coldboundary) Theboundaryconditionattheunburnedsideofthepropellant ThetotalrateofchangeofspeciesiinEq.(16)isobtainedbysum- (x?(cid:4)1)is mingupthechangesduetoallreactions: T ¼T atx!(cid:4)1 ð32Þ w_i¼WiXNR C_ij ð25Þ wshereinTiiniistheinitialtemperatureofthepropellant. j¼1 Thedetailedgas-phasekineticmechanismemployedinthepresent 3.Numericalmethod model was developed by optimizing the mechanism used by Liau et al. [17]. The NO mole fraction in Liau’s model was underesti- Theoverallcalculationproceedsaccordingtoadouble-iteration mated,andN Omolefractionwasoverestimated.The13reactions procedure, with propellant surface temperature (T) and burning 2 s related to NO consumption and N O production were removed. rate (r ) as the eigenvalues. The inner loop is used to correct T 2 b s Manyparametricvariationswereperformedtogetthebestagree- andtheouterlooptocorrectr .ForagiveninitialguessofT and b s ment between predicted and measured temperature and species r , the conservation equation for the subsurface region is solved b concentrationsprofilesat3,6,and40atm.Basedonthis,pre-expo- first. The resulting species concentrations at the surface are used nentialfactorsoftworeactionsðHNNO þM¼OHþN OþMand to determine the boundary conditions for the gas phase through 2 2 HNNO þNO )HN O Þwerechangedslightly.Finally,anoptimal theinterfacialmatchingconditions.Thenextstepinvolvesintegra- 2 2 3 4 34-speciesand165-reactiongas-phasekineticsmechanismwasob- tionofthegas-phaseconservationequationstoprovidethetem- tainedandemployed.Thechemicalkineticswaskeptconstantfor perature and species-concentration profiles. The non-equilibrium alloperatingpressures. evaporationrepresentedbyEq.(30)isemployedtocheckthecon- vergence of T. If not successful, another inner iteration is per- s 2.4.Boundaryconditions formed using an updated value of T. The outer iteration follows s the same procedure as the inner one, except that r is used as b TherearefourboundariesorinterfacesintheADNcombustion the eigenvalue to check the interfacial energy balance given by wave:thefar-fieldboundaryofthegas-phaseflame,theinterface Eq. (29). Since only the burning rate and surface temperature, between gas phase and foam layer, the interface between foam butnotinterfacialspeciesconcentrations,areinvolvedintheiter- layerandsolidphase,andtheunreactedpropellantboundary. ativeprocedure,thecurrentalgorithmperformsquitewellandsig- Far-fieldgasphaseboundary nificantlyreducesthecomputationalburden. Thefar-fieldconditionsforthegasphaserequirethatthegradi- Eqs.(3)–(6)forthefoamlayerregionaresolvedinanuncoupled entsofflowpropertiesbezero. manner. The method first estimates the new temperature profile P.Thakreetal./CombustionandFlame161(2014)347–362 353 bysolvinganinertenergyequation.Conservationequationsofspe- 850 ciesconcentrationandvoidfractionarethenintegratedusingthe fourth-order Runge–Kutta method with the temperature profile. The energy equation is subsequently solved with the newly ob- 800 tained void fraction and species concentration profiles. Since the K conservationequationsaresolvedinanuncoupledfashion,several e, iterations are required to get a converged solution to satisfy all ur conservationequations. erat 750 p Eqs. (15)–(17) for the gas-phase region are also fully coupled. m e TheyaresolvedusingtheChemkin-Premix[51]packagewithsome T modifications.Therearetwotypesofcomputationaldifficultiesin 700 Predicted the present theoretical formulation. One is the stiffness due to a Measured wide variety of time and length scales associated with chemical reactionsandtransportprocesses,whiletheotheristhecomplex- 650 ityarisingfromtheintertwinedmatchingconditionsatthepropel- 0.0 0.1 0.2 0.3 0.4 0.5 0.6 lantsurface.Thestiffnessproblemofthegas-phaseprocessescan Distance above burning surface, cm beeffectivelycircumventedbyusingacombinedNewton-iteration Fig.3. Predictedandmeasuredprofilesoftemperatureat3atm. and time-integration scheme originally developed by Kee et al. [51]. The Newton method functions efficiently for steady-state solutions,butneedsareasonableinitialguessforsmoothconver- 0.4 gence.Thetime-integrationtechniqueismorerobust,butlesseffi- cient.Tooptimizethebenefitsofthesetwoalgorithms,calculation usuallystartswiththeNewtonmethodand thenswitchestothe HO 0.3 2 integrationschemewhentheiterationfailstoconverge.Afteran- othertrialsolutionisobtainedwithseveraltime-marchingsteps, n NO theNewtonmethodisresumedtogainefficiency.Anadaptive-grid ctio 2 a systemisemployedtofurtherimprovetheconvergencerate,while Fr 0.2 simultaneouslyacquiringthespatialresolutionoftherapidlyvary- ole NO M ingflowpropertiesintheflamezone. 0.1 NH 4.Resultsanddiscussion 3 The results of the current work are divided into two sections. 0.0 0.00 0.05 0.10 0.15 0.20 First,theADNgas-phasekineticsmechanismandflamestructure Distance above burning surface, cm are discussed in detail. Then, results from coupled condensed- andgas-phaseanalysesarepresentedtogiveacompletedescrip- Fig.4. Predictedandmeasuredprofilesofspeciesmolefractionsat3atm. tionoftheADNcombustionmodel. 0.10 4.1.Gas-phasecombustionanalysis N 2 Inordertovalidatethecurrentgas-phasekineticsmechanism, 0.08 experimental data of Korobeinichev et al. [12,42,52] were em- HNO ployed. The conservation equations in the gas phase are solved n 3 o 0.06 andADNgas-phaseflamestructuresat3,6,and40atmarecom- cti puted and analyzed. The boundary conditions for gas species are Fra HONO+NO summarizedinTable5. ole 0.04 2 Figures 3–5 show a comparison of predicted (lines) and mea- M sured(symbols)profilesoftemperatureandspeciesmolefractions 0.02 of ADN gas-phase flame at 3atm. The agreement between pre- dictedandmeasuredtemperatureprofileinFig.3isquitesatisfac- HDN ADN(g) tory.ThemainproductsofADNcombustionat3atmareH O,N , 0.00 2 2 NO,N2O,andNH3.Figures4and5showthatthecalculatedcon- 0.00 0.05 0.10 0.15 0.20 centrations of NH3, N2O, NO and HNO3 match closely with the Distance above burning surface, cm available data [42]. The N species concentration, however, is 2 slightly over-predicted. It should be noted that NO and HONO Fig.5. Predictedandmeasuredprofilesofspeciesmolefractionsat3atm. 2 could not be separated in mass-spectra experiments due to their Table5 Boundaryconditionsforgasphaseflamecalculation. P(atm) xa(mm) m_00(g/cm2/s) NH3 H2O N2 NO N2O ADN(v) HNO3 O2 Ref. 3 0.2 2.15 0.08 0.30 0.08 0.19 0.24 0.03 0.08 – [25] 6 4.19 3.4 0.0675 0.35 0.07 0.25 0.2225 – 0.04 – [17] 40 1.5 3.85 – 0.42 0.18 0.21 0.14 – – 0.05 [52] a xisthedistanceabovethepropellantburningsurface. 354 P.Thakreetal./CombustionandFlame161(2014)347–362 close molecular weights (46g/mol for NO2, 47g/mol for HONO). 1500 0.5 ThepredictionofcombinedNO andHONOconcentrationsisquite 2 closetothemeasurements. T 1400 Figure5showsthatsmallconcentrationofHN(NO ) (i.e.,HDN) 0.4 22 ispredictedclosetotheburningsurface.ThepresenceofHDNin theADNgasflamewasconfirmedbyKorobeinichev[25],although K 1300 n taghnioenimm,pporoloermtfarpnatctitnsiopgnetchpieersopfiathlretaitwaldaoesxcniodomattpriooesnpeoosrft(eNRd4H.)3Iti(nRwt6ah)s.eIcnnoentahsrei-dsseuarrmefdaectzeoornbeee- mperature, 1200 N2O 00..23 ole Fractio (0–0.1cm),thereisatemperatureriseofabout150K. Te 1100 M Figure 6 shows the entire ADN gas-phase flame structure at N 2 3atm.Thefour-zoneflamestructureshowingthetemperaturerise 0.1 1000 to820K(0.1–4cm),1350K(4–9cm),1680K(10–25cm),and fi- NH nallyto2100K(55–100cm)isclearlyseen.Thelatterthreeflames 3 occuratfardownstreamlocationsandthereforecanbepractically 900 0.0 0.5 1.0 1.5 2.0 observed only at high pressures. The major exothermicity in the Distance above burning surface, cm second flame zone ((cid:2)1350K) is due to NH oxidation reactions 3 by NO2 R6, R7, and R8. The corresponding heat-releasing mecha- Fig.7. Predictedandmeasuredprofilesoftemperatureandspeciesmolefractions nisms in the 3rd and 4th flames are the conversion of N O and at6atm. 2 NOtoN ,respectively.Theexistenceofaregionclosetothepro- 2 pellant surface, where the temperature gradient is close to zero was obtained both in predicted and measured [24] temperature 0.5 profiles (0–0.3mm). A non-luminous region, also known as dark zone,isseenat(cid:2)0.1–2cm,markedbyaplateauinthetemperature 0.4 profile.Inthepressurerangeof5–40atm,dark-zonetemperature HO plateaus were observed experimentally from 843 to 1273K [39]. 2 The existence of such dark zones in nitrate esters and nitramine on 0.3 propellantshasbeenaddressedindetailbyYangetal.[53].Figures cti a 7and8showacomparisonofpredictedandmeasuredprofilesof Fr temperatureandspeciesmolefractionsofADNgasflameat6atm. ole 0.2 NO M Theagreementsareverygood. The present calculation results were compared with those of Liauetal.[17]andKorobeinichevetal.[25].Theboundarycondi- 0.1 tionsusedareidentical,andtheonlydifferenceisinthegas-phase HNO kineticsmechanisms.Figures9–12showthatthematchobtained 3 0.0 withexperimentaldatausingthecurrentgas-phasekineticsmech- 0.0 0.5 1.0 1.5 2.0 anismismuchbetterthanthepreviousresultsfromLiauetal.[17] Distance above burning surface, cm andKorobeinichevetal.[25].Subscripts‘‘(0),(1),and(2)’’indicate resultsfromthepresentwork,Liauetal.[17],andKorobeinichev Fig.8. Predictedandmeasuredprofilesofspeciesmolefractionsat6atm. et al. [25], respectively. The improvement in predictions derived byemployingtheoptimal34speciesand165reactionsgas-phase 0.5 kineticsmechanismat6atmisevident. T Three distinct flames, which increase the gas-phase tempera- 1500 (1) ture to 1400K (1–4cm), 1840K (5–15cm), and 2100K (25– T 0.4 100cm)respectively,areshowninFig.13.Thenear-surfacezone 1400 (0) isnotshownintheflamestructureat6atm,sincethemodelcal- 2000 0.4 emperature, K 11230000 N2O(0) N2O(1) 00..23 Mole Fraction T 1100 N N HO T 2(1) 2(0) K 2 0.3 0.1 T), 1600 N on 1000 NH emperature (1200 NH3 NN2OO NO2 2 O2 0.2 Mole Fracti 900 0.5Distance abo1v.0e burni3n(0g) surN1fa.H5ce3(,1 )cm 2.00.0 T 0.1 ADN HDN Fig.9. ComparisonofresultsofLiauetal.[17]andpresentstudyat6atm. HNO 800 3 0.0 culations began at 0.419cm from the propellant surface, where 10-2 10-1 100 101 102 the experimental boundary conditions for species were available Distance above burning surface, cm assummarizedinTable5.Comparingthetemperatureandspecies profiles in Figs 6 and 13, it can be concluded that similar Fig.6. Predictedtemperatureandspeciesmolefractionsat3atm. P.Thakreetal./CombustionandFlame161(2014)347–362 355 0.5 2200 0.5 HO 1500 T 2 T (0) 2000 (2) 0.4 0.4 1400 K 1800 T mperature, K 11230000 N2O(2) N2O(0) 00..23 ole Fraction emperature (T), 11460000 4 NNOO2 N2O N2 O2 00..23Mole Fraction Te 1100 N2(2) M T 1200 NHH3NO 0.1 N 3 2(0) 0.1 1000 0.0 1000 NH 3(0) NH 100 101 102 3(2) 900 0.0 Distance above burning surface, cm 0.5 1.0 1.5 2.0 Distance above burning surface, cm Fig.13. Predictedtemperatureandspeciesmolefractionsat6atm. Fig.10. ComparisonofresultsofKorobeinichevetal.[25]andpresentstudyat 6atm. theflamestand-offdistance,due totheincreasein thepressure- dependentreactionrates. Figures14and15showacomparisonofpredicted(lines)and 0.5 measured(symbols)profilesoftemperatureandspeciesmolefrac- tions of ADN gas-phase flame at 40atm. The agreement again is quite good at high pressure. These calculations were started at 0.4 H2O(0) HO 0.15cm,duetotheavailabilityofspeciesboundaryconditionsat 2 (1) thatlocation,as described in Table5. Figure 16shows the entire n e Fractio 0.3 NO oflarxaeimdsaeetesiontrnuhrceetrauecr.teiToohnfesAihDseNnaoti-tnrsehtlheoaewsgenacbsoepnchatrauisbseeu.ttOihonenlmyotofwdneoelaidnri-gsstduinorcfmatcafleianNmeHexs3- ol 0.2 (0) tendedfrom0.15to10cm.TheconversionofN OandNOtoN is M NO 2 2 (1) stillthemainsourceinsecondandthirdflames,respectively.The finalflameoccursat(cid:2)10cm,muchcloserthanthecorresponding 0.1 onesobservedatlowerpressures. Further analysis was performed to accurately estimate the af- 0.0 fectofpressureontheflamestructureandontheconcentrations 0.5 1.0 1.5 2.0 of some key species. Figures 17 and 18, respectively, show the Distance above burning surface, cm near-surfaceviewandtheoverallflamestructurecomparisonsat Fig.11. ComparisonofresultsofLiauetal.[17]andpresentstudyat6atm. 3,6and40atm.Theflamestand-offdistanceisshortenedsharply byincreasingthepressure,duetoenhancedreactionratesatele- vatedpressure.Theagreementbetweenmeasuredandcalculated temperature profiles at all the studied pressures is quite reason- 0.5 able.Theexistenceofdark-zonetemperatureplateausatdifferent 0.4 1800 0.5 HO HO on 0.3 2 (2) 2 (0) 40atm cti 1600 Fra T 0.4 ole 0.2 NO(0) 1400 M 00..01 HNO3(2)HNO3(0) NO(2) emperature, K 11020000 NO 00..23 Mole Fraction T 0.5 1.0 1.5 2.0 Distance above burning surface, cm 800 0.1 Fig.12. ComparisonofresultsofKorobeinichevetal.[25]andpresentstudyat 600 6atm. NO 2 400 0.0 0.0 0.2 0.4 0.6 0.8 1.0 heat-release mechanisms are at play. There is a difference, how- Distance above burning surface, cm ever,inthelocationoftheflamesatthetwopressures.Theflames at 6atm are closer to the propellant burning surface than their Fig. 14. Predicted and measured profiles of temperature and mole fractions at counterpartsat3atm.Increaseinpressureleadstoadecreasein 40atm. 356 P.Thakreetal./CombustionandFlame161(2014)347–362 0.5 40atm 2000 HO 2 0.4 40atm ole Fraction 00..23 N2 mperature, K1500 6atm M e T O 1000 3atm 0.1 2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 10-1 100 101 Distance above burning surface, cm Distance above burning surface, cm Fig.15. Predictedandmeasuredprofilesofspeciesmolefractionsat40atm. Fig.18. Temperatureprofilesatvariouspressures(0.1–10cm). 0.5 ucts H O, N , O , and NO and their mole fractions (0.396, 0.395, 2 2 2 40atm T 0.194, and 0.008, respectively), at various pressures (shown in 2000 HO Figs.6,13and16)arequiteclose.Pressurehaslittleinfluenceon 2 0.4 ADN final combustion products. It should also be noted that the mole fraction of NOx in final products is less than 1%, making mperature (T), K 11680000 N2 NO 00..23Mole Fraction ArdpeirDcaeNtTcstshtiuaeohnrnemesesAo.nATDdvDheiNrNleoinpncggormaomsrefie-bnpsleuuhtsaslatltoslsiyefosflnfkhraioinflmeweanetmdtitchleeysamtpmsptrtrehoeucperchaetcatluuulnarrrienressetma.nnatctd3alns4opwsaepdceeiaecqnsiuedmastmoaenlleeyddfpir1uar6emc5-- Te tions at pressures exceeding 40atm have not yet been obtained/ O2 compared, due to the lack of experimental data for appropriate 1400 0.1 boundaryconditions.ThereliabilityofcurrenttheADNgas-phase kinetics mechanism in predicting temperature and species mole NO fractions at pressures higher than 40atm should be further 2 1200 0.0 evaluated. 10-1 100 101 Distance above burning surface, cm 4.2.Coupledgasandcondensedphaseanalysis Fig.16. Predictedprofilesoftemperatureandspeciesmolefractionsat40atm. Theresultscalculatedbythecoupledcondensed-andgas-phase combustionmodelareshownanddiscussedinthissubsection.Fig- 1800 ure 21a and b, respectively, show the comparison between pre- dicted (line) and measured [25] (symbols) temperature profiles 1600 40atm inADNgasphaseflameat6atmand40atm.Thetemperaturepro- fileisshownstartingfromthepropellantburningsurface.At6atm, K 1400 the agreement between predictions and data is excellent up to e, 6atm 1.4cm above the propellant surface. The difference in values ur at 1200 er p m 0.5 e T 1000 6 3 40 0.4 800 3atm n 6000.0 0.5 1.0 1.5 2.0 actio 0.3 3 Distance above burning surface, cm e Fr 40atm 6 ol 0.2 M Fig. 17. Calculated and measured temperature profiles at various pressures (0– 2cm). 0.1 HO 2 NO pressuresclose totheburningsurface isalsopredictedwell. Fig- ures 19 and 20 show the influence of pressure on major species 0.0 10-1 100 101 (H O,N ,O ,andNO).Thecontoursofspeciesmolefractionpro- 2 2 2 Distance above burning surface, cm files look similar in shape, except that the pressure increase has displacedthecurvesclosertotheburningsurface.Thefinalprod- Fig.19. Speciesmolefractionprofilesatvariouspressures(0.1–10cm).

Description:
Accepted 12 August 2013. Available online 24 September 2013. Keywords: Ammonium dinitramide. ADN propellant combustion. a b s t r a c t. A comprehensive
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.