Chapter 4 Modeling Interdependent Networks as Random Graphs: Connectivity and Systemic Risk R.M.D’Souza,C.D.BrummittandE.A.Leicht Abstract Idealizedmodelsofinterconnectednetworkscanprovidealaboratoryfor studyingtheconsequencesofinterdependenceinreal-worldnetworks,inparticular thosenetworksconstitutingsociety’scriticalinfrastructure.Hereweshowhowran- domgraphmodelsofconnectivitybetweennetworkscanprovideinsightsintoshifts in percolation properties and into systemic risk. Tradeoffs abound in many of our results.Forinstance,edgesbetweennetworksconferglobalconnectivityusingrela- tivelyfewedges,andthatconnectivitycanbebeneficialinsituationslikecommuni- cationorsupplyingresources,butitcanprovedangerousifepidemicsweretospread onthenetwork.Foraspecificmodelofcascadesofloadinthesystem(namely,the sandpilemodel),wefindthateachnetworkminimizesitsriskofundergoingalarge cascadeifithasanintermediateamountofconnectivitytoothernetworks.Thus,con- nectionsamongnetworksconferbenefitsandcoststhatbalanceatoptimalamounts. However, what is optimal for minimizing cascade risk in one network is subopti- malforminimizingriskinthecollectionofnetworks.Thisworkprovidestoolsfor modelinginterconnectednetworks(orsinglenetworkswithmesoscopicstructure), anditprovideshypothesesontradeoffsininterdependenceandtheirimplicationsfor systemicrisk. B R.M.D’Souza( )·C.D.Brummitt UniversityofCalifornia,Davis,CA95616,USA e-mail:[email protected] C.D.Brummitt e-mail:[email protected] E.A.Leicht CABDyNComplexityCenter,UniversityofOxford,OxfordOX11HO,UK e-mail:[email protected] G.D’AgostinoandA.Scala(eds.),NetworksofNetworks:TheLastFrontierofComplexity, 73 UnderstandingComplexSystems,DOI:10.1007/978-3-319-03518-5_4, ©SpringerInternationalPublishingSwitzerland2014 74 R.M.D’Souzaetal. 4.1 Introduction Collections of networks occupy the core of modern society, spanning technologi- cal, biological, and social systems. Furthermore, many of these networks interact and depend on one another. Conclusions obtained about a network’s structure and functionwhenthatnetworkisviewedinisolationoftenchangeoncethenetworkis placedinthelargercontextofanetwork-of-networksor,equivalently,whenviewed asasystemcomposedofcomplexsystems[13,15].Predictingandcontrollingthese über-systemsisanoutstandingchallengeofincreasingimportancebecausesystem interdependenceisgrowingintime.Forinstance,theincreasinglyprominent“smart grid”isatightlycoupledcyber-physicalsystemthatreliesonhumanoperatorsand that is affected by the social networks of human users. Likewise, global financial markets are increasingly intertwined and implicitly dependent on power and com- munication networks. They are witnessing an escalation in high frequency trades executedbycomputeralgorithmsallowingforunanticipatedanduncontrolledcol- lectivebehaviorlikethe“flashcrash”ofMay2010.Reinsurancecompaniesuncan- nily forecast the increase of extreme events (in particular in the USA) just weeks beforetheonslaughtofSuperstormSandy[59]andstressedtheurgentneedfornew scientificparadigmsforquantifyingextremeevents,risk,andinterdependence[54]. Criticalinfrastructureprovides thesubstrateformodern societyandconsistsof a collection of interdependent networks, such as electric power grids, transporta- tionnetworks,telecommunicationsnetworks,andwaterdistributionnetworks.The proper collective functioning of all these systems enables government operations, emergency response, supply chains, global economies, access to information and education,andavastarrayofotherfunctions.Thepractitionersandengineerswho buildandmaintaincriticalinfrastructurenetworkshavelongbeencatalogingandana- lyzingtheinterdependencebetweenthesedistinctnetworks,withparticularemphasis onfailurescascadingthroughcoupledsystems[19, 21, 29, 42, 51, 55, 56, 60, 61, 63]. Thesedetailed,datadrivenmodelsareextremelyusefulbutnotentirelypractical duetothediversitywithineachinfrastructureandduetodifficultyinobtainingdata. First,eachcriticalinfrastructurenetworkisindependentlyownedandoperated,and eachisbuilttosatisfydistinctoperatingregimesandcriteria.Forinstance,consider thedistinctrequirementsandconstraintsofamunicipaltransportationsystemversus a region of an electric power grid. Even within a municipal transportation system there exist multiple networks and stakeholders, such as publicly funded road net- works and private bus lines and train networks. Second, there are few incentives fordistinctoperatorstosharedatawithothers,soobtainingaviewofacollection of distinctly owned systems is difficult. Third, the couplings between the distinct typesofinfrastructureareoftenonlyrevealedduringextremeevents;forinstance, anaturalgasoutageinNewMexicoinFebruary2011causedrollingelectricpower blackoutsinTexas[16].Thus,evengiventhemostdetailedknowledgeofindividual criticalinfrastructuresystems,itisstilldifficulttoanticipate new types offailures mechanisms(i.e.,somefailuremechanismsare“unknownunknowns”). 4 ModelingInterdependentNetworksasRandomGraphs 75 Idealizedmodelsforinterdependentnetworksprovidealaboratoryfordiscover- ingunknowncouplingsandconsequencesandfordevelopingintuitiononthenew emergentphenomenaandfailuremechanismsthatarisethroughinteractionsbetween distincttypesofsystems.Infact,theideaofmodelingcriticalinfrastructureasacol- lection of “complex interactive networks” was introduced over a decade ago [3]. Yetidealizedmodelsareonlystartingtogaintraction[58, 71],andtheyarelargely based on techniques of random graphs, percolation and dynamical systems (with manytoolsdrawnfromstatisticalphysics).Despiteusingsimilartechniques,these models can lead tocontrasting conclusions. Some analytic formulations show that interdependencemakessystemsradicallymorevulnerabletocascadingfailures[15], whileothersshowthatinterdependencecanconferresiliencetocascades[13]. Givenaspecifiedsetofnetworkproperties,suchasadegreedistributionforthe nodesinthenetwork,randomgraphmodelsconsidertheensembleofallgraphsthat canbeenumeratedconsistentwiththosespecifiedproperties.Onecanuseprobability generatingfunctionstocalculatetheaverageortypicalpropertiesofthisensemble ofnetworks.Inthelimitofaninfinitelylargenumberofnodes,thegeneratingfunc- tions describing structural and dynamic properties are often exactly solvable [52], whichmakesrandomgraphsappealingmodelsthatarewidelyusedassimplemod- elsofrealnetworks.Ofcoursetherearesomedownsidestousingtherandomgraph approach, which will require further research to quantify fully. First, in the real- worldwearetypicallyinterestedinpropertiesofindividualinstancesofnetworks, notofensembleproperties.Second,percolationmodelsonrandomgraphsassume local,epidemic-likespreadingoffailures.Cascadingfailuresinthereal-world,such ascascadingblackoutsinelectricpowergrids,oftenexhibitnon-localjumpswhere a power line fails in one location and triggers a different power line hundreds of miles away to then fail (e.g., see Ref. [1]). This issue is discussed in more detail below in Sect.4.3.4.1. Nonetheless, random graphs provide a useful starting point foranalyzingthepropertiesofsystemsofinterdependentnetworks. Here, in Sect.4.2 we briefly review how random graphs can be used to model thestructuralconnectivitypropertiesbetweennetworks.Then,inSect.4.3weshow how,withthestructuralpropertiesinplace,onecanthenanalyzedynamicalprocess unfoldingoninterconnectednetworkswithafocusoncascadesofloadshedding. 