ebook img

Modeling body size evolution in Felidae under alternative phylogenetic hypotheses. PDF

0.59 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling body size evolution in Felidae under alternative phylogenetic hypotheses.

GeneticsandMolecularBiology,32,1,170-176(2009) Copyright©2009,SociedadeBrasileiradeGenética.PrintedinBrazil www.sbg.org.br ResearchArticle Modeling body size evolution in Felidae under alternative phylogenetic hypotheses JoséAlexandreFelizolaDiniz-Filho1andJoãoCarlosNabout2 1DepartamentodeBiologiaGeral,InstitutodeCiênciasBiológicas,UniversidadeFederaldeGoiás, Goiânia,GO,Brazil. 2ProgramadeDoutoradoemCiênciasAmbientais,UniversidadeFederaldeGoiás,Goiânia,GO,Brazil. Abstract Theuseofphylogeneticcomparativemethodsinecologicalresearchhasadvancedduringthelasttwentyyears, mainlyduetoaccuratephylogeneticreconstructionsbasedonmoleculardataandcomputationalandstatisticalad- vances. We used phylogenetic correlograms and phylogenetic eigenvector regression (PVR) to model body size evolutionin35worldwideFelidae(Mammalia,Carnivora)speciesusingtwoalternativephylogeniesandpublished bodysizedata.Thepurposewasnottocontrastthephylogenetichypothesesbuttoevaluatehowanalysesofbody sizeevolutionpatternscanbeaffectedbythephylogenyusedforcomparativeanalyses(CA).Bothphylogeniespro- duced a strong phylogenetic pattern, with closely related species having similar body sizes and the similarity de- creasingwithincreasingdistancesintime.ThePVRexplained65%to67%ofbodysizevariationandallMoran’sI valuesforthePVRresidualswerenon-significant,indicatingthatboththesemodelsexplainedphylogeneticstruc- turesintraitvariation.EventhoughourresultsdidnotsuggestthatanyphylogenycanbeusedforCAwiththesame power,orthat“good”phylogeniesareunnecessaryforthecorrectinterpretationoftheevolutionarydynamicsofeco- logical,biogeographical,physiologicalorbehavioralpatterns,itdoessuggestthatdevelopmentsinCAcan,andin- deed should, proceed without waiting for perfect and fully resolved phylogenies. Keywords:autocorrelation,bodysize,Felidae,phylogeneticeigenvectorregression,phylogenies. Received:December12,2007;Accepted:May5,2008. Introduction al. 2005). Furthermore, some studies have suggested that incorporatingphylogeneticstructureintodataanalysesal- Phylogenetic comparative methods developed since lowed a better understanding of the processes underlying the middle 1980’s are now commonly applied in areas of ecological,behavioralandphysiologicaldata(Hansenand biological research, such as ecology, physiology and be- Martins,1996;Diniz-Filho,2001). havior,toexplainhowphylogeneticpatternsinthetraitsof Mainlybecauseoftheimprovementsandpopulariza- species can be associated to adaptive evolution (Martins, tion of DNA sequence techniques and other molecular 2000; Freckleton et al., 2002). It is also well-known that markers,therehasbeenamarkedincreaseinthenumberof species,orothertaxonomicunits,maynotrepresentinde- availablephylogeniesthatcanbeusedasabasisincompar- pendentobservationsforstatisticalanalysessuchasregres- ative analysis (Pagel, 1999; see Felsenstein, 2004). More sion and correlation (Felsenstein, 1985; Martins and importantlyforcomparativeanalyses,therearenowtech- Garland,1991;Martinsetal.,2002).Hence,manydifferent niques that combine phylogenies from different sources formsofcomparativeanalyseshavebeendevelopedtotake andbasedondifferentdatatypes,suchasmorphology,mo- intoaccountthelackofindependenceamongspeciesdueto lecular data or behavior, to generate complete, or nearly phylogenetic relationships (i.e., phylogenetic autocorre- complete, trees for very large taxonomic groups (super- lation)andtocorrectlyapproximatetheTypeIerrorsofsta- trees)(Bininda-Emonds,2004). tistical analyses of correlation between traits or between The first supertree was built for Primates (Purvis, traits and other components of environmental variation 1995)andanearlycompletesupertreeformorethan95% (Martins and Garland, 1991; Gittleman and Luh, 1992; ofcurrentmammalspecieshasrecentlybeenpublishedby MartinsandHansen,1996;Martinsetal.,2002;Garlandet Bininda-Emondsetal.(2007).However,thefirstcomplete supertreeforalllivingspeciesinalargetaxawasgenerated SendcorrespondencetoJoséAlexandreFelizolaDinizFilho.De- forworldwideCarnivora(Bininda-Emondsetal.1999)and partamento de Biologia Geral, Instituto de Ciências Biológicas, notonlyencompassedall271livingCarnivoraspeciesbut Universidade Federal de Goiás, Caixa Postal 131, 74001-970 Goiânia, GO, Brazil. E-mail: [email protected]. was comparatively well resolved with a relatively small Diniz-FilhoandNabout 171 number of polytomies for most subclades and has been have some important differences (Figure 1), with, for in- widelyusedincomparativeanalyses(Sechrestetal.,2002.; stance, the first divergence of felids occurring at 10.78 Diniz-Filho and Tôrres, 2002; Tôrres and Diniz-Filho, millionyears(My)intheJNphylogenyandat16.2Myin 2004; Diniz-Filho, 2004; Diniz-Filho et al., 2007). More theSTphylogeny.Morerelevant,however,werethediffer- recently, however, Johnson et al. (2006) proposed a fully encesintreetopology,withtheSTphylogenyhavingmany resolved felid phylogeny derived from 22,789 base pairs polytomies,andthetwophylogeniesalsohavingsomedif- from autosomal, X-linked, Y-linked and mitochondrial ferencesinthecladesstructure(Figure1),with,forexam- genes, with many important differences in relation to the ple,PatherabeingbasaltoothercladesintheJNphylog- widelyusedsupertree. eny,whichhelpstoexplainsomeofthedifferencesfound Itisimportanttoconsiderthat,despiteofthefactthat laterinthecomparativeanalyses. well-resolved phylogenies are the core of comparative Moran’sIisthemostcommonlyusedcoefficientin analyses, there are still many uncertainties regarding the spatial and phylogenetic autocorrelation analyses and al- methods and data needed to reconstruct phylogenies and lows the description of the phylogenetic structure of the supertrees(Webbetal.,2002).Thus,despitetheincreasing data (or model residuals) and the comparison of the ob- useofcomparativemethods(Carvalhoetal.,2005),itisal- servedvalueswiththeexpectedvaluesbasedondifferent waysimportanttounderstandhowmodelingtraitevolution evolutionary models (Gittleman and Kot, 1990; Diniz-Fi- from comparative methods are sensitive to errors and un- lho,2001;Diniz-FilhoandTôrres,2002).MoranMoran’sI certainties regarding tree topology (Martins and Garland, isgivenby 1991; Martins, 1996; Martins and Housworth, 2002) and (cid:10)(cid:16)(cid:16)(y (cid:9)y)(y (cid:9)y)w (cid:13) other related problems, such as taxon sampling (Ackerly, (cid:3)n(cid:6)(cid:12) i j ij(cid:15) 2000).Itis,therefore,ofparamountimportancetoevaluate I (cid:2)(cid:4)(cid:5)S (cid:7)(cid:8)(cid:12) i j (cid:16)(y (cid:9)y)2 (cid:15) howerrorsinphylogenyreconstructionmayaffectthere- (cid:11)(cid:12) i (cid:14)(cid:15) i sultsofcomparativeanalyses,aswhenmodelingtraitevo- lution.Inthispaperweusedphylogeneticcorrelogramsand wherenisthenumberofobservation(species),y andy are i j phylogeneticeigenvectorregression(PVR)tomodelbody thebodysizevaluesinthespeciesiandj, yistheaverageof size evolution in worldwide Felidae (Mammalia, Carni- yandw isanelementofthematrixW.Actually,several ij vora) under alternative phylogenies. Our purpose was not Moran’sIarecalculatedforthesamevariable,bycreating toestablishthevalidityofanyofthephylogenies,butrather successiveWmatricesinwhichw =1ifthepairi,jofspe- ij toevaluatehowanalysesofpatternsinbodysizeevolution ciesiswithinagivenphylogeneticdistanceclassinterval, can be affected by choosing one of them as the basis for establishedbasedonD(indicatingthatspeciesare“linked” comparativeanalyses. inthisclass),andw =0otherwise.Inthispaper,4classes ij withequalintervals(timeslices)wereused,andSindicates Material and Methods thenumberofentries(connections)ineachWmatrix.The valueexpectedunderthenullhypothesisoftheabsenceof Body masses (in g) for 35 Felidae species (Table 1) spatialautocorrelationis-1/(n-1).Moran’sIusuallyvary distributedworldwidewereobtainedmainlyfromSmithet between -1.0 for maximum negative autocorrelation and al.(2003).Valuesweretransformedtodecimallogarithms 1.0 for maximum positive autocorrelation. Computation priortotheanalysis.Becauseweweremainlyinterestedin details of the standard error of this coefficient (se(I)) are broad-scalecomparativepatterns,bodysizesofmalesand giveninLegendreandLegendre(1998),sothatMoran’sI females were averaged for each species. Also, although canbetestedbyassuminganormaldistributionofse(I).In sexual dimorphisms exists for the group, the relatively thiscaseastandardnormaldeviate(SND={I-E(I)}/se(I)) magnitude of male-female differences when compared to largerthan1.96indicatesthatse(I)issignificantatthe5% interspecificdifferencesacrosstheentirecladeissosmall probabilitylevel(p=0.05).TheBonferronicorrectioncan that this averaging is not likely to affect the conclusions be used for conservative statistical decisions, so that a reachedinthispaper. correlogramwillbeconsideredsignificantatp