CombustionandFlame161(2014)347–362 ContentslistsavailableatScienceDirect Combustion and Flame journal homepage: www.elsevier.com/locate/combustflame Modeling of ammonium dinitramide (ADN) monopropellant combustion with coupled condensed and gas phase kinetics ⇑ Piyush Thakre , Yi Duan, Vigor Yang SchoolofAerospaceEngineering,GeorgiaInstituteofTechnology,Atlanta,GA30332-0150,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Acomprehensivemulti-phasecombustionmodelhasbeendevelopedtostudythephysiochemicalpro- Received28May2013 cessesinvolvedinthecombustionofammoniumdinitramide(ADN).Thenumericalmodelisbasedon Receivedinrevisedform12August2013 theconservationequationsofmass,speciesconcentration,andenergy,andtakesintoaccountfinite-rate Accepted12August2013 chemicalkineticsinbothcondensedandgasphases.Basedonanextensivereviewoftheliteratureon Availableonline24September2013 ADNthermaldecomposition,threeglobaldecompositionreactionsinthecondensedphaseofADNare included.A detailed chemical kineticsscheme involving 34 species and 165reactions is employed in Keywords: the gas phase. Detailed combustion-wave structures and burning rate characteristics of ADN are Ammoniumdinitramide described.Theoptimizedgas-phasekineticsmechanismwasabletopredictthemulti-stageflamestruc- ADNpropellantcombustion ture.Goodagreementsbetweenthepredictedandmeasuredprofilesoftemperatureandspeciesmole fractionswereobtainedatdifferentpressures.Reasonableagreementsbetweencalculatedandmeasured valuesofpropellantburningratesandsurfacetemperatureswereobtainedoverabroadrangeofpressure from0.7to350atm.Theburningrateincreaseswithpressure,exceptinthemidrangeof(cid:2)60–100atm. Thecoupledcondensed-andgas-phaseanalysisemployedinthecurrentmodelisabletocapturethis irregular/unstable combustion behavior in the mid range, where the burning rate decreases with the increaseinpressure. (cid:2)2013TheCombustionInstitute.PublishedbyElsevierInc.Allrightsreserved. 1.Introduction trophotometry [23,24], molecular beam mass-spectrometry (MBMS) [12,25], differential scanning calorimetry (DSC) [13,26], Ammonium dinitramide (ADN) is a novel energetic material thermal gravimetry combined with mass spectrometry (TG-MS) that can be used as a liquid monopropellant or as an ingredient [13,26],opticalpolarizinglightmicroscopy,laser-Ramanspectros- in solid-rocket propellants [1]. It is a low-signature environmen- copy,andenergydispersiveX-raydiffractiontechniques[27].The tallyfriendlypropellant,withchlorine-free combustionproducts. theoreticalmethodsincludeabinitiocalculationbasedonquantum Becauseitoffershigherperformancethanconventionaloxidizers, chemistry[14–16]andnumericalmodelsbasedondetailedchem- ADN is a promising alternative to Ammonium Perchlorate (AP) istry[17–21].Bothself-sustained[22–27]andlaser-inducedcom- andAmmoniumNitrate(AN)[1]. bustion[28,29]havebeenmodeled.Areviewoftheliteratureon ADN, which is an ionic compound (NHþ½NðNO Þ (cid:3)(cid:4)), was first ADN thermal decomposition and its combustion behavior up to 4 2 2 synthesizedin1971attheZelinskyInstituteofOrganicChemistry 2005isdetailedbyYangetal.[30]. in the former Soviet Union [2–4]. In 1989, it was independently Russelletal.[27]confirmedareversiblephasetransitionofan synthesizedbytheStanfordResearchInstitute[5,6].Overthepast ADNcrystal,asdescribedbyreaction fourdecades,significantresearchhasbeenconductedtostudythe combustion wave structure and burning-rate characteristics of a-ADN2(:0)GPab-ADN ðR1Þ ADN. Extensive experimental diagnostics [7–13] and theoretical Theb-ADNhasanewmonoclinicpolymorphicstructure.Themelt- modeling[14–21]havebeenreportedoverabroadrangeofoper- ing point of a-ADN is 365–368K [12,25], significantly lower than ating conditions. The experimental techniques include T-jump/ RDX (478K) [31], HMX (551K) [32], and AP (865K) [33]. The FTIR spectroscopy [22], micro-thermocouple [9,23,24], UV-spec- ADNpropellantmodeledinthepresentpaperisassumedtobea- ADN,withoutanycuringagent. ⇑ Figure1showsschematicallythephysiochemicalprocessesin- Correspondingauthor.Currentaddress:CD-adapco,Ltd.,Melville,NY11747, volved in ADN monopropellant combustion. The temperatures USA. mentionedinFig.1arerepresentativeofaflameat5atm.Inorder E-mail addresses: [email protected] (P. Thakre), [email protected] (V. Yang). tosimplifyanalysis,theentirecombustionwaveissegmentedinto 0010-2180/$-seefrontmatter(cid:2)2013TheCombustionInstitute.PublishedbyElsevierInc.Allrightsreserved. http://dx.doi.org/10.1016/j.combustflame.2013.08.006 348 P.Thakreetal./CombustionandFlame161(2014)347–362 Nomenclature A cross-sectionalareaofpropellantsample u bulkvelocity A fractionalcross-sectionalareaconsistingofgasbubbles V diffusionvelocityofspeciesi g i intwo-phaseregion D effectivemass-diffusioncoefficientforspeciesi i A pre-exponentialfactorofrateconstantofreactionj D thermaldiffusionratio j Ti A interfaceareabetweenbubblesandliquidperunitvol- v(cid:2) averagenormalvelocitycomponentofvapormolecule s n ume W molecularweightofspeciesi i a pre-exponentialfactorofburning-ratelaw w_ massproductionrateofspeciesi i B temperatureexponentinrateconstantofreactionj w_ massproductionrateofreactionj j Rj C molarconcentrationofspeciesi X molarfractionofspeciesi i i C constant-pressurespecificheatofspeciesi Y massfractionofspeciesi pi i E activationenergyofreactionj j e internalenergy Greeksymbols Hv enthalpyofvaporization / voidfraction h enthalpy q density hi staticenthalpyofspeciesi k thermalconductivity h(cid:5)fi heatofformationofspeciesiunderstandardcondition x_ molarproductionrate k rateconstantofreactionj j m_00 massflux Subscripts N totalnumberofspecies 0+ gas-phasesideofpropellantsurface n pressureexponent 0(cid:4) foamlayersideofpropellantsurface N totalnumberofreactions R c condensedphase p pressure c–g fromcondensedphasetogasphase p pre-exponential factor of vapor pressure in Arrhenius 0 cond condensation form eq equilibriumcondition r propellantburningrate b evap evaporation R universalgasconstant u f mass-averagedquantityinfoamlayer T temperature g gasphase T meltingpointofADN melt l liquidphase T initialdecompositiontemperature d s propellantsurfaceorsolidphase T temperatureatpropellantsurface s v vapor T temperatureinaerosolzone a s stickingcoefficient t time threeregions:solidphase,foamlayer,andgasphase.ForRDXand reactions within bubbles make the physiochemical processes in HMX,thechemicalreactionsinthesolidphasecanbeignored,due thesolid-bubblelayerverychallengingtosimulate. tothehighliquefactiontemperature[34].ForADN,however, the WhenthetemperaturereachesthemeltingpointofADN,ther- situationismorecomplicated,asitundergoessignificantexother- modynamicphasetransitionoccursasdescribedbyR5. micreactionsinthesolidphase.Sharpexothermicityoccurredin- ADN !ADN ðR5Þ stantlywhenthefirstgasproductwasdetected[33].Brilletal.[22] solid liquid proposedtwosetsofinitialdecompositionpathways,accordingto The liquid-bubble layer (Fig. 1) starts at about 366K, close to the observedproductsratiosandtheheat-release.Itissuggestedthat meltingpointofADN.Thethermaldecompositionandevaporation Reaction (R2), which is mildly endothermic, dominates at lower ofADN,bubbleformation,gas-phasereactionswithinbubbles,and temperatureswhenthedecompositionrateislow. interfacialtransportofmassandenergybetweenthegasandcon- densedphasealsotakeplaceintheliquid-bubblelayer.Inthecur- ADN !NH þHNO þN O ðR2Þ ðsÞ 3 3 2 rent approach, since the physiochemical processes in the solid- Reaction(R3),whichisquiteendothermic,islikelytodominateun- bubble and liquid-bubble layers are similar, these two layers are derrapidthermolysisconditions. treatedtogetherasafoamlayer(alsoreferredtoasthesubsurface multi-phaseregion). ADNðsÞ!NH3þHNðNO2Þ2 ðR3Þ Thepropellantundergoesasequenceofrapidevaporationand decompositioninthenearfieldimmediatelyabovethefoamlayer. The product HN(NO ) , usually abbreviated as HDN, is not stable 22 Subsequentdegradationandrecombinationreactionsoccuramong andwilldecomposerapidlythroughreaction theprimaryproducts.Thesereactionsleadtofinalproductsanda HNðNO Þ !NO þHNNO ðR4Þ corresponding flame region. Reaction R6, R7, and R8 are some of 2 2 2 2 thepossiblechemicalpathwaysinthegas-phaseregion[30], Thegaseousdecompositionproductsformbubbleswithinthesolid ADN.InordertoaccuratelypredictADNcombustioncharacteristics, 4NH3þ4NO2!3N2þ2NOþ6H2O ðR6Þ thesolidADNhasbeensubdividedintotwosegments,apuresolid 2NH þ2NO !NH NO þN þH O ðR7Þ 3 2 4 3ðsÞ 2 2 ADNlayerandasolid-bubblelayer(Fig.1).Assumingthatthepure 2NH þ2NO !N OþN þ3H O ðR8Þ 3 2 2 2 2 solidADNlayerremainsthermallystable,anythermaldecomposi- tioncanbeneglected[35]. Onlyheatconductionistakenintoac- AglobalreactionforADNcondensed-phasethermaldecomposition count in this region. The solid-bubble layer starts around 333K isobtainedfromthesummationofallproposedreactions.Reaction [30]. ADNthermal decomposition,sublimation, and thegas-phase (R9)isalsoconsistentwiththemeasuredfinalcomposition[17]. P.Thakreetal./CombustionandFlame161(2014)347–362 349 Fig.1. Schematicofcombustion-wavestructureofADNmonopropellant(nottoscale). 101 the combustion process. The heat feedback from the gas phase can be ignored, on account of a low temperature gradient at the propellantburningsurface[9,24].Theyalsospeculatethatthecon- densed-phase species (ADN and AN) are dispersed into the gas m/s flame due to the high burning rate. The white aerosol zone [24] c and condensed material dispersion in other condensed-phase e, Rat 100 Sinditskii,251K dominating type of combustion [40] seem to support their g Atwood,298K assumption. AccordingtoSinditskii et al.[23,24], as the pressure n ni Strunin,298K increasesmore energy isrequired for ADNdissociation. Thecon- Bur Zenin,293K densed-phase heatrelease, however, stays nearlyconstant, while Price thegas-phaseheatfeedbackisstillinsignificant.Inthismid-pres- Fogelzang,293K surerange,thereappearstobeagapbetweentheenergyrequired Flanagan toheatupandevaporatethecondensed-phasematerialsandthe Korobeinichev 10-1 heat released in the condensed phase; this leads to oscillating 100 101 102 103 andunstablecombustionbehaviorandcausestheobservedburn- Pressure, atm ing-ratedatascatter.Thecompetitionbetweenthefastbutenergy- limitedheat-releaseprocessinthecondensedphaseandtheslow Fig.2. ADNburningratevs.pressurefromvariousmeasurements. butenergy-richheat-releaseprocessinthegasphaseisconsidered to be responsible for the burning-rate irregularity in the 40– 12ADN!3NH þ10N Oþ6NO þ15H Oþ2NOþ6N 100atmpressurerange.Athigherpressures,thegas-phaseflame 3 2 2 2 2 ismuchclosertotheburningsurface,resultinginasteeptemper- þHNO þ2NH NO ðR9Þ 3 4 3ðsÞ aturegradientandheatfeedbacktothecondensedphase;thegas- ADNhas ahigherburningratethanAP,RDX,andHMX.At 5atm, phaseheatfeedbackisadequatetosustainADNdeflagration. theADNburningrateof15mm/s[9]isabout(cid:2)10timeshigherthan InordertoanalyzetheADNcombustionwaveanditsburning thoseofHMX(1.2mm/s)[36]andRDX(1.5mm/s)[37].ADNexhib- characteristics,manycomputationalstudieshavebeenperformed itsauniqueburning-rateirregularityinthepressurerangeof40– basedondetailedchemicalreactionsbymanyresearchers[14–21]. 100atm, as confirmed by many researchers [4,9– Oneofthefirstdetailedgas-phasekineticsmechanismswasdevel- 11,23,24,27,38,39].Theburning-rateinthispressurerangenotonly opedbyErmolinin1990s[19]andimprovedin2004[30].Amech- has a lot of scatter, but also appears to decrease slightly with anismwith32speciesand152reactionswasproposedbyLinand increasingpressureasshowninFig.2[4,9–11,23,24,27,38,39]. ParkbasedontheirabinitioMO/cVRRKMcalculations[16].Incor- TwostablecombustionregionsofADNexistatpressuresbelow porating Park’s scheme and several H/N/O reactions, which have 20atm and above 100atm. According to Sinditskii et al. [23,24], beenwelldevelopedforRDXcombustion[35],amorecomprehen- the condensed-phase decomposition appears to dominate in the sive ADN gas-phase combustion kinetics mechanism was em- low-pressure region. Below 20atm, a significant amount of heat ployedbyLiauetal.[17].TheanalysisofADNself-deflagrationat release from the condensed phase ADN decomposition sustains 6atm obtained a good agreement between predicted and 350 P.Thakreetal./CombustionandFlame161(2014)347–362 measuredresults. Based on a sub-mechanism(22 species and 98 Table2 reaction)fornitraminepropellantcombustionsuggestedbyYetter ThermodynamicandtransportpropertiesofADN. etal.[41]and74additionalreactionsforADNdecompositionprod- Parameter Units Value Ref.orComments uctsproposedbyParketal.[16],Korobeinichevetal.[42]devel- cp,ADN(s) cal/g/K 2.094(cid:6)10(cid:4)1+3.361(cid:6)10(cid:4)4T [44] oped a 33 species and 172 reaction kinetics mechanism. A cal/g/K 0.59 [45] kinetics mechanism includingmore than 100 reactions was used J/kg/K 1.26(cid:6)103 [46] byShmakovetal.tomodelthermaldecompositionofADNvapor cal/g/K 0.49 [24] inatwo-temperatureflowreactor[43]. cp,ADN(l) cp,ADN(l)=cp,ADN(s) NoneoftheADNcombustionmodelsmentionedabovelinkthe kp;ADNðsÞ cal/cm/s/K 1.238(cid:6)10(cid:4)3(cid:4)5.78(cid:6)10(cid:4)7T [44] cal/cm/s/K 0.00193 [45] condensed- and gas-phase kinetics, due to the lack of reliable J/m/s/K 0.419 [46] decomposition mechanism and data on the properties of ADN li- kp;ADNðlÞ kp;ADNðlÞ¼kp;ADNðsÞ quid and its intermediate products. The experimental data avail- qp,ADN(s) g/cm3 1.60–1.84 [46] able at the surface or in the gas phase were used as initial qp,ADN(l) g/cm3 1.55 [49] conditionsinthosedetailedgas-phasecombustionmodels.Inor- Hv,ADN kcal/mol 35.1–37.1 [43] Hmelting,ADN cal/g 32 [9] dertocircumventthelimitationsofthepreviouscombustionmod- kcal/mol 3.4 [5] els,animprovedmodelthatcouplesthecondensedandgas-phase kineticmechanismisneeded.Suchamodelshouldalsobeableto capturetheirregularityofADNburninginthemid-pressurerange. to those in the solid phase. Systematic parametric calculations The first model to couple a global condensed-phase reaction wereperformedinthecurrentwork,duetoavailabilityofvarious with detailed gas-phase kinetics was developed by Gross et al. thermodynamicdataforthecondensedphase.Thevaluesusedin [21,33] Reasonably good agreement of predicted and measured themodelappearinboldinTable2. burning rate in the low pressure (3–10atm) and high pressure (100–200atm) ranges was obtained. A proposed modification of 2.2.Foamlayerregion the interpretation of erratic combustionbehavior in the pressure range of 10–100atm offered by Sinditskii et al. [23,24] was pre- The foam layer consists of the solid-bubble and liquid-bubble sented.Table1summarizestheADNcombustionmodelsofseveral layers(Fig.1).Thephysiochemicalprocessesinthisregionareex- researchers. tremely complex, involving thermal decomposition, sublimation, evaporation,condensation,bubbleformation,gas-phasereactions 2.Theoreticalformulation inbubbles,andinterfacialtransportofmassandenergybetween thegasandcondensedphases.Atwo-phasefluiddynamicsmodel Tofacilitateanalysis,thecoordinatesystemisfixedattheADN based on a spatial averaging technique is employed to formulate propellantburningsurface.Aquasione-dimensionalmodelisfor- these complicated phenomena [35]. The analysis is based on the mulatedasafirstapproximationoftheproblem.Abriefsummary integral form of the conservation laws for control volumes occu- ofthetheoreticalformulationof thephysiochemical processesin piedseparatelybythebubblesandcondensedphases.Inestablish- variousregionsisdescribedinthefollowingsections. ing the gas-phase formulation, the Dupuit-Forchheimer [47] fractional-volumevoidagedefinitionisemployed,givenby 2.1.Solidphaseregion A ¼/A ð2Þ g ThermaldecompositionofADNandradiationabsorptionisig- With the additional assumption that mass diffusion is negligible, noredinmodelingthesolid-phaseprocess.Onlyheatconduction theconservationequationsforbothcondensedphaseandgasphase governedbythefollowingequationisconsidered: canbecombinedandwrittenasfollows. Mass @T @T @ (cid:2) @T (cid:3) qscp;s @tsþqsuscp;s @xc¼@x ks @xs ð1Þ @½ð1(cid:4)/Þqcþ/qg(cid:3)þ @ ½ð1(cid:4)/Þq u þ/q u (cid:3)¼0 ð3Þ @t @x c c g g Aclosed-formsolutionofEq.(1)atsteadystateisavailable,subject Condensedspeciesconcentration toappropriateboundaryconditionsandthepropellantburningrate. Thevariouspropertiesemployedinthepresentworkaresum- @½ð1(cid:4)/Þq Y (cid:3) @ c ci þ ½ð1(cid:4)/Þq u Y (cid:3)¼w_ ði¼1;2;...;N Þ ð4Þ marized in Table 2. The thermal conductivity and specific-heat @t @x c c ci ci c capacity of solid ADN are available in various Refs. Gaseousspeciesconcentration [5,8,9,13,29,34,47,48].ThemeasurementofliquidADNproperties isdifficultbecausedecompositionusuallytakesplacebeforemelt- @ð/qgYgiÞþ@ð/qgugYgiÞ¼w_ ði¼1;2;...;N Þ ð5Þ ing,althoughthedensityofliquidhasbeenreportedbyVelardez @t @x gi g etal.[49].Hence,theliquidpropertiesareassumedtobeidentical Table1 ComparisonofADNcombustionmodels. Authors Num.ofspecies Num.ofreactions Characteristics Ref. Ermolin(1996) 26 256 Gasphasekinetic,experimentaldatawereemployedasboundaryconditions. [19] Parketal.(1998) 33 152 [16] Liauetal.(1998) 33 180 [17] Korobeinichevetal.(2001) 33 172 [42] Shmakovetal.(2001) >100 [43] Ermolin(2004) 34 218 [20] Grossetal.(2006) 33 173 Coupledcondensedandgasphasekinetics [21] Presentmodel 34 165 Optimizedgasphasekinetics,coupledwithcondensedphasereactions P.Thakreetal./CombustionandFlame161(2014)347–362 351 Energy data for ADN vapor pressure correlations. The data employed by Grossetal.[21]isusedinthepresentwork. qc @Tf (cid:4)@pþquc @Tf ¼ @ (cid:2)k @Tf(cid:3)(cid:4)XNg w_ h Based on the chemical mechanism given by reactions (R10)– f f @t @t f f f @x @x f @x gi gi (R12), the species production terms in Eqs. (4) and (5) are listed i¼1 in Table 4. The production terms for reactions in Table 4 are de- (cid:4)XNg w_ h þXNg h Y w_ finedas ci ci gi gi c(cid:4)g i¼1 i¼1 w_ ¼ð1(cid:4)/Þq Y k ð11Þ R10 c c;1 1 (cid:4)XiN¼c1hciYciw_c(cid:4)g ð6Þ ww__R11¼¼ðA1ð(cid:4)k/Þ(cid:4)qckYc;2kÞ2¼Asv(cid:2) C (cid:2)Pv;eq(cid:4)X (cid:3) ðð1132ÞÞ R12 s 12f 12b s n ADN p g;3 Thepropertiesaremass-averagedasfollows (cid:2) Hv(cid:3) qfcf ¼½ð1(cid:4)/Þqcccþ/qgcg(cid:3) ð7Þ Wheres¼1; pv;eq¼p0exp (cid:4)R T ð14Þ u quc ¼½ð1(cid:4)/Þq uc þ/q u c (cid:3) ð8Þ f f f c c c g g g kf ¼½ð1(cid:4)/Þqcuckcþ/qgugkg(cid:3)=½ð1(cid:4)/Þqcucþ/qgug(cid:3) ð9Þ 2.3.Gasphaseregion XNc The species evolved from the burning propellant surface into c ¼ c Y ð10aÞ c ci ci thegasphaseincludevaporADNanditsdecompositionproducts. i¼1 Themodelingofthegasphaseisbasedonthemass,energy,and XNg speciestransportfor amulti-componentchemicallyreactingsys- c ¼ c Y ð10bÞ g gi gi temofNspecies,andaccommodatesfinite-ratechemicalkinetics i¼1 andvariablethermophysicalproperties.Ifbodyforces,viscousdis- XNc k ¼ k Y ð10cÞ sipation, and radiation absorption are ignored, the conservation c ci ci i¼1 equationsforanisobaricflowcanbewrittenasfollows.Itshould XNg benotedthatonlythegasphasewastakenintoaccountinthecur- kg ¼ kgiYgi ð10dÞ renttreatment. i¼1 Mass The mass and energy production terms depend on the specific @ðqAÞ @ þ ðquAÞ¼0 ð15Þ chemicalreactionmechanisms.Themodelaccommodatesthether- @t @x maldecompositionofADN,aswellassubsequentreactionsinthe Speciesconcentration foamlayer.Theformationofgasbubblesduetosublimation,evap- oration and thermal degradation is also considered. Two global @ðqAYiÞþ@½qAðuþViÞYi(cid:3)¼w_ ði¼1;2;...;NÞ ð16Þ decomposition reactions (R10 and R11) are employed for ADN @t @x i decomposition, as listed in Table 3. Reaction (R10) was proposed Energy byBrilletal.,basedonmeasuredcompositionattheburningsur- ! face[22].Itshouldbenotedthatreaction(R10)isidenticaltoreac- @ðqAeÞ @ðqAuhÞ @ @T XN þ ¼ kA (cid:4) qAYVh ð17Þ tion(R9).ReactionR10ishighlyexothermic,andprovidesamajor @t @x @x @x i i i i¼1 heatsourceinthecondensedphase.InRef.[21],theactivationen- ergyofADNdecompositionwasartificiallyincreasedattherateof Table4 100cal/mole per 5atm increase in pressure. The adjustment was Descriptionofspeciesformationinfoamlayer. necessary to obtain a smooth transition between the low- and i Species w_ciorw_gi high-pressure regions. In the current model, this adjustment was notnecessary.SomeofthesolidANparticlesproducedbyreaction 1 ADN(s) (cid:4)ðw_R10þw_R12Þ (R10) disperse into aerosol zone, while the remaining particles 2 AN(s) 16WW21w_R10(cid:4)w_R11 3 ADN(g) w_R12 dtieocno,maspocosemtpharroeudghtorereaacctitoionn(R(R1110),)w. hichisalessexothermicreac- 4 NH3 W4(cid:4)14w_WR110þ112w_WR121(cid:5) Thermodynamicphasetransition(R12)consistingofbothevap- 5 N2O W5(cid:4)ð56w_WR110þ254w_WR121(cid:5) oration (sublimation) and condensation of ADN, is considered to 6 H2O(g) W6(cid:4)ð54w_WR110þ2112w_WR121(cid:5) pemxrooasvcttidreeexstaeeancrotcmhoefprAlseDtseNeedemevsatcporoiaprgtairtoeionenothifsattnhoseotmmknaeoseswvtnarpawonrsitafhetirocneprrdtoaocieensstsyt.,aTbkhueest 78 NNO2 WW78(cid:4)(cid:4)ðð1612ww__WWRR111100þþ2121434ww__WWRR112211(cid:5)(cid:5) place. To achieve the right balance of the condensed- and gas- 9 HNO3(g) W9(cid:4)ð112w_WR110þ14w_WR121(cid:5) penhdasoethheeramtiflcuAxDaNttehveapsourrafaticoen,.itTahpepreeaarrsenseecveesrsaalrsyettosoalfloawvaisloamblee 10 NO2 W10(cid:4)ð12w_WR110þ18w_WR121(cid:5) Table3 Subsurfacechemicalreactionsandrateparameters. No. Reactions A E(kcal/mol) Ref. R10 ADNðsÞ!0:25NH3þð5=6ÞN2Oþ0:5NO2þ1:25H2Oþð1=6ÞNOþ0:5N2þð1=12ÞHNO3þð1=6ÞANðsÞ 3.5e15s(cid:4)1 32 [25] R11 ANðsÞ!ð1=12ÞNH3þð5=24ÞN2Oþð1=8ÞNO2þð21=12ÞH2Oþð1=24ÞNOþð13=24ÞN2þ0:25HNO3 2.5e14s(cid:4)1 47.2 [50] R12 ADNðsÞ()ADNðgÞ 5.0e17Pa 40 [21] 5.1e21Pa 37 [25] 2.8e20Pa 40 [43] 2.5e23Pa 40 [17] 352 P.Thakreetal./CombustionandFlame161(2014)347–362 Thespecificenthalpyofamixtureisthemass-weightedsumofthe @q¼@u¼@Yi¼@T¼0 atx!1 ð26Þ speciesenthalpyh, @x @x @x @x i h¼Xi¼N1hiYi andhi¼ZTrTefcpidTþh(cid:5)fi ð18Þ maGTtchaheseppdhhaaytssetichaaenldpprrfooopacemesllsaleansyteinbruitnhrtneeirngfagascsepuhrfaasceea,ntodpforoamvidleaytehrembuoustnbde- Consequently,thespecificinternalenergybecomes ary conditions for each region. This procedure requires balances ofmassandenergy,andeventuallydeterminestheburningsurface p e¼h(cid:4) ð19Þ conditionsandburningrate.Withtheapplicationofconservation q lawstotheburningsurface,thematchingconditionsareexpressed The mass diffusion velocity V consists of contributions from both asfollows: i concentrationandtemperaturegradients, Mass V ¼(cid:4)D 1 @XiþD DTi 1@T ð20Þ ½ð1(cid:4)/Þqcucþ/qgug(cid:3)0(cid:4) ¼ðquÞ0þ ð27Þ i iX @x i X T @x i i Speciesconcentration Finally,theequationofstateforamulti-componentsystemisde- ½ð1(cid:4)/Þq u Y þ/q u Y (cid:3) ¼½qðuþVÞY(cid:3) ð28Þ rivedtoclosetheformulation. c c ci g g gi 0(cid:4) i i0þ Energy p¼qRuTXi¼N1WYii ð21Þ (cid:6)kfddTxf þð1(cid:4)/ÞqcucYADNðcÞhADNc—g(cid:7) ¼(cid:2)kgddTxg(cid:3) ð29Þ 0(cid:4) 0þ ForasetofN elementaryreactionsinvolvingNspecies,thereac- R Thetemperatureisidenticalonbothsidesoftheinterface,butspe- tionequationscanbewritteninthefollowinggeneralform cies mass fractions could be different. A distinct phase transition XN m0M (k)fj XN m00M; j¼1;2;...;N ð22Þ from liquid to vapor ADN is assumed to prevail at the interface i¼1 ij i kbj i¼1 ij i R [35],giving (cid:6) (cid:2)p (cid:3)(cid:7) awphpeeraerimn0igj aansdamre0i0jaactraentthientshtoeicjthhiofmorewtraircdcaonedffibcaiecnktwsafrodrrsepaecctiioenssi, ½ð1(cid:4)/ÞqcucYADNðcÞ(cid:3)0(cid:4) ¼ sv(cid:2)nCADNðgÞ vp;eq(cid:4)XADNðgÞ 0þ ð30Þ respectively,andMiisthechemicalsymbolforspeciesi.Thereac- Eqs. (27)–(30), coupled with the assumption that qu =q u and l l g g tion rate constant k (either k or k ) is given empirically by the j fj bj T=T [48], are sufficient to solve the set of unknowns (u,T,/,Y) l g c s i Arrheniusexpression atthepropellantsurface. kj¼AjTBjexpð(cid:4)Ej=RuTÞ ð23Þ Foamlayerandsolidphaseinterface The boundary conditions at the interface between solid phase Therateofchangeofmolarconcentrationofspeciesibyreactionjis andfoamlayer(meltingfront)are: ! C_ ¼ðm0 (cid:4)m00Þ k YN Cm0ij(cid:4)k YN Cm0i0j ð24Þ Tc¼Tf ¼Td; and/¼0atx¼xd ð31Þ ij ij ij fj i bj i i¼1 i¼1 Unreactedpropellantboundary(coldboundary) Theboundaryconditionattheunburnedsideofthepropellant ThetotalrateofchangeofspeciesiinEq.(16)isobtainedbysum- (x?(cid:4)1)is mingupthechangesduetoallreactions: T ¼T atx!(cid:4)1 ð32Þ w_i¼WiXNR C_ij ð25Þ wshereinTiiniistheinitialtemperatureofthepropellant. j¼1 Thedetailedgas-phasekineticmechanismemployedinthepresent 3.Numericalmethod model was developed by optimizing the mechanism used by Liau et al. [17]. The NO mole fraction in Liau’s model was underesti- Theoverallcalculationproceedsaccordingtoadouble-iteration mated,andN Omolefractionwasoverestimated.The13reactions procedure, with propellant surface temperature (T) and burning 2 s related to NO consumption and N O production were removed. rate (r ) as the eigenvalues. The inner loop is used to correct T 2 b s Manyparametricvariationswereperformedtogetthebestagree- andtheouterlooptocorrectr .ForagiveninitialguessofT and b s ment between predicted and measured temperature and species r , the conservation equation for the subsurface region is solved b concentrationsprofilesat3,6,and40atm.Basedonthis,pre-expo- first. The resulting species concentrations at the surface are used nentialfactorsoftworeactionsðHNNO þM¼OHþN OþMand to determine the boundary conditions for the gas phase through 2 2 HNNO þNO )HN O Þwerechangedslightly.Finally,anoptimal theinterfacialmatchingconditions.Thenextstepinvolvesintegra- 2 2 3 4 34-speciesand165-reactiongas-phasekineticsmechanismwasob- tionofthegas-phaseconservationequationstoprovidethetem- tainedandemployed.Thechemicalkineticswaskeptconstantfor perature and species-concentration profiles. The non-equilibrium alloperatingpressures. evaporationrepresentedbyEq.(30)isemployedtocheckthecon- vergence of T. If not successful, another inner iteration is per- s 2.4.Boundaryconditions formed using an updated value of T. The outer iteration follows s the same procedure as the inner one, except that r is used as b TherearefourboundariesorinterfacesintheADNcombustion the eigenvalue to check the interfacial energy balance given by wave:thefar-fieldboundaryofthegas-phaseflame,theinterface Eq. (29). Since only the burning rate and surface temperature, between gas phase and foam layer, the interface between foam butnotinterfacialspeciesconcentrations,areinvolvedintheiter- layerandsolidphase,andtheunreactedpropellantboundary. ativeprocedure,thecurrentalgorithmperformsquitewellandsig- Far-fieldgasphaseboundary nificantlyreducesthecomputationalburden. Thefar-fieldconditionsforthegasphaserequirethatthegradi- Eqs.(3)–(6)forthefoamlayerregionaresolvedinanuncoupled entsofflowpropertiesbezero. manner. The method first estimates the new temperature profile P.Thakreetal./CombustionandFlame161(2014)347–362 353 bysolvinganinertenergyequation.Conservationequationsofspe- 850 ciesconcentrationandvoidfractionarethenintegratedusingthe fourth-order Runge–Kutta method with the temperature profile. The energy equation is subsequently solved with the newly ob- 800 tained void fraction and species concentration profiles. Since the K conservationequationsaresolvedinanuncoupledfashion,several e, iterations are required to get a converged solution to satisfy all ur conservationequations. erat 750 p Eqs. (15)–(17) for the gas-phase region are also fully coupled. m e TheyaresolvedusingtheChemkin-Premix[51]packagewithsome T modifications.Therearetwotypesofcomputationaldifficultiesin 700 Predicted the present theoretical formulation. One is the stiffness due to a Measured wide variety of time and length scales associated with chemical reactionsandtransportprocesses,whiletheotheristhecomplex- 650 ityarisingfromtheintertwinedmatchingconditionsatthepropel- 0.0 0.1 0.2 0.3 0.4 0.5 0.6 lantsurface.Thestiffnessproblemofthegas-phaseprocessescan Distance above burning surface, cm beeffectivelycircumventedbyusingacombinedNewton-iteration Fig.3. Predictedandmeasuredprofilesoftemperatureat3atm. and time-integration scheme originally developed by Kee et al. [51]. The Newton method functions efficiently for steady-state solutions,butneedsareasonableinitialguessforsmoothconver- 0.4 gence.Thetime-integrationtechniqueismorerobust,butlesseffi- cient.Tooptimizethebenefitsofthesetwoalgorithms,calculation usuallystartswiththeNewtonmethodand thenswitchestothe HO 0.3 2 integrationschemewhentheiterationfailstoconverge.Afteran- othertrialsolutionisobtainedwithseveraltime-marchingsteps, n NO theNewtonmethodisresumedtogainefficiency.Anadaptive-grid ctio 2 a systemisemployedtofurtherimprovetheconvergencerate,while Fr 0.2 simultaneouslyacquiringthespatialresolutionoftherapidlyvary- ole NO M ingflowpropertiesintheflamezone. 0.1 NH 4.Resultsanddiscussion 3 The results of the current work are divided into two sections. 0.0 0.00 0.05 0.10 0.15 0.20 First,theADNgas-phasekineticsmechanismandflamestructure Distance above burning surface, cm are discussed in detail. Then, results from coupled condensed- andgas-phaseanalysesarepresentedtogiveacompletedescrip- Fig.4. Predictedandmeasuredprofilesofspeciesmolefractionsat3atm. tionoftheADNcombustionmodel. 0.10 4.1.Gas-phasecombustionanalysis N 2 Inordertovalidatethecurrentgas-phasekineticsmechanism, 0.08 experimental data of Korobeinichev et al. [12,42,52] were em- HNO ployed. The conservation equations in the gas phase are solved n 3 o 0.06 andADNgas-phaseflamestructuresat3,6,and40atmarecom- cti puted and analyzed. The boundary conditions for gas species are Fra HONO+NO summarizedinTable5. ole 0.04 2 Figures 3–5 show a comparison of predicted (lines) and mea- M sured(symbols)profilesoftemperatureandspeciesmolefractions 0.02 of ADN gas-phase flame at 3atm. The agreement between pre- dictedandmeasuredtemperatureprofileinFig.3isquitesatisfac- HDN ADN(g) tory.ThemainproductsofADNcombustionat3atmareH O,N , 0.00 2 2 NO,N2O,andNH3.Figures4and5showthatthecalculatedcon- 0.00 0.05 0.10 0.15 0.20 centrations of NH3, N2O, NO and HNO3 match closely with the Distance above burning surface, cm available data [42]. The N species concentration, however, is 2 slightly over-predicted. It should be noted that NO and HONO Fig.5. Predictedandmeasuredprofilesofspeciesmolefractionsat3atm. 2 could not be separated in mass-spectra experiments due to their Table5 Boundaryconditionsforgasphaseflamecalculation. P(atm) xa(mm) m_00(g/cm2/s) NH3 H2O N2 NO N2O ADN(v) HNO3 O2 Ref. 3 0.2 2.15 0.08 0.30 0.08 0.19 0.24 0.03 0.08 – [25] 6 4.19 3.4 0.0675 0.35 0.07 0.25 0.2225 – 0.04 – [17] 40 1.5 3.85 – 0.42 0.18 0.21 0.14 – – 0.05 [52] a xisthedistanceabovethepropellantburningsurface. 354 P.Thakreetal./CombustionandFlame161(2014)347–362 close molecular weights (46g/mol for NO2, 47g/mol for HONO). 1500 0.5 ThepredictionofcombinedNO andHONOconcentrationsisquite 2 closetothemeasurements. T 1400 Figure5showsthatsmallconcentrationofHN(NO ) (i.e.,HDN) 0.4 22 ispredictedclosetotheburningsurface.ThepresenceofHDNin theADNgasflamewasconfirmedbyKorobeinichev[25],although K 1300 n taghnioenimm,pporoloermtfarpnatctitnsiopgnetchpieersopfiathlretaitwaldaoesxcniodomattpriooesnpeoosrft(eNRd4H.)3Iti(nRwt6ah)s.eIcnnoentahsrei-dsseuarrmefdaectzeoornbeee- mperature, 1200 N2O 00..23 ole Fractio (0–0.1cm),thereisatemperatureriseofabout150K. Te 1100 M Figure 6 shows the entire ADN gas-phase flame structure at N 2 3atm.Thefour-zoneflamestructureshowingthetemperaturerise 0.1 1000 to820K(0.1–4cm),1350K(4–9cm),1680K(10–25cm),and fi- NH nallyto2100K(55–100cm)isclearlyseen.Thelatterthreeflames 3 occuratfardownstreamlocationsandthereforecanbepractically 900 0.0 0.5 1.0 1.5 2.0 observed only at high pressures. The major exothermicity in the Distance above burning surface, cm second flame zone ((cid:2)1350K) is due to NH oxidation reactions 3 by NO2 R6, R7, and R8. The corresponding heat-releasing mecha- Fig.7. Predictedandmeasuredprofilesoftemperatureandspeciesmolefractions nisms in the 3rd and 4th flames are the conversion of N O and at6atm. 2 NOtoN ,respectively.Theexistenceofaregionclosetothepro- 2 pellant surface, where the temperature gradient is close to zero was obtained both in predicted and measured [24] temperature 0.5 profiles (0–0.3mm). A non-luminous region, also known as dark zone,isseenat(cid:2)0.1–2cm,markedbyaplateauinthetemperature 0.4 profile.Inthepressurerangeof5–40atm,dark-zonetemperature HO plateaus were observed experimentally from 843 to 1273K [39]. 2 The existence of such dark zones in nitrate esters and nitramine on 0.3 propellantshasbeenaddressedindetailbyYangetal.[53].Figures cti a 7and8showacomparisonofpredictedandmeasuredprofilesof Fr temperatureandspeciesmolefractionsofADNgasflameat6atm. ole 0.2 NO M Theagreementsareverygood. The present calculation results were compared with those of Liauetal.[17]andKorobeinichevetal.[25].Theboundarycondi- 0.1 tionsusedareidentical,andtheonlydifferenceisinthegas-phase HNO kineticsmechanisms.Figures9–12showthatthematchobtained 3 0.0 withexperimentaldatausingthecurrentgas-phasekineticsmech- 0.0 0.5 1.0 1.5 2.0 anismismuchbetterthanthepreviousresultsfromLiauetal.[17] Distance above burning surface, cm andKorobeinichevetal.[25].Subscripts‘‘(0),(1),and(2)’’indicate resultsfromthepresentwork,Liauetal.[17],andKorobeinichev Fig.8. Predictedandmeasuredprofilesofspeciesmolefractionsat6atm. et al. [25], respectively. The improvement in predictions derived byemployingtheoptimal34speciesand165reactionsgas-phase 0.5 kineticsmechanismat6atmisevident. T Three distinct flames, which increase the gas-phase tempera- 1500 (1) ture to 1400K (1–4cm), 1840K (5–15cm), and 2100K (25– T 0.4 100cm)respectively,areshowninFig.13.Thenear-surfacezone 1400 (0) isnotshownintheflamestructureat6atm,sincethemodelcal- 2000 0.4 emperature, K 11230000 N2O(0) N2O(1) 00..23 Mole Fraction T 1100 N N HO T 2(1) 2(0) K 2 0.3 0.1 T), 1600 N on 1000 NH emperature (1200 NH3 NN2OO NO2 2 O2 0.2 Mole Fracti 900 0.5Distance abo1v.0e burni3n(0g) surN1fa.H5ce3(,1 )cm 2.00.0 T 0.1 ADN HDN Fig.9. ComparisonofresultsofLiauetal.[17]andpresentstudyat6atm. HNO 800 3 0.0 culations began at 0.419cm from the propellant surface, where 10-2 10-1 100 101 102 the experimental boundary conditions for species were available Distance above burning surface, cm assummarizedinTable5.Comparingthetemperatureandspecies profiles in Figs 6 and 13, it can be concluded that similar Fig.6. Predictedtemperatureandspeciesmolefractionsat3atm. P.Thakreetal./CombustionandFlame161(2014)347–362 355 0.5 2200 0.5 HO 1500 T 2 T (0) 2000 (2) 0.4 0.4 1400 K 1800 T mperature, K 11230000 N2O(2) N2O(0) 00..23 ole Fraction emperature (T), 11460000 4 NNOO2 N2O N2 O2 00..23Mole Fraction Te 1100 N2(2) M T 1200 NHH3NO 0.1 N 3 2(0) 0.1 1000 0.0 1000 NH 3(0) NH 100 101 102 3(2) 900 0.0 Distance above burning surface, cm 0.5 1.0 1.5 2.0 Distance above burning surface, cm Fig.13. Predictedtemperatureandspeciesmolefractionsat6atm. Fig.10. ComparisonofresultsofKorobeinichevetal.[25]andpresentstudyat 6atm. theflamestand-offdistance,due totheincreasein thepressure- dependentreactionrates. Figures14and15showacomparisonofpredicted(lines)and 0.5 measured(symbols)profilesoftemperatureandspeciesmolefrac- tions of ADN gas-phase flame at 40atm. The agreement again is quite good at high pressure. These calculations were started at 0.4 H2O(0) HO 0.15cm,duetotheavailabilityofspeciesboundaryconditionsat 2 (1) thatlocation,as described in Table5. Figure 16shows the entire n e Fractio 0.3 NO oflarxaeimdsaeetesiontrnuhrceetrauecr.teiToohnfesAihDseNnaoti-tnrsehtlheoaewsgenacbsoepnchatrauisbseeu.ttOihonenlmyotofwdneoelaidnri-gsstduinorcfmatcafleianNmeHexs3- ol 0.2 (0) tendedfrom0.15to10cm.TheconversionofN OandNOtoN is M NO 2 2 (1) stillthemainsourceinsecondandthirdflames,respectively.The finalflameoccursat(cid:2)10cm,muchcloserthanthecorresponding 0.1 onesobservedatlowerpressures. Further analysis was performed to accurately estimate the af- 0.0 fectofpressureontheflamestructureandontheconcentrations 0.5 1.0 1.5 2.0 of some key species. Figures 17 and 18, respectively, show the Distance above burning surface, cm near-surfaceviewandtheoverallflamestructurecomparisonsat Fig.11. ComparisonofresultsofLiauetal.[17]andpresentstudyat6atm. 3,6and40atm.Theflamestand-offdistanceisshortenedsharply byincreasingthepressure,duetoenhancedreactionratesatele- vatedpressure.Theagreementbetweenmeasuredandcalculated temperature profiles at all the studied pressures is quite reason- 0.5 able.Theexistenceofdark-zonetemperatureplateausatdifferent 0.4 1800 0.5 HO HO on 0.3 2 (2) 2 (0) 40atm cti 1600 Fra T 0.4 ole 0.2 NO(0) 1400 M 00..01 HNO3(2)HNO3(0) NO(2) emperature, K 11020000 NO 00..23 Mole Fraction T 0.5 1.0 1.5 2.0 Distance above burning surface, cm 800 0.1 Fig.12. ComparisonofresultsofKorobeinichevetal.[25]andpresentstudyat 600 6atm. NO 2 400 0.0 0.0 0.2 0.4 0.6 0.8 1.0 heat-release mechanisms are at play. There is a difference, how- Distance above burning surface, cm ever,inthelocationoftheflamesatthetwopressures.Theflames at 6atm are closer to the propellant burning surface than their Fig. 14. Predicted and measured profiles of temperature and mole fractions at counterpartsat3atm.Increaseinpressureleadstoadecreasein 40atm. 356 P.Thakreetal./CombustionandFlame161(2014)347–362 0.5 40atm 2000 HO 2 0.4 40atm ole Fraction 00..23 N2 mperature, K1500 6atm M e T O 1000 3atm 0.1 2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 10-1 100 101 Distance above burning surface, cm Distance above burning surface, cm Fig.15. Predictedandmeasuredprofilesofspeciesmolefractionsat40atm. Fig.18. Temperatureprofilesatvariouspressures(0.1–10cm). 0.5 ucts H O, N , O , and NO and their mole fractions (0.396, 0.395, 2 2 2 40atm T 0.194, and 0.008, respectively), at various pressures (shown in 2000 HO Figs.6,13and16)arequiteclose.Pressurehaslittleinfluenceon 2 0.4 ADN final combustion products. It should also be noted that the mole fraction of NOx in final products is less than 1%, making mperature (T), K 11680000 N2 NO 00..23Mole Fraction ArdpeirDcaeNtTcstshtiuaeohnrnemesesAo.nATDdvDheiNrNleoinpncggormaomsrefie-bnpsleuuhtsaslatltoslsiyefosflnfkhraioinflmeweanetmdtitchleeysamtpmsptrtrehoeucperchaetcatluuulnarrrienressetma.nnatctd3alns4opwsaepdceeiaecqnsiuedmastmoaenlleeyddfpir1uar6emc5-- Te tions at pressures exceeding 40atm have not yet been obtained/ O2 compared, due to the lack of experimental data for appropriate 1400 0.1 boundaryconditions.ThereliabilityofcurrenttheADNgas-phase kinetics mechanism in predicting temperature and species mole NO fractions at pressures higher than 40atm should be further 2 1200 0.0 evaluated. 10-1 100 101 Distance above burning surface, cm 4.2.Coupledgasandcondensedphaseanalysis Fig.16. Predictedprofilesoftemperatureandspeciesmolefractionsat40atm. Theresultscalculatedbythecoupledcondensed-andgas-phase combustionmodelareshownanddiscussedinthissubsection.Fig- 1800 ure 21a and b, respectively, show the comparison between pre- dicted (line) and measured [25] (symbols) temperature profiles 1600 40atm inADNgasphaseflameat6atmand40atm.Thetemperaturepro- fileisshownstartingfromthepropellantburningsurface.At6atm, K 1400 the agreement between predictions and data is excellent up to e, 6atm 1.4cm above the propellant surface. The difference in values ur at 1200 er p m 0.5 e T 1000 6 3 40 0.4 800 3atm n 6000.0 0.5 1.0 1.5 2.0 actio 0.3 3 Distance above burning surface, cm e Fr 40atm 6 ol 0.2 M Fig. 17. Calculated and measured temperature profiles at various pressures (0– 2cm). 0.1 HO 2 NO pressuresclose totheburningsurface isalsopredictedwell. Fig- ures 19 and 20 show the influence of pressure on major species 0.0 10-1 100 101 (H O,N ,O ,andNO).Thecontoursofspeciesmolefractionpro- 2 2 2 Distance above burning surface, cm files look similar in shape, except that the pressure increase has displacedthecurvesclosertotheburningsurface.Thefinalprod- Fig.19. Speciesmolefractionprofilesatvariouspressures(0.1–10cm).
Description: