ebook img

Modeling Energetic Efficiency of Biofuels Production PDF

83 Pages·2019·2.459 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling Energetic Efficiency of Biofuels Production

Green Energy and Technology Andrzej Wasiak Modeling Energetic Efficiency of Biofuels Production Green Energy and Technology More information about this series at http://www.springer.com/series/8059 Andrzej Wasiak Modeling Energetic fi Ef ciency of Biofuels Production 123 Andrzej Wasiak Faculty of Engineering Management Bialystok University of Technology Białystok,Poland ISSN 1865-3529 ISSN 1865-3537 (electronic) Green Energy andTechnology ISBN978-3-319-98430-8 ISBN978-3-319-98431-5 (eBook) https://doi.org/10.1007/978-3-319-98431-5 LibraryofCongressControlNumber:2018954610 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Biomass Resources for Biofuel Production . . . . . . . . . . . . . . . . . . . . 3 2.1 Types of Biomass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Forests as Wood Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Short Rotation Crops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Agriculture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Aquatic Biomass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6 Organic Wastes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Technologies of Biofuel Production. . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 Classification of Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Energetic Aspects of Biofuels Production. . . . . . . . . . . . . . . . . . . 30 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Energetic Efficiency of Biofuel Production . . . . . . . . . . . . . . . . . . . . 35 4.1 Thermal Properties of Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1.1 Energetic Efficiency Indicators . . . . . . . . . . . . . . . . . . . . . 37 4.1.2 Partial Indicators for Subsystems Versus Total Efficiency of the System . . . . . . . . . . . . . . . . . . . . . . . . . 41 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5 Mathematical Modeling of Energetic Efficiency of Biofuel Production System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Agricultural Subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 v vi Contents 5.2.1 Partial Energetic Effectiveness of Agricultural Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2.2 Partial Energetic Effectiveness of Internal Transport. . . . . . 52 5.2.3 Numerical Computations . . . . . . . . . . . . . . . . . . . . . . . . . 54 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6 The Effects of Embodied Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.1 Main Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7 Sustainability of Agriculture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.1 Consequences of Biofuel Production . . . . . . . . . . . . . . . . . . . . . . 71 7.2 Measures of Sustainability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.3 Effects of Biofuel Production on Sustainability. . . . . . . . . . . . . . . 73 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 8 Epilog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Chapter 1 Introduction During recent years, biomass became an important resource for the production of biofuels,whichbecameanimportantpartoftheliquidfuelindustry.Severaladvan- tages[1]ofbiofuelproductionanduseasanenergysourceinvarioussituationsare usuallyindicated. First of all, in many countries, it may reduce dependence upon the import of petroleum.Thisobviouslycanbeachievedduetothereplacementofimportedfossil fuelbythebiofuelderivedfromdomesticbiologicalresources.Moreover,avarietyof thoseresourcesareavailable,startingfromediblepartsofplantsthroughnonedible onesorjustwastesfrom,e.g.,foodindustry. Thesecondadvantagecanbeassociatedwiththepossibilityofleverageoflimited supplyoffossilresources.Inspiteofdiverseopinionsabouttheamountsofresources stillavailableorexpectedtobedevelopedinthefuture,itseemsundisputablethat theavailabilityofallresourcesexistingontheEarthislimited.Also,anincreasein theworld’sdemandforprimaryenergyisexpected[2].Therefore,theextensionof energyresourcesbeyondtheavailablefossilfuelsisvaluable. The use of fossil fuels is undoubtedly connected with the emission of carbon dioxide, which is frequently considered as a cause for global warming [e.g., 3, 4]. The technological as well as economic difficulties connected to CO mitigation 2 bringssomeauthors[5]totheconclusionoftheneedforlimitationoffutureaverage world’senergyconsumptiontothelevelofapproximately63GJ/capita/year(what correspondstotheavailablepowerof2kW/capita).Thislimitismuchlowerthan theactualprimaryenergyuseofsomecountries,andlowerthantheactualworld’s average[2]. Sincebiofuelsareconsideredas,atleastpartial,thereplacementoffossilfuels, andtheyareconsideredassubstancesthatemitthisamountofcarbondioxidewhich was earlier absorbed by the plants during their life. It is also supposed that future plantswillalsoabsorbthattheamountofCO duringtheirgrowth.Consequently, 2 atleastinequilibrium,thoseactsofemissionandabsorptiondonotbringadditional carbondioxidefromtheEarthdeposits. ©SpringerNatureSwitzerlandAG2019 1 A.Wasiak,ModelingEnergeticEfficiencyofBiofuelsProduction,GreenEnergy andTechnology,https://doi.org/10.1007/978-3-319-98431-5_1 2 1 Introduction Several technologies enabling the conversion of various types of biomass onto biofuelshavealreadybeenelaborated.Thosetechnologiesinvolveseveralbiomass resources, various forms of biofuels and a number of technologies converting the specificformofbiomassintobiofuel.Atypicalsituationinalltechnologiesofcon- versionistheneedforsomeamountsofenergythathastobeprovidedinorderto facilitateconversionprocesses. Thetypicalstructureofabiofuelproductionsystemcontainsthecouplingbetween agriculturalandindustrialsubsystemsbyflowsofsubstancesundergoingconversion onsubsequentsteps,andfluxesofenergyprovidedtothesteps,onwhichthecon- versionoccurs.Sincetheagriculturalproductionisdistributedontherelativelylarge areaascomparedtoindustrialproductiontheneedsfortransportationofmachines and materials across the fields, as well as the transportation of the crops between theplantationsandindustrialprocessingfacilityoccurs.Thistransport,inaddition to conversion processes, also consumes some energy, increasing the total energy consumptionwithintheproductionsystem. In all cases, however, it is important that the processes occurring in the whole productionsystemshouldnotconsumemoreenergythantheamountofenergythat canbeobtainedintheformoffinalbiofuel.Otherwise,nogainofenergyisachieved. Themainaimofthepresentbookistopresenttheinvestigationsonenergybalancein biofuelproductionsystems,andtheeffectscausedbyindividualprocessesoccurring invariouspartsofproductionsystems. References 1. Sheehan, J., Camobreco V., Duffield J., Graboski M., Shapouri H.: Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. NREL/SR-580-24089 UC Category 1503 2. Moriarty,P.,Honnery,D.:Whatistheglobalpotentialforrenewableenergy?Renew.Sustain. EnergyRev.16,244–252(2012) 3. Revelle,R.:Carbondioxideandothergreenhousegasesinocean,atmosphere,andbiosphere, andfutureclimaticimpacts.Stud.Environ.Sci.26,405–4284(1986) 4. BeckE.G.:180yearsofatmosphericCO2gasanalysisbychemicalmethods,EnergyEnviron. 18(2)(2007) 5. SprengD.:Distributionofenergyconsumptionandthe2000W/capitatarget.EnergyPolicy. 33,1905–1911(2005) Chapter 2 Biomass Resources for Biofuel Production 2.1 TypesofBiomass Dependingonitsorigin,biomassmayexhibitverydifferentproperties,and,therefore, requirequitedifferenttreatmentsinconversionintousefulproducts.Inaddition,the sourcesofbiomassareverydifferent.Somesourcesofbiomassarebasedonthewild lifeofplants,andotherorganisms.Thiscanbeexemplifiedbywildforestsoraquatic organisms,especiallythoselivinginoceans.Theothertypeiscultivated.Insucha case,thestandforusefulcropsisusuallyprepared,theorganismscarefullyprotected, and finallycollected. Usually,except fortheusefulpart,somepartof thebiomass islesssuitableandconsistsofsomewastes,whichrequireothertypeofutilization, different from that of the main crop. Figure 2.1 gives an example of several types of biomass resources that are used for fuel production. The figure contains only operations that are needed to obtain biomass prior to conversion of biofuels. The energeticcropsarevariousplantsthatarecultivatedespeciallytoproducesomekind offuel.Themajorityofsuchplantsarelandspecies;however,inrecenttimes,some aquaticspeciesarebeingunderconsideration,atleastattheexperimentallevel.The landspeciesaremostlys.c.shortrotationplants,whichmeanstheyareproducedin onetofewyearscycles. Suchplantationsrequirevariousformsoftillage,applicationoffertilizers,crop protectionmeans,andobviouslyharvesting. Theothertypesofbiomassthatcanbeusedforfuelproductionareagricultural residuesorwastes—theamountsofbiomassremainingaftertheremovalofedible partsofthecrops(fruits,grains,etc.).Utilizationofthosepartsofbiomassrequires the choice of processes well suited to the specific characteristics of particular by- productsthathavetobeconvertedtoanenergycarrier.Itshouldbealsomentioned thatquitefrequentlyediblepartsoftheplantsarealsousedforbiofuelproduction, e.g.,rapeseedormaizegrains. ©SpringerNatureSwitzerlandAG2019 3 A.Wasiak,ModelingEnergeticEfficiencyofBiofuelsProduction,GreenEnergy andTechnology,https://doi.org/10.1007/978-3-319-98431-5_2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.