MODELING FRAMEWORK FOR CONTROL OF BACTERIAL NITRIFICATION IN AQUAPONICS-INSPIRED HYDROPONIC SYSTEM by Clayton R. Thurmer (cid:13)c Copyright by Clayton R. Thurmer, 2014 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Electrical Engineering). Golden, Colorado Date Signed: Clayton R. Thurmer Signed: Dr. Kevin L. Moore Thesis Advisor Golden, Colorado Date Signed: Dr. Randy Haupt Professor and Head Department of Electrical Engineering and Computer Science ii ABSTRACT Aquaponics is an agriculture technique that combines recirculating aquaculture systems (fish farming) with hydroponics (growing plants without soil) in an integrated system. The elegant principle behind aquaponics is that fish waste is used to fertilize plants while plants are used to filter toxins from the fish water. Both fish and plant crops may be harvested for food. This concept relies on nitrifying bacteria to convert Nitrogen from toxic to beneficial forms. The apparent trade-offs between energy and water used in aquaponic systems ver- sus other horticulture and aquaculture techniques is not well understood and has motivated the development in this thesis of a system-level model of aquaponic systems with emphasis on defining input streams used, such as: energy, water, and chemical additives; and output streams produced, such as: fish and plant mass. Input streams were identified as the control effort needed to maintain acceptable conditions. An analysis framework was devised using the costs (or values) of input and output streams identified in the model. A long-term goal is to use this framework to increase system efficiency. A lab was designed to provide prelim- inary experimentation. Observation of lab start-up has informed experimental procedures including the chemical simulation of aquatic life. The affects of water temperature set-point changes over steady state operation were investigated experimentally by growing Mesclun cultures from seed to harvest at 80◦ F and 70◦ F. Results show that the 70◦ F set-point resulted in a more efficient system than the 80◦ F system due to decreased energy and water use even though plant biomass was also decreased. Nitrification rates were increased at 70◦ F versus 80◦ F as measured by the increased use of chemical additives and is attributed to an increase in measured dissolved Oxygen at 70◦ F. These results provide useful information for future aquaponic system efficiency studies. iii TABLE OF CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Objectives and Scope . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Initial Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.3 Modified Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Background and Literature Review . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Aquaponics Case Studies . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1.1 Red Rocks Community College . . . . . . . . . . . . . . 4 1.3.1.2 GrowHaus . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 Modeling for Control of Aquaponics Systems . . . . . . . . . . . 5 1.3.3 Analysis Framework . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Summary of Thesis Results and Contributions . . . . . . . . . . . . . . . . 6 1.4.1 Nitrifying Hydroponics Model . . . . . . . . . . . . . . . . . . . . 6 iv 1.4.2 Analysis Framework . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 CHAPTER 2 AQUAPONIC SYSTEMS MODELING . . . . . . . . . . . . . . . . . . 12 2.1 Biological . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1.1 Nutrients . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1.2 Photosynthetically Active Radiation . . . . . . . . . . 14 2.1.1.3 Photosynthesis and Cellular Respiration . . . . . . . . 14 2.1.1.4 Nitrogen Assimilation . . . . . . . . . . . . . . . . . . 15 2.1.1.5 Environmental Parameters . . . . . . . . . . . . . . . 16 2.1.1.6 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.2 Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Chemical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 Simulated Aquatic Life . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Fluidics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.1 Plumbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.2 Water Temperature . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.3 Aeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Control Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6 Abstract Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 v CHAPTER 3 LAB DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 Physical Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Species Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3 Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.1 Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.1.1 Light . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.1.2 Fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.2 Fluidics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.2.1 Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.2.2 Water Heater . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.2.3 Aerators . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.1 Exogenous Inputs . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.2 Intermediate Measurements . . . . . . . . . . . . . . . . . . . . 44 3.4.3 Outputs and Control Effort . . . . . . . . . . . . . . . . . . . . 45 3.5 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.6 Hardware Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.7 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.8 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.8.1 Physical Plant and Plumbing . . . . . . . . . . . . . . . . . . . 59 3.8.2 Actuators and Control . . . . . . . . . . . . . . . . . . . . . . . 61 3.8.3 Sensors and Integration . . . . . . . . . . . . . . . . . . . . . . 61 3.8.4 Additives and Seeds . . . . . . . . . . . . . . . . . . . . . . . . 62 vi 3.9 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.10 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 CHAPTER 4 START-UP AND NOMINAL OPERATION . . . . . . . . . . . . . . . . 66 4.1 Failed Cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 Water Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3 RRCC Water Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4 Preliminary Plant Culture . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 CHAPTER 5 MODEL VERIFICATION AND CONTROL . . . . . . . . . . . . . . . 77 5.1 Control Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 Biochemical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.2.1 pH Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2.2 Water Level Control . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2.3 Aquatic Life Simulation . . . . . . . . . . . . . . . . . . . . . . 81 5.2.4 Combined Biochemical Model . . . . . . . . . . . . . . . . . . . 82 5.3 Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3.2 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3.3 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.4 Fluidics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.4.1 Plumbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4.2 Water Temperature . . . . . . . . . . . . . . . . . . . . . . . . 92 5.4.3 Aeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 vii 5.4.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.4.3.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.4.4 Combined Fluidics Model . . . . . . . . . . . . . . . . . . . . . 97 5.4.5 Design Verification . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.5 Nitrifying Hydroponics Model . . . . . . . . . . . . . . . . . . . . . . . 100 5.6 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 CHAPTER 6 EXPERIMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.4.1 80 Degree F Culture . . . . . . . . . . . . . . . . . . . . . . . 110 6.4.2 70 Degree F Culture . . . . . . . . . . . . . . . . . . . . . . . 111 6.5 Summary and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 117 CHAPTER 7 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . 125 7.1 Contributions of the Thesis Work . . . . . . . . . . . . . . . . . . . . . 125 7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 APPENDIX - SUPPLEMENTAL FILES . . . . . . . . . . . . . . . . . . . . . . . . . 132 viii LIST OF FIGURES Figure 1.1 Layout of the RRCC aquaponics system. . . . . . . . . . . . . . . . . . . . 5 Figure 1.2 Symbolic convention for closed-loop control. . . . . . . . . . . . . . . . . . 7 Figure 1.3 Top-level model of controlled nitrifying hydroponics system. . . . . . . . . . 8 Figure 1.4 Store bought micro-greens. . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 2.1 Block diagram representation of photosynthesis and cellular respiration . 15 Figure 2.2 Block diagram representation of ionic balance in nitrogen assimilation. . . 16 Figure 2.3 Block diagram representation of aquaponic plant life as a MIMO process. . 17 Figure 2.4 Block diagram representation of bacterial nitrification as a MIMO process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 2.5 Illustration of the nitrogen cycle process. . . . . . . . . . . . . . . . . . . 24 Figure 2.6 Block diagram representation of the abstract model for a controlled nitrifying hydroponic system. . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 2.7 Simplified block diagram representation of the abstract model for a controlled nitrifying hydroponic system. . . . . . . . . . . . . . . . . . . . 30 Figure 3.1 Photo of the lab system following the Japan Aquaponics design . . . . . . 33 Figure 3.2 Photo of the complete lab system with select components noted. . . . . . 33 Figure 3.3 Schematic diagram of the lab implementation. . . . . . . . . . . . . . . . 34 Figure 3.4 Impact of the mylar enclosure cnfiguration on measured light and air temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 3.5 Flow rate versus outlet height for AAPW160. . . . . . . . . . . . . . . . . 40 Figure 3.6 Air stone installation in the media bed. . . . . . . . . . . . . . . . . . . . 42 Figure 3.7 Photo of the Arduino data acquisition enclosure. . . . . . . . . . . . . . . 49 ix
Description: