GeneticsandMolecularBiology,32,1,170-176(2009) Copyright©2009,SociedadeBrasileiradeGenética.PrintedinBrazil www.sbg.org.br ResearchArticle Modeling body size evolution in Felidae under alternative phylogenetic hypotheses JoséAlexandreFelizolaDiniz-Filho1andJoãoCarlosNabout2 1DepartamentodeBiologiaGeral,InstitutodeCiênciasBiológicas,UniversidadeFederaldeGoiás, Goiânia,GO,Brazil. 2ProgramadeDoutoradoemCiênciasAmbientais,UniversidadeFederaldeGoiás,Goiânia,GO,Brazil. Abstract Theuseofphylogeneticcomparativemethodsinecologicalresearchhasadvancedduringthelasttwentyyears, mainlyduetoaccuratephylogeneticreconstructionsbasedonmoleculardataandcomputationalandstatisticalad- vances. We used phylogenetic correlograms and phylogenetic eigenvector regression (PVR) to model body size evolutionin35worldwideFelidae(Mammalia,Carnivora)speciesusingtwoalternativephylogeniesandpublished bodysizedata.Thepurposewasnottocontrastthephylogenetichypothesesbuttoevaluatehowanalysesofbody sizeevolutionpatternscanbeaffectedbythephylogenyusedforcomparativeanalyses(CA).Bothphylogeniespro- duced a strong phylogenetic pattern, with closely related species having similar body sizes and the similarity de- creasingwithincreasingdistancesintime.ThePVRexplained65%to67%ofbodysizevariationandallMoran’sI valuesforthePVRresidualswerenon-significant,indicatingthatboththesemodelsexplainedphylogeneticstruc- turesintraitvariation.EventhoughourresultsdidnotsuggestthatanyphylogenycanbeusedforCAwiththesame power,orthat“good”phylogeniesareunnecessaryforthecorrectinterpretationoftheevolutionarydynamicsofeco- logical,biogeographical,physiologicalorbehavioralpatterns,itdoessuggestthatdevelopmentsinCAcan,andin- deed should, proceed without waiting for perfect and fully resolved phylogenies. Keywords:autocorrelation,bodysize,Felidae,phylogeneticeigenvectorregression,phylogenies. Received:December12,2007;Accepted:May5,2008. Introduction al. 2005). Furthermore, some studies have suggested that incorporatingphylogeneticstructureintodataanalysesal- Phylogenetic comparative methods developed since lowed a better understanding of the processes underlying the middle 1980’s are now commonly applied in areas of ecological,behavioralandphysiologicaldata(Hansenand biological research, such as ecology, physiology and be- Martins,1996;Diniz-Filho,2001). havior,toexplainhowphylogeneticpatternsinthetraitsof Mainlybecauseoftheimprovementsandpopulariza- species can be associated to adaptive evolution (Martins, tion of DNA sequence techniques and other molecular 2000; Freckleton et al., 2002). It is also well-known that markers,therehasbeenamarkedincreaseinthenumberof species,orothertaxonomicunits,maynotrepresentinde- availablephylogeniesthatcanbeusedasabasisincompar- pendentobservationsforstatisticalanalysessuchasregres- ative analysis (Pagel, 1999; see Felsenstein, 2004). More sion and correlation (Felsenstein, 1985; Martins and importantlyforcomparativeanalyses,therearenowtech- Garland,1991;Martinsetal.,2002).Hence,manydifferent niques that combine phylogenies from different sources formsofcomparativeanalyseshavebeendevelopedtotake andbasedondifferentdatatypes,suchasmorphology,mo- intoaccountthelackofindependenceamongspeciesdueto lecular data or behavior, to generate complete, or nearly phylogenetic relationships (i.e., phylogenetic autocorre- complete, trees for very large taxonomic groups (super- lation)andtocorrectlyapproximatetheTypeIerrorsofsta- trees)(Bininda-Emonds,2004). tistical analyses of correlation between traits or between The first supertree was built for Primates (Purvis, traits and other components of environmental variation 1995)andanearlycompletesupertreeformorethan95% (Martins and Garland, 1991; Gittleman and Luh, 1992; ofcurrentmammalspecieshasrecentlybeenpublishedby MartinsandHansen,1996;Martinsetal.,2002;Garlandet Bininda-Emondsetal.(2007).However,thefirstcomplete supertreeforalllivingspeciesinalargetaxawasgenerated SendcorrespondencetoJoséAlexandreFelizolaDinizFilho.De- forworldwideCarnivora(Bininda-Emondsetal.1999)and partamento de Biologia Geral, Instituto de Ciências Biológicas, notonlyencompassedall271livingCarnivoraspeciesbut Universidade Federal de Goiás, Caixa Postal 131, 74001-970 Goiânia, GO, Brazil. E-mail: [email protected]. was comparatively well resolved with a relatively small Diniz-FilhoandNabout 171 number of polytomies for most subclades and has been have some important differences (Figure 1), with, for in- widelyusedincomparativeanalyses(Sechrestetal.,2002.; stance, the first divergence of felids occurring at 10.78 Diniz-Filho and Tôrres, 2002; Tôrres and Diniz-Filho, millionyears(My)intheJNphylogenyandat16.2Myin 2004; Diniz-Filho, 2004; Diniz-Filho et al., 2007). More theSTphylogeny.Morerelevant,however,werethediffer- recently, however, Johnson et al. (2006) proposed a fully encesintreetopology,withtheSTphylogenyhavingmany resolved felid phylogeny derived from 22,789 base pairs polytomies,andthetwophylogeniesalsohavingsomedif- from autosomal, X-linked, Y-linked and mitochondrial ferencesinthecladesstructure(Figure1),with,forexam- genes, with many important differences in relation to the ple,PatherabeingbasaltoothercladesintheJNphylog- widelyusedsupertree. eny,whichhelpstoexplainsomeofthedifferencesfound Itisimportanttoconsiderthat,despiteofthefactthat laterinthecomparativeanalyses. well-resolved phylogenies are the core of comparative Moran’sIisthemostcommonlyusedcoefficientin analyses, there are still many uncertainties regarding the spatial and phylogenetic autocorrelation analyses and al- methods and data needed to reconstruct phylogenies and lows the description of the phylogenetic structure of the supertrees(Webbetal.,2002).Thus,despitetheincreasing data (or model residuals) and the comparison of the ob- useofcomparativemethods(Carvalhoetal.,2005),itisal- servedvalueswiththeexpectedvaluesbasedondifferent waysimportanttounderstandhowmodelingtraitevolution evolutionary models (Gittleman and Kot, 1990; Diniz-Fi- from comparative methods are sensitive to errors and un- lho,2001;Diniz-FilhoandTôrres,2002).MoranMoran’sI certainties regarding tree topology (Martins and Garland, isgivenby 1991; Martins, 1996; Martins and Housworth, 2002) and (cid:10)(cid:16)(cid:16)(y (cid:9)y)(y (cid:9)y)w (cid:13) other related problems, such as taxon sampling (Ackerly, (cid:3)n(cid:6)(cid:12) i j ij(cid:15) 2000).Itis,therefore,ofparamountimportancetoevaluate I (cid:2)(cid:4)(cid:5)S (cid:7)(cid:8)(cid:12) i j (cid:16)(y (cid:9)y)2 (cid:15) howerrorsinphylogenyreconstructionmayaffectthere- (cid:11)(cid:12) i (cid:14)(cid:15) i sultsofcomparativeanalyses,aswhenmodelingtraitevo- lution.Inthispaperweusedphylogeneticcorrelogramsand wherenisthenumberofobservation(species),y andy are i j phylogeneticeigenvectorregression(PVR)tomodelbody thebodysizevaluesinthespeciesiandj, yistheaverageof size evolution in worldwide Felidae (Mammalia, Carni- yandw isanelementofthematrixW.Actually,several ij vora) under alternative phylogenies. Our purpose was not Moran’sIarecalculatedforthesamevariable,bycreating toestablishthevalidityofanyofthephylogenies,butrather successiveWmatricesinwhichw =1ifthepairi,jofspe- ij toevaluatehowanalysesofpatternsinbodysizeevolution ciesiswithinagivenphylogeneticdistanceclassinterval, can be affected by choosing one of them as the basis for establishedbasedonD(indicatingthatspeciesare“linked” comparativeanalyses. inthisclass),andw =0otherwise.Inthispaper,4classes ij withequalintervals(timeslices)wereused,andSindicates Material and Methods thenumberofentries(connections)ineachWmatrix.The valueexpectedunderthenullhypothesisoftheabsenceof Body masses (in g) for 35 Felidae species (Table 1) spatialautocorrelationis-1/(n-1).Moran’sIusuallyvary distributedworldwidewereobtainedmainlyfromSmithet between -1.0 for maximum negative autocorrelation and al.(2003).Valuesweretransformedtodecimallogarithms 1.0 for maximum positive autocorrelation. Computation priortotheanalysis.Becauseweweremainlyinterestedin details of the standard error of this coefficient (se(I)) are broad-scalecomparativepatterns,bodysizesofmalesand giveninLegendreandLegendre(1998),sothatMoran’sI females were averaged for each species. Also, although canbetestedbyassuminganormaldistributionofse(I).In sexual dimorphisms exists for the group, the relatively thiscaseastandardnormaldeviate(SND={I-E(I)}/se(I)) magnitude of male-female differences when compared to largerthan1.96indicatesthatse(I)issignificantatthe5% interspecificdifferencesacrosstheentirecladeissosmall probabilitylevel(p=0.05).TheBonferronicorrectioncan that this averaging is not likely to affect the conclusions be used for conservative statistical decisions, so that a reachedinthispaper. correlogramwillbeconsideredsignificantatp<0.05only We used the phylogenies proposed by Bininda- if one of Moran’s I is significant at p = 0.05/4 distance Emonds et al. (1999), designated the supertree (ST) phy- classes. logeny,andJohnsonetal.(2006),designatedtheJohnson Itisalsopossibletouseadirectmodelingstrategyto (JN) phylogeny, to establish pairwise phylogenetic dis- describepatternsofbodysizeevolution.Diniz-Filhoetal. tancematricesD,whichwerethebasisformodelingbody (1998) developed a new technique called phylogenetic sizeevolutionusingMoran’sIphylogeneticcorrelograms eigenvectorregression(PVR)topartitionthetotalvariance (Gittleman and Kot, 1990; Diniz-Filho, 2001) and phylo- genetic eigenvector regression (Diniz-Filho et al., 1998). ((cid:17)2T)ofatraity(e.g.,bodysize)measuredinasetofspe- Forallanalysis,thespeciesCatopumabadia,Feliscatus, cies into phylogenetic ((cid:17)2 ) and unique variances or eco- P FelisilbycaandPardofelisbadiawereeliminatedbecause logical((cid:17)2 )variances,suchthat(cid:17)2 =(cid:17)2 +(cid:17)2 .Theidea S T P S theywereabsentinbothphylogenies.Thetwophylogenies beingthataphylogenycanbeexpressedasasetoforthogo- 172 Felinephylogeniesandphylogeneticanalysis Table1-FelidspeciesfortheSupertree(ST)*andJohnson(JN)†phylogenies.Thescientificnamesaremostlythesameinboththephylogenies,theex- ceptionsbeingthatthegenusnamesinparenthesesareasgivenintheJNphylogeny.Commonnamesandroundedmeanbodymassvaluesarealsogiven. Code Scientificname Commonname Approximatemeanbodymass(kg)- 1 Pantheraleo Lion 159 2 Pantherapardus Leopard 52 3 Pantheraonca Jaguar 85 4 Pantheratigris Tiger 163 5 Unciauncia Snowleopard 33 6 Neofelisnebulosa Cloudedleopard 15 7 Pardofelismarmorata Marbledcat 3 8 Lynxcanadensis Canadianlynx 10 9 Lynxlynx Eurasianlynx 19 10 Lynxpardinus Iberian,orSpanish,lynx 11 11 Lynxrufus Bobcat 27 12 Catopuma(Pardofelis)temminckii Asiangoldencat 8 13 Profelis(Caracal)aurata Africangoldencat 11 14 Leopardustigrinus Oncillaorlittlespottedcat 2 15 Oncifelisgeoffroyi Geoffroy’scat 3 16 Oncifelisguigna Kodkod 3 17 Oncifeliscolocolo Pampascat 4 18 Oreailurusjacobita Andeanmountaincat 8 19 Leoparduspardalis Ocelotorpaintedleopard 12 20 Leoparduswiedii Margay 3 21 Felismargarita Sandcat 3 22 Felisnigripes Black-footedcat 1 23 Felissilvestris Wildcat 5 24 Felisbieti Chinesemountaincat 6 25 Felischaus Junglecat 7 26 Otocolobusmanul Pallas,orsteppe,cat 3 27 Caracalcaracal African,orPersian,lynx 12 28 Leptailurus(Caracal)serval Serval 12 29 Prionailurusbengalensis Leopardcat 3 30 Prionailurusviverrinus Fishingcat 9 31 Prionailurusrubiginosus Rustyspottedcat 1 32 Prionailurusplaniceps Flat-headedcat 4 33 Herpailurus(Puma)yagouaroundi Jaguarundicat 7 34 Pumaconcolor Cougar 54 35 Acinonyxjubatus Cheetah 51 *Bininda-Emondsetal.(1999).†Johnsonetal.(2006).-MainlyfromSmithetal.(2003). nalvectorsobtainedbyaneigenanalysisofaphylogenetic take into account a different number of predictors, of the distancematrixD.Thesevectorscanthenbeusedaspre- multiple regression model of the trait y against the eigen- dictors of y in any form of linear or non-linear modeling. vectorsinVprovidesanestimateofthephylogeneticsignal For analogous applications in a spatial context see Diniz- inthedata((cid:17)2 /(cid:17)2 ). P T FilhoandBini(2005)andGriffithandPeres-Neto(2006). There are different ways to establish how many Thus,PVRfollowsthestandardframeworkofgenerallin- eigenvectorsofDshouldbeusedformodeling.Inthework earmodels,suchthat describedinthepresentpaperweusedanexhaustivesearch strategybasedonAkaikeInformationCriterion(AIC)de- y=V(cid:18)+(cid:19) scribedbyBurnhamandAnderson(2002).Whenperform- ing the PVR, the AIC value of a particular model (i.e., whereVistheorthogonaleigenvectorsextractedfromthe basedonsomecombinationofeigenvectors)wasgivenby double-centered phylogenetic distance matrix D, and (cid:18) is thepartialregressioncoefficients.TheR2value,adjustedto AIC=nln((cid:17)2 )+2K S Diniz-FilhoandNabout 173 alternative models (i.e., 2m model minus the model with interceptonly),allowingtheestablishmentofthemostpar- simoniousmodelforexplainingbodysizevariationbased on phylogenetic eigenvectors. Moran’s I correlograms of thesePVRresidualswerealsoappliedtotestifthemodel was effective in taking phylogenetic autocorrelation into account. Results The correlograms based on the two phylogenies showed slightly different patterns, although there was a generaltrendofpositiveautocorrelationinthefirsttwodis- tanceclasses,withalargervalueinthesecondclassdueto themorerecenttimeslices,coupledwithanegativeauto- correlation in the last distance class (Figure 2; Table 2) (Diniz-Filho and Tôrres, 2002). In both phylogenies, closelyrelatedspecieshavesimilarbodysizesandthissim- ilaritydecreaseswhenincreasingdistancesintimearecon- sidered, stabilizing in the last distance class (Table 2). However,despitetheexistenceofamonotonicrelationship betweenthetwocorrelogramswhenusingtheJNtreethere was a much lower Moran’s I in the first distance classes, suggesting that there is some relatively high dissimilarity betweenmorecloselyrelatedspecies. Theproportionofvariationexplainedbythephylog- enyobtainedfromPVRissimilarwhenbasedonthetwo phylogenies, despite the fact that the correlation between thefirsteigenvectorsextractedfromthesematricesisrela- tively low (0.415). When based on the ST phylogeny, a model with 6 eigenvectors (summing 81.6% of the varia- tion in original distance matrix) was selected by the AIC criterionastheminimummodel,withR2=65.1%ascom- pared with R2 = 69.1% for the full model with 10 eigen- vectors. On the other hand, only three eigenvectors (explaining 45% of the total distances) were selected by Figure1-Phylogeniesusedinthisstudyshowingtherelationshipsbe- AICcriteriontoexplainbodysizevariationbasedontheJN tween the 35 felid species included in the analysis. In (A) the ST phylogeny, and they explained 67.5% of the variation in (Bininda-Emonds et al. (1999). Biol Rev 74:143-175) and (B) the JN bodysizeasagainstR2=70.6%forthefullmodelwith10 (†Johnsonetal.(2006).Science311:73-77)phylogeniesthenumbersre- eigenvectors. In both cases, all Moran’s I values for the latetothespeciesshowninTable1. PVR residuals were non-significant, indicating that these models were sufficient to explain phylogenetic structures where(cid:17)2Sisthevarianceofthepreviouslydefinedspecific intraitvariation. component(PVRresiduals)andKisthenumberofparame- ters(numberofeigenvectors,plustheinterceptandresidual Discussion variance(cid:17)2 ).Thevalueof(cid:17)2 canbeusedasaproxyfor S S Itisalwaysimportanttocheckhowresultsfromcom- thelikelihoodofthemodelgiventhedata,butthisapproxi- parativeanalysesoftraitevolutionareaffectedbyerrorsor mationisvalidonlyifmodelerrorsareindependent,nor- uncertaintiesinthephylogeny(MartinsandGarland,1991; mallydistributedandwithconstantvariance(Burnhamand Martins, 1996), when conflicting or alternative phylogen- Anderson,2002).Thebestmodelsarethosewiththelowest etichypothesesareavailableforthegroupoforganismsun- AICvaluesbutmultiplePVRmodelscanbegenerated,in der scrutiny. Since the number of available phylogenies whichcaseanewspatialanalysisinmacroecology(SAM) (includingsupertrees)israpidlyincreasingintheliterature, module software (Rangel et al., 2006; Diniz-Filho et al. the simple solution is frequently to model trait evolution 2008)wasusedtogenerateallpossiblecombinationofthe underthesemultiplephylogeniesandcomparetheoutcome first10eigenvectorsfromDaspredictors,producing1023 ofcomparativeanalyses,asperformedhere. 174 Felinephylogeniesandphylogeneticanalysis Table2-Moran’sI,standarderror(SE)andstandardnormaldeviate(SND)obtainedforbodysizeandthephylogeneticeigenvectorregression(PVR)re- sidualforeachphylogenyusedinthisstudy. Supertree(ST)phylogeny Johnson(JN)phylogeny Moran’sI SE SND Moran’sI SE SND Bodysize 1 0.840 0.142 6.140*** 0.550 0.209 2.770** 2 0.882 0.253 3.605** 0.979 0.153 6.597*** 3 0.046 0.092 0.820 0.093 0.036 3.436** 4 -0.144 0.020 -5.882*** -0.292 0.027 -9.753 PVRresiduals 1 -0.196 0.143 -1.170 -0.013 0.211 0.078 2 -0.251 0.255 -0.868 0.221 0.155 1.618 3 -0.066 0.093 -0.391 -0.094 0.036 -1.817 4 -0.003 0.020 1.361 -0.011 0.027 0.682 **p<0.01;***p<0.001. Our analyses show that, despite the differences be- Indeed, many papers have reported relatively strong tweenthetwophylogeniestested,phylogeneticautocorre- phylogenetic patterns of body size variation between spe- lation patterns in body size of world felids revealed by cies,sothisisprobablyduetorealprocessesthatgenerate correlogramsandPVRwerequalitativelysimilar.Thissug- strong phylogenetic inertia in this trait, almost independ- gests that previous general inferences about macroecolo- entlyoftaxonomicscaleandresolution.Hence,changesin gical and macroevolutionary patterns using the Bininda- phylogenyareunlikelytoaffecttheestimateofthispattern Emondsetal.(1999)supertreemayberobusttochangesin toomuch,atleastusingstatistically-basedtechniquessuch phylogeny,atleastintermsofrelativemagnitudeofphylo- asPVRandcorrelograms.Somemoregeneralstudieshave genetic patterns. For example, Diniz-Filho and Tôrres shownconsistentpatternsregardingthephylogeneticstruc- (2002)showedstrongpatternsinbodysizeforNewWorld turingofdifferenttraitswith,forexample,morphological Carnivora,usingphylogeneticeigenvectorregressionanda traits usually being more phylogenetically structured than significant correlation between body size and geographic behavioral or ecological traits (Freckleton et al., 2002; rangesize,whereasDiniz-Filhoetal.(2007)recentlyused Morales,2000;seealsoCarvalhoetal.,2005).Sincethese PVR to decouple adaptive and historical components of observationswereundertakeninameta-analyticalcontext, Bergmann`srule(i.e.,increaseinbodysizetowardshigher involving many different clades from different regions of latitudes) in European Carnivora. The correlogram shape theworld,theyareunliketohavebeenstronglyaffectedby andPVRresultsobtainedinthesestudiesfordifferentsub- changesintheparticularphylogeniesusedintheanalyses. setsofCarnivoraarequalitativelysimilartothethoseob- Itisdifficulttogeneralizetheresultsdescribedinthis tainedbyusforfelidsalone. paper, although it is possible to evaluate why statistical methodsusedherewouldworkfineandprovidesimilarre- sultsunderalternativephylogenies.Becauseeigenanalysis generates a hierarchical structure of representation of phylogenetic patterns of relationship from the root to the tipsofthephylogeny,PVRisprobablylesssensitivetoer- rorsinphylogenythatpresumablytendtooccurinmorere- cent branches (Diniz-Filho et al., 1998). If discussions aboutthevalidityoftherelationshiparemainlyfocusedon recentnodeswithlessclearsignals,therewillbereasonable estimates using different trees if trait evolution is station- ary.Evenso,inouranalysesthereweresomeimportantdif- ferencesindeepbranches(suchastherelationshipbetween Panthera and other subclades), although the correlogram suggeststhat,forbothphylogenies,covarianceinbodysize has been stronger in recent times, probably due to non- linearcomponents(stabilizingselection)involvedinbody Figure2-Phylogeneticcorrelogramsforfelidbodysizevariationbased onthephylogeniesshowninFigure1. sizeevolution(Diniz-Filho,2004).Correlogramsmayalso Diniz-FilhoandNabout 175 benotverysensitivewhenusinglargedistanceclassesbe- Diniz-FilhoJAF,Sant’AnaCERandBiniLM(1998)Aneigen- tweentimeslices,asusedhere,becauseofthesmallnum- vector method for estimating phylogenetic inertia. Evolu- berofspecies.Eveniftherearedifferentphylogenies,itis tion52:1247-1262. Diniz-FilhoJAF(2001)Phylogeneticautocorrelationunderdis- likelythatmostofthepairwisecomparisonsfallwithinthe tinctevolutionaryprocesses.Evolution55:1104-1109. same distance classes, creating similarity between corre- Diniz-FilhoJAFandTôrresNM(2002)Phylogeneticcompara- lograms. tivemethodsandthegeographicrangesize-Bodysizerela- However, other patterns detected from phylogenies tionship in new world terrestrial carnivora. Evol Ecol may be more sensitive to errors and uncertainties and 16:351-367. shouldbetestedinfuturestudies.Forinstance,estimation Diniz-FilhoJAF(2004)Phylogeneticdiversityandconservation of phylogenetic diversity, based on summing branch priorities under distinct models of phenotypic evolution. lengths or the ages of the most recent common ancestors ConservBiol18:698-704. (Sechrest et al., 2002; Diniz-Filho, 2004; Tôrres and Diniz-FilhoJAFandBiniLM(2005)Modellinggeographicalpat- Diniz-Filho, 2004) may be more sensitive to changes in ternsinspeciesrichnessusingeigenvector-basedspatialfil- ters.GlobEcolBiogeogr14:177-185. phylogenysinceassemblagecompositionswillbeconsid- Diniz-FilhoJAF,BiniLM,RodriguezMA,RangelTFLVBand ered independently (reducing sample sizes) so that errors Hawkins BA (2007) Seeing the forest for the trees: Parti- wouldbemagnifiedatthesesmallergeographicalscales. tioning ecological and phylogenetic components of berg- It is worth noting that our main conclusions do not mannsruleinEuropeancarnivora.Ecography30:598-608. meanthatanyphylogeny,independentlyoftheresolution, Diniz-FilhoJAF,RangelTFLVBandBiniLM(2008)Modelse- canbeusedincomparativeanalysiswiththesamepower, lection and information theory in geographical ecology. or that “good” phylogenies are not necessary to give the GlobEcolBiogeogr17:479-488. correctinterpretationstotheevolutionarydynamicsofeco- Felsenstein J (1985) Phylogenies and the comparative method. logical, biogeographical, physiological or behavioral pat- AmNat125:1-15. terns.However,resultssuchasthosepresentedinthispaper Felsenstein J (2004) Inferring Phylogenies. Sinauer Associates, supporttheviewthatdevelopmentsincomparativeanaly- Sunderland,663pp. sis in many fields of biology can, and indeed must, occur Freckleton RP, Harvey PH and Pagel M (2002) Phylogenetic analysisandcomparativedata:atestandreviewofevidence. withinthecontextofdealingwithless-than-perfectornot AmNat160:712-726. fullyresolvedphylogenies. GarlandT,BennettAFandRezendeEL(2005)Phylogeneticap- proachesincomparativephysiology.JExpBiol208:3015- Acknowledgments 3035. GittlemanJLandKotM(1990)Adaptation:Statisticsandanull WorkbyJAFDFhasbeencontinuouslysupportedby model for estimating phylogenetic effects. Syst Zool productivityfellowshipsfromtheBrazilianAgencyCNPq 39:227-241. andtheFundaçãodeAmparoàPesquisadaUniversidade Gittleman JL and Luh HK (1992) On comparing comparative Federal de Goiás (FUNAPE/UFG). Work by JCN is sup- methods.AnnuRevEcolSyst23:383-404. portedbyaCAPESdoctoralfellowship. GriffithDAandPeres-NetoP(2006)Spatialmodelinginecology: The flexibility of eigenfunction spatial analyses. Ecology References 87:2603-2613. Hansen TF and Martins EP (1996) Translating between micro- AckerlyDD(2000)Taxonsampling,correlatedevolutionandin- evolutionary process and macroevolutionary patterns: The dependentcontrasts.Evolution54:1480-1492. correlation structure of interspecific data. Evolution Bininda-EmondsORP,GittlemanJLandPurvisA(1999)Build- 50:1404-1417. ing large trees by combining phylogenetic information: A JohnsonWE,EizirikE,Pecon-SlatteryJ,MurphyWJ,AntunesA, complete phylogeny of the extant Carnivora (Mammalia). TeelingEandO’BrienSJ(2006)ThelateMioceneradiation BiolRev74:143-175. of modern felidae: A genetic assessment. Science 311:73- Bininda-Emonds ORP (2004) Phylogenetic supertrees: Com- 77. bining information to reveal the Tree of Life. Springer, LegendrePandLegendreL(1998)NumericalEcology.2ndedi- Dordrecht,568pp. tion.Elsevier,Amsterdam,853pp. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, MartinsEPandGarlandJrT(1991)Phylogeneticanalysesofthe Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL correlatedevolutionofcontinuouscharacters:Asimulation andPurvisA(2007)Thedelayedriseofpresent-daymam- study.Evolution45:534-557. mals.Nature446:507-512. MartinsEP(1996)Conductingphylogeneticcomparativeanaly- Burnham KP and Anderson DR (2002) Model Selection and seswhenthephylogenyisnotknown.Evolution50:12-22. Multimodel Inference: A Practical Information-Theoretic Martins EP and Hansen TF (1996) The statistical analysis of Approach.2ndedition.Springer-Verlag,NewYork,488pp. interspecificdata:Areviewandevaluationofphylogenetic CarvalhoP,Diniz-FilhoJAFandBiniLM(2005)Theimpactof comparativemethods.In:MartinsEP(ed).Phylogeniesand Felsenstein’s “phylogenies and comparative method” on theComparativeMethodinAnimalBehavior.OxfordUniv. evolutionarybiology.Scientometrics62:53-66. Press,England,pp22-27. 176 Felinephylogeniesandphylogeneticanalysis Martins EP (2000) Adaptation and the comparative method. Sechrest W, Brooks TM, Fonseca GAB, Konstant WR, Mitter- TrendsEcolEvol15:295-299. meierRA,PurvisA,RylandsABandGittlemanJL(2002) Hotspotsandtheconservationofevolutionaryhistory.Proc MartinsEP,Diniz-FilhoJAFandHousworthEA(2002)Adaptive NatlAcadSciUSA99:2067-2071. constraints and the phylogenetic comparative method: a Smith FA, Lyons SK, Morgan-Ernest SK, Jones KE, Kaufman computersimulationtest.Evolution56:1-13. DM, Dayan T, Marquet PA, Brown JH and Haskell JP MartinsEPandHousworthEA(2002)Phylogenyshapeandthe (2003) Body mass of late Quaternary mammals. Ecology phylogeneticcomparativemethod.SystBiol51:873-880. 84:3403. Morales E (2000) Estimating phylogenetic inertia in Tithonia TôrresNMandDiniz-FilhoJAF(2004)Phylogeneticautocorre- (Asteraceae): A comparative approach. Evolution 54:475- lationandevolutionarydiversityofcarnivore(mammalia)in 484. conservation units of the new world. Genet Mol Biol 27:511-516. PagelM(1999)Inferringthehistoricalpatternsofbiologicalevo- WebbCO,AckerlyDD,McPeekMAandDonoghueMJ(2002) lution.Nature401:877-884. Phylogeniesandcommunityecology.AnnuRevEcolSyst Purvis A (1995) A composite estimate of primate phylogeny. 33:475-505. PhilosTransRSocLondBiolSciSeriesB348:405-421. RangelTFLVB,Diniz-FilhoJAFandBiniLM(2006)Towardsan AssociateEditor:JoãoS.Morgante integratedcomputationaltoolforspatialanalysisinmacro- ecology and biogeography. Glob Ecol Biogeogr 15:321- Licenseinformation:Thisisanopen-accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,and 431. reproduction in any medium, provided the original work is properly cited.