ebook img

Modeling, design and realization of microfluidic components PDF

247 Pages·2000·8.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling, design and realization of microfluidic components

MODELING, DESIGN AND REALIZATION OF MICROFLUIDIC COMPONENTS Edwin Oosterbroek The research described in this thesis was carried out at the Micromechanical Transducers Group of the MESA Research Institute at the University of Twente, Enschede, The Netherlands. The project was financially supported by the OSF funds “Micro total analysis systems (µTAS), societal impact and fundamental micromechanical, optical and chemical aspects” of the University of Twente. Promotiecommissie: Voorzitter Prof.dr. H. Wallinga Universiteit Twente Secretaris Prof.dr. H. Wallinga Universiteit Twente Promotoren Prof.dr.ir. A. van den Berg Universiteit Twente Prof.dr. M.C. Elwenspoek Universiteit Twente Leden Prof.dr.ir. J.A.M. Kuipers Universiteit Twente Prof.dr.ir. H. Tijdeman Universiteit Twente Prof.dr. P.J. French Technische Universiteit Delft Prof. G. Stemme The Royal Institute of Technology, Stockholm Prof. R. Zengerle Albert-Ludwigs Universität, Freiburg CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG Oosterbroek, Rijk Edwin Modeling, design and realization of microfluidic components / Rijk Edwin Oosterbroek [S.I. : s.n.] Ph.D. thesis University of Twente, Enschede, The Netherlands ISBN 90-36513464 Subject headings: µTAS / microsystem technology / flowsensors / microvalves / modeling Copyright © 1999 by R.E. Oosterbroek, Enschede, The Netherlands MODELING, DESIGN AND REALIZATION OF MICROFLUIDIC COMPONENTS PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magnificus, prof.dr. F.A. van Vught, volgens besluit van het College voor Promoties in het openbaar te verdedigen op vrijdag 12 november 1999 te 16.45 uur. door Rijk Edwin Oosterbroek geboren op 28 januari 1970 te Borne Dit proefschrift is goedgekeurd door de promotoren: Prof.dr.ir. A. van den Berg Prof.dr. M.C. Elwenspoek CONTENTS 1 INTRODUCTION..................................................................................................................1 1.1 Title explanation.............................................................................................................1 1.2 Microsystem research.....................................................................................................2 1.3 Project description..........................................................................................................3 1.4 Outline............................................................................................................................3 2 HISTORY AND LITERATURE SURVEY OF MST AND µTAS.......................................7 2.1 Classification of microsystems technology....................................................................7 2.2 Microsystem technology history....................................................................................9 2.3 Classification of µTAS.................................................................................................11 2.4 History of micro chemical analysis systems.................................................................13 2.5 Designing and modeling of microsystems....................................................................14 2.6 Device and system simulation tools.............................................................................18 2.7 Trends and prospects of MST and µTAS.....................................................................21 3 MICRO FLUID DYNAMICS..............................................................................................31 3.1 Introduction..................................................................................................................31 3.2 Quantitative down-scaling effects................................................................................32 3.3 Fluid dynamics.............................................................................................................36 3.4 Surface effects in micro-flows......................................................................................38 3.4.1 Introduction...........................................................................................................38 3.4.2 Surface energy......................................................................................................38 3.4.3 Double layers........................................................................................................40 3.5 Hydraulic channel resistance in stationary flows.........................................................43 3.5.1 Introduction...........................................................................................................43 3.5.2 Numerical solutions of the Laplace equation........................................................43 3.5.3 Exact analytical solutions.....................................................................................46 3.5.4 The virtual work principle....................................................................................47 3.5.5 Channel resistance................................................................................................56 3.6 Conclusions:.................................................................................................................60 4 THE PRESSURE / FLOW SENSOR, A CASE STUDY....................................................65 4.1 Introduction..................................................................................................................65 4.2 The flow sensing principle...........................................................................................67 4.3 Fabrication....................................................................................................................68 4.4 Modeling of the stationary sensor behavior.................................................................72 4.4.1 Membrane deflection............................................................................................72 4.4.2 Electric pressure-sensor capacitance.....................................................................74 4.4.3 The hydraulic resistance.......................................................................................75 4.5 Modeling of the quasi-dynamic sensor behavior..........................................................78 4.6 Accuracy and stability..................................................................................................82 4.7 Viscosity versus inertance induced dissipation............................................................84 4.8 Conclusions and discussion..........................................................................................85 5 MICROVALVES.................................................................................................................89 5.1 Introduction..................................................................................................................89 5.2 Valve types...................................................................................................................91 5.2.1 Passive valves.......................................................................................................91 5.2.2 Active valves.........................................................................................................92 5.3 The bossed valve..........................................................................................................94 5.3.1 Introduction...........................................................................................................94 5.3.2 Surface micromachined bossed valves.................................................................94 5.3.3 Bulk micromachined bossed valves......................................................................97 5.3.4 Selective fusion bonding.....................................................................................100 5.4 The membrane valve..................................................................................................103 5.4.1 Introduction.........................................................................................................103 5.4.2 Membrane check / pressure actuated normally open valves...............................104 5.4.3 Pressure actuated normally closed valves...........................................................105 5.5 The duckbill check valve............................................................................................107 5.5.1 Principle..............................................................................................................107 5.5.2 Design and fabrication of thin <111> oriented membranes................................108 5.5.3 Membrane tapering.............................................................................................111 5.5.4 Applications........................................................................................................113 5.5.5 Selective anodic bonding....................................................................................114 5.6 Micromachining possibilities in <111> oriented silicon............................................115 5.6.1 Introduction.........................................................................................................115 5.6.2 Crystallographic orientations in <111> wafers...................................................115 5.6.3 Pre-etching without wall coating........................................................................117 5.6.4 Pre-etching with wall coating.............................................................................118 5.7 Conclusions................................................................................................................121 6 FLOW-STRUCTURE COUPLING...................................................................................135 6.1 Introduction................................................................................................................135 6.2 Flow-structure interaction in check valves.................................................................136 6.3 Numerical implementation.........................................................................................139 6.3.1 Introduction.........................................................................................................139 6.3.2 Bi-directional coupled solving............................................................................140 6.4 Domain de-coupling...................................................................................................148 6.5 Stability.......................................................................................................................148 6.6 Conclusions................................................................................................................152 7 VALVE CHARACTERIZATION.....................................................................................155 7.1 Introduction................................................................................................................155 7.2 Characterization setup................................................................................................156 7.3 The bossed valve........................................................................................................158 7.3.1 Structural mechanics...........................................................................................158 7.3.2 Flow-structure coupling......................................................................................166 7.4 The membrane valve..................................................................................................171 7.4.1 Membrane check / pressure actuated normally open valve................................171 7.4.2 The pressure actuated normally closed valve.....................................................178 7.5 The duckbill valve......................................................................................................183 7.5.1 Membrane analysis.............................................................................................183 7.5.2 Flow-structure coupling......................................................................................189 7.6 Conclusions................................................................................................................193 8 CONCLUSIONS & OUTLOOK.......................................................................................197 8.1 Overview....................................................................................................................197 8.2 Outlook.......................................................................................................................199 A BOSSED VALVE FABRICATION PROCESS DESCRIPTION.....................................203 B DUCKBILL VALVE FABRICATION PROCESS DESCRIPTION................................217 SUMMARY............................................................................................................................227 SAMENVATTING.................................................................................................................229 BIBLIOGRAPHY...................................................................................................................231 DANKWOORD......................................................................................................................235 BIOGRAPHY..........................................................................................................................238 LEVENSLOOP.......................................................................................................................239 1 1 1 IINNTTRROODDUUCCTTIIOONN The first chapter gives an impression of the fascinating world of micromechanics and the relevance of the achievements of microsystem research for “daily life” and the future. Specific attention is paid to position of the work, described in this thesis, in the framework of the research done within the MESA+ Research Institute and more specific within the µTAS orientation. Thereafter, the aims of the project are discussed and a brief overview is given of the subject-matter of the following chapters in this thesis. 1.1 Title explanation The thesis title “Modeling, design and realization of microfluidics components” refers to the described activities performed in the microfluidic research area. Microfluidics is a rather new term for describing the world of controlling and using small fluid flows with use of microsystem components. The word originates from the term “fluidics” used in the “macro world”. It is a contraction of the words “fluid” and “logics” and used to indicate the research area that deals with fluid control to make logic Boolean switches [14,4,20]. With use of the Coanda effect valve-less bi- or mono-stable switches are made to construct for example AND and OR switches. Microfluidics however covers a broader area including all types of passive and active valves, micro flow and pressure sources as well as flow and pressure sensors [16,11,32,6] made with micromachining techniques. In this thesis a few components within the microfluidics area will be scrutinized. From these components the design trajectories will be followed, starting with the theoretical 2 Chapter 1 description followed by the modeling and fabrication stage and finishing with performing measurement results. 1.2 Microsystem research The fascinating and fast growing world of microsystem technology plays more often an important role in daily life. Simply said, microsystem technology covers the area of small, microns sized systems and devices. A more detailed discussion about the definition of microsystem technology is found in chapter 2. Examples of microdevices that are very successful nowadays are among others the inkjet nozzles [3], airbag (acceleration) sensors [22], pressure sensors [8,19] in for example car engines and magnetic recording heads for computer harddisks [15,30,18]. The research area started some 30 years ago, arisen from the electronic semiconductor development. This history has influenced the development of micromechanics substantially. Microsystems allow for example high level integration with electronic integrated circuitry and large reduction of costs by mass fabrication processing. Integration with electronic circuits allows for the extension of the nowadays highly developed microprocessors with sensors and actuators [29]. In this way electronic circuitry will get “sense-organs” and “hands”. On the other hand, dimension reduction not only allows the fabrication of smaller systems but also can improve signal quality as well as sensitivity and facilitates exploiting physical and chemical effects that become dominant and usable when downscaling occurs [12,13]. For chemical analysis systems this means that for classical analysis methods, the needed time can be speeded-up, less sample material and reagents are needed and better quality reaction products can be obtained [26]. In chapter 2 the benefits of downscaling will be discussed in more detail as well as the fast growing area of µTAS which stands for Micro Total Analysis Systems [26]. µTAS covers the research of miniaturized chemical analysis systems and the microfluidics components needed to complete such systems. The last years the development of microfluidic components is strongly influenced by the successes of the µTAS analysis research and the fast growth of companies active in this business [24]. Miniaturization has caused a revolution in information gathering in biochemistry. The lab- on-a-chip approach makes massive parallel DNA analysis and PCR techniques available, resulting in a substantial analysis time reduction at limited costs [10,1,21,2,9]. Besides these benefits and successes of microsystem technology a big drawback, which makes the used techniques less accessible for companies and research institutes, is the need of expensive conditioned cleanroom facilities and sophisticated cleanroom equipment such as deposition and etching machines. In order to be able to obtain a good process control, much specific knowledge about these processes is needed, which is often closely

Description:
systems (µTAS), societal impact and fundamental micromechanical, optical and chemical aspects” of This overview makes clear that essential differences exist between the VLSI and MST design to manipulate data internally using an APDL (ANSYS Parametric Design Language) and it can run on
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.