4.2 RandomGraphModelsforInterconnectedNetworks Ourmodelof“interconnectednetworks”consistsofmultiplenetworks(i.e.,graphs) with edges introduced between them. Thus, the system contains multiple kinds of nodes, with one type of node for each network, and one type of edge. A simple illustration of a system of two interconnected networks is shown in Fig.4.1. (A related class of graphs called multiplex networks considers just one type of node butmultiplekindsofedges[49, 70].)Thisgeneralframeworkcanmodeldifferent kindsofsystemsthathaveconnectionstooneanother,oritcancapturemesoscopic structureinasinglenetwork,suchascommunitiesandcore-peripherystructure. 76 R.M.D’Souzaetal. Fig.4.1 Astylizedillustra- tionoftwointerconnected networks, a and b. Nodes interactdirectlywithother nodesintheirimmediatenet- work,yetalsowithnodesin thesecondnetwork 4.2.1 MathematicalFormulation Herewebrieflyreviewthemathematicsforcalculatingthestructuralpropertiesof interconnectednetworksasdiscussedinRef.[40].Inasystemofd ≥2interacting networks, an individual network μ is characterized by a multi-degree distribution {pμ},wherekisad-tuple,(k ,...,k ),and pμ istheprobabilitythatarandomly k 1 d k chosennodeinnetworkμhaskν connectionswithnodesinnetworkν.Arandom graphapproachconsiderstheensembleofallpossiblenetworksconsistentwiththis multi-degreedistribution.Torealizeaparticularinstanceofsuchanetworkwetake the“configurationmodel”approach[10, 47].Startingfromacollectionofisolated nodes,eachnodeindependentlydrawsamulti-degreevectorfrom{pμ}.Next,each k node is given kν many “edge stubs” (or half-edges) of type ν. We create a graph from this collection of labeled nodes and labeled edge stubs by matching pairs of compatible edge stubs chosen uniformly at random. For instance, an edge stub of typeν belongingtoanodeinnetworkμiscompatibleonlywithedgestubsoftype μbelongingtonodesinnetworkν.Generatingfunctionsallowustocalculatethe propertiesofthisensemble. Thegeneratingfunctionforthe{pμ}multi-degreedistributionis k (cid:2)∞ (cid:2)∞ (cid:3)d Gμ(x)= ··· pkμ xνkν, (4.1) k1=0 kd=0 ν=1 wherex isthed-tuple,x = (x ,...,x ).Thisisageneratingfunctionforaprob- 1 d ability distribution already known to us (our multi-degree distribution for network μ),andthusnotterriblyinformativeonitsown.However,wecanderiveadditional generating functions for probability distributions of interest, such as the distribu- tionofsizesofconnectedcomponentsinthesystem.However,wemuchfirstderive 4 ModelingInterdependentNetworksasRandomGraphs 77 Fig.4.2 Adiagramaticalrepresentationofthetopologicalconstraintsplacedonthegenerating function Hμν(x)forthedistributionofsizesofcomponentsreachablebyfollowingarandomly chosenν-μedge.Thelabelsattachedtoeachedgeindicatetypeorflavoroftheedge,andthesum runsoveroverallpossibleflavors two intermediate generating function forms,one for the probability distribution of connectivityforanodeattheendofarandomlychosenedgeandasecondforthe probabilitydistributionofcomponentsizesfoundattheendofarandomedge.Ref- erence [52] contains a clear and thorough discussion of this approach for a single network,whichweapplyheretomultiplenetworks. Firstconsiderfollowinganedgefromanodeinnetworkν toanodeinnetwork μ.Theμnodeiskν timesmorelikelytohaveν-degreekν thandegree1.Thusthe pArcocboaubniltiitnygqfkμoνrothferefaacchtitnhgatawμe-nhoadveeofoflνlo-dweegdreaenkeνdigseprforopmortaionnoadletoinkννptkμo1··a·kνn··o·kdde. inμ,theproperlynormalizedgeneratingfunctionforthedistributionofadditional edgesfromthatμ-nodeis Gμν(x)=k(cid:2)1∞=0···k(cid:2)d∞=0(kν +1)pkkμμ1·ν··(kν+1)···kl γ(cid:3)=d1xγkγ = GG(cid:4)μ(cid:4)μνν((x1)). (4.2) (cid:4) (cid:4) Herekμν = ··· kνpμisthenormalizationfactoraccountingforGμν(1)= 1andkμν isalsk1otheavkedragekν-degree foranodeinnetworkμ.Weuse G(cid:4)μν(x)to denote the first derivative of Gμ(x) with respect to xν and thus G(cid:4)μν(1) = kμν. A systemofd interactingnetworkshasd2 excessdegreegenerating functionsofthe formshowninEq.4.2. Now consider finding, not the connectivity of the μ-node, but the size of the connected component to which it belongs. This probability distribution for sizes of components can be generated by iterating the random-edge-following process describedinEq.4.2,wherewemustconsiderallpossibletypesofnodesthatcould be attached to that μ-node. For an illustration see Fig.4.2. In other words, the μ- nodecouldhavenootherconnections;itmightbeconnectedtoonlyoneothernode andthatnodecouldbelongtoanyofthed networks;itmightbeconnectedtotwo othernodesthatcouldeachbelongtoanyofthed networks;andsoon.Iteratingthe 78 R.M.D’Souzaetal. random-edgeconstructionforeachpossibilityleadstoageneratingfunctionHμνfor thesizesofcomponentsattheendofarandomlyselectededge Hμν(x)= xμq0μ·ν··0 (4.3) (cid:2)1 (cid:3)d + xμ δ1,(cid:4)dλ=1kλqkμ1ν···kd Hγμ(x)kγ k1...kd=0 γ=1 (cid:2)2 (cid:3)d + xμ δ2,(cid:4)dλ=1kλqkμ1ν···kd Hγμ(x)kγ +··· , k1,...,kd=0 γ=1 where δij is the Kronecker delta. Reordering the terms, we find that Hμν can be writtenasafunctionofGμν asfollows: (cid:2)∞ (cid:2)∞ (cid:3)d Hμν(x)= xμ ··· qkμ1ν···kd Hγμ(x)kγ k1=0 kd=0 γ=1 = xμGμν[H1μ(x),...,Hdμ(x)]. (4.4) Hereagain,forasystemofd networks,thereared2self-consistentequationsofthe formshowninEq.4.4. Nowinsteadofselectinganedgeuniformlyatrandom,consideranodechosen uniformlyatrandom.Thisnodeiseitherisolatedorhasedgesleadingtoothernodes in some subset of the d networks in the system. The probability argument above allowsustowriteaself-consistencyequationforthedistributionincomponentsizes towhicharandomlyselectednodebelongs: Hμ(x)= xμGμ[H1μ(x),...,Hdμ(x)]. (4.5) Withthisrelationfor Hμ,wecannowcalculatethedistributionofcomponentsizes and the composition of the components in terms of nodes from various networks. However, our current interest is not in finding the exact probability distribution of the sizes of connected components, but in finding the emergence of large-scale connectivityinasystemofinteractingnetworks.Toaddressthisproblem,weneed only to examine the average component size to which a randomly chosen node belongs.Forexample,theaveragenumberofν-nodesinthecomponentofarandomly chosenμ-nodeis (cid:5) ∂ (cid:5) (cid:5)sμ(cid:6)ν = Hμ(x)(cid:5)(cid:5) ∂xν x=1 =δμνGμ[H1μ(1),...,Hdμ(1)] (cid:2)d + G(cid:4)μλ[H1μ(1),...,Hdμ(1)]Hλ(cid:4)νμ(1) λ=1 4 ModelingInterdependentNetworksasRandomGraphs 79 (cid:2)d = δμν + G(cid:4)μλ(1)Hλ(cid:4)νμ(1). (4.6) λ=1 Table4.1 shows the explicit algebraic expressions derived from Eq. 4.6 for a systemofd = 2 networkswithtwodifferentformsofinternaldegreedistribution andtypesofcouplingbetweennetworks.Wherethealgebraicexpressionfor(cid:5)sμ(cid:6)ν diverges marks the percolation threshold for the onset of a giant component. For instance,thefirstcaseshowninTable4.1isfortwonetworks,aandb,withinternal Poissondistributions,coupledbyathirdPoissondistribution.Forthissituation,the percolationthresholdisdefinedbytheexpression(1−k )(1−k )=k k . aa bb ab ba 4.2.2 ConsequencesofInteractions Toquantifytheconsequencesofinteractionbetweendistinctnetworks,wewantto compare results obtained from the calculations above to a corresponding baseline modelofasingle,isolatednetwork.Interestingdifferencesalreadyariseforthecase of d = 2 interacting networks, which we focus on here. Consider two networks, a and b, with n and n nodes respectively. They have multi-degree distributions a b pa and pb respectively.Thereferencesinglenetwork,C,neglectsthenetwork mkeamkbbershipkaokfbthenodes.ItisofsizenC =na+nbnodes,andhasdegreedistribution ⎡ ⎤ (cid:2)k (cid:8) (cid:9) (cid:2)k (cid:8) (cid:9) pk =⎣fa pkaakbδka+kb,k + fb pkbakbδka+kb,k ⎦, ka,kb=0 ka,kb=0 where f =n /(n +n )and f =n /(n +n ).Inotherwords,networkCisacom- a a a b b b a b positeviewthatneglectswhetheranodebelongstonetworkaorb.Soanodethathad degree{k ,k }intheinteractingnetworkviewhasdegreek =k +k inthecompos- a b a b ite,C,view.Wecomparethepropertiesoftheensembleofrando(cid:12)mgraphscon(cid:13)structed from the interconnected networks multi-degree distribution, pa ,pb , to the kakb kakb propertiesoftheensembleconstructedfromthecomposite, p ,degreedistribution k (Fig.4.3). In Ref. [39], we analyze the situation for two networks with distinct internal Poisson distributions coupled together via a third Poisson distribution. We show thatlarge-scaleconnectivitycanbeachievedwithfewertotaledgesifthenetwork membershipofthenodeisaccountedfor(i.e.,thecompositeC viewrequiresmore edgestoachieveagiantcomponent). Next we show that other effects are possible for different types of networks. Forinstance,thedegreedistributionsthatareatruncatedpowerlawdescribemany real-worldnetworks,suchastheconnectivitybetweenAutonomousSystemsinthe Internetandconnectivitypatternsinsocialcontactnetworks[20].Yetmanycritical infrastructure networks (such as adjacent buses in electric power grids) have very 80 R.M.D’Souzaetal. )] )] 1 1 networktopologies Averagenodecountbytypeandinitialnetwork (cid:5)(cid:6)saa(cid:5)(cid:6)sab(cid:5)(cid:6)sba(cid:5)(cid:6)sbb[−]+k1kkkaabbabba+1(−)(−)−1k1kkkaabbabba kab(−)(−)−1k1kkkaabbabba kba(−)(−)−1k1kkkaabbabba [−]+k1kkkbbaaabba+1(−)(−)−1k1kkkaabbabba (cid:4)(cid:4)αα[−]+[−()+()]k1kkk1G1G1ααaabbabbaαβ+1(cid:4)α(cid:4)(cid:4)αα[−()][−]−[−()+(1G11kkk1G1Gααααbbabbaαβ (cid:4)(cid:4)αα[−()+()]k1G1G1ααabαβ(cid:4)α(cid:4)(cid:4)αα[−()][−]−[−()+()]1G11kkk1G1G1ααααbbabbaαβ (cid:4)α[+−()]k1kG1ααbaaa(cid:4)α(cid:4)(cid:4)αα[−()][−]−[−()+()]1G11kkk1G1G1ααααbbabbaαβ (cid:4)(cid:4)(cid:4)ααα[−()]+[−()−()]k1G1kk1G1G1ααααbbabbaαβ+1(cid:4)α(cid:4)(cid:4)αα[−()][−]−[−()+(1G11kkk1G1Gααααbbabbaαβ g n cti a er nt i nt e er n n diff sso sso hree b-b Poi kbb Poi kbb t or f e p y t e d foraveragecomponentsizebyno Networktopology a-bb-aDistributionparametersGeneratingfunctions PoissonPoisson kkabba (−)(−)(,)=kx1kx1Gxbeeaaaabbaa (−)(−)(,)=kx1kx1Gxbeeababbbba PoissonPoisson kkabba −/κ()1aLixe(−)τ(,)=kx1aaGxbebabaa−/κ()1aLieτa (−)(−)(,)=kx1kx1Gxbeeababbbba s n o si s e pr x E w Table4.1 a-a Poisson kaa Power-la τκ,aa 4 ModelingInterdependentNetworksasRandomGraphs 81 (a) (b) Fig.4.3 Comparingrandomgraphmodelswhichaccountforinteractingnetworks(redline)toran- domgraphmodelswiththeidenticaldegreedistribution,butwhichneglectnetworkmembership (dashedblackline).aThefractionofnodesinthelargestconnectedcomponentfortwointercon- nectednetworkswithPoissondegreedistribution,asedgesareaddedtonetworkb.Accounting fornetworkstructureallowsforagiantcomponenttoemergewithfeweredges.Herena = 4nb. bThecorrespondingfractionalsizeofthegiantcomponentforanetworkwithaPoissondegree distributioncoupledtoanetworkwithatruncatedpowerlawdegreedistributionasthepowerlaw regimeisextended.Herewasseetheoppositeeffecttoa,wherelargescaleconnectivityisdelayed byaccountingfornetworkmembership narrow degree distributions, which we approximate here as Poisson. Thus, we are interested in the consequences of coupling together networks with these different types of distributions. Let network a have an internal distribution described by a truncatedpowerlaw,pa ∝k−τaexp(−k/κ ),andnetworkbhaveaninternalPoisson ka a a distribution.CouplingthesenetworksviaadistinctPoissondistributionisdescribed bythesecondcaseshowninTable4.1.Here,thecompositeC viewrequiresfewer edgestoachieveagiantcomponent,solarge-scaleconnectivityrequiresmoreedges ifthenetworkmembershipofthenodesisaccountedfor.Theeffectsinshiftingthe percolationtransitioncanbeamplifiedifthenetworksareofdistinctsize,n (cid:8)=n . a b For more details on these percolation properties of interconnected networks, see Refs.[39, 40].Also,seeRef.[38]foradiscussionofhowcorrelationsinmultiplex networkscanalterpercolationproperties. 4.3 Application:SandpileCascadesonInterconnectedNetworks Equippedwitharandomgraphmodelofinterconnectednetworksandanunderstand- ingofitspercolationproperties,wenowusethisframeworktoanalyzesystemicrisk bystudyingadynamicalprocessoccurringonsuchinterconnectednetworks.Here weseekamodelthatcapturesriskofwidespreadfailureincriticalinfrastructures. 82 R.M.D’Souzaetal. 4.3.1 TheSandpileModelasaStylizationofCascadingFailure inInfrastructure Acommonfeatureofmanyinfrastructuresisthattheirelementsholdloadofsome kind,andtheycanonlyholdacertainamountofit.Forexample,transmissionlines ofpowergridscancarryonlysomuchelectricitybeforetheytripandnolongercarry electricity [18]; banks can withstand only so much debt without defaulting [30]; hospitalscanholdonlysomanypatients;airportscanaccommodateonlysomany passengersperday.Whenatransmissionline,bank,hospitalorairportpartiallyor completelyfails,thensomeorallofitsload(electricity,debt,patientsortravelers) mayburdenanotherpartofthatnetworkoracompletelydifferentkindofnetwork.For instance,whenatransmissionlinefails,electricityquicklyreroutesthroughoutthe powergrid(thesamenetwork),whereaswhenanairportclosesduetoacatastrophe likeavolcanoeruption[31]travelersmayoverwhelmrailwayandothertransportation networks. Inadditiontoloadsandthresholds,anothercommonalityamongcertainrisksof failure in infrastructure are heavy-tailed probability distributions of event size. In electricpowersystems,forinstance,theamountofenergyunservedduring18years ofNorthAmericanblackoutsresemblesapowerlawoverfourordersofmagnitude, andsimilarlybroaddistributionsarefoundinothermeasuresofblackoutsize[18]. Infinancialmarkets,stockpricesandtradingvolumeshowpowerlawbehavior,in somecaseswithexponentscommontomultiplemarkets[22,26].Ininterbankcredit networks,mostshockstobanksresultinsmallrepercussions,butthe2008financial crisisdemonstratesthatlargecrisescontinuetooccur.Similarlybroaddistributions ofeventsizesalsooccurinnaturalsystemssuchasearthquakes[64],landslides[32] andforestfires[45,65].Someevidencesuggeststhatengineeredsystemslikeelectric powergrids[18]andandfinancialmarkets[22],nottomentionnaturalcatastrophes likeearthquakes[64],landslides[32]andforestfires[45, 65],allshowheavy-tailed eventsizedistributionsbecausetheyself-organizetoacriticalpoint. An archetypal model that captures these two features—of units with capacity for load and of heavy-tailed event size distributions—is the Bak-Tang-Wiesenfeld (BTW)sandpilemodel[5,6].Thismodelconsidersanetworkofelementsthathold load (grains of sand) and that shed their load to their neighbors when their load exceeds their capacity. Interestingly, one overloaded unit can cause a cascade (or avalanche)ofloadtobeshed,andthesecascadesoccurinsizesanddurationsdis- tributedaccordingtopowerlaws.Thisdeliberatelysimplifiedmodelignoresdetailed features of real systems, but its simplicity allows comprehensive study that can in turn generate hypotheses to test in more realistic, detailed models, which we will discussinSect.4.3.4.
Description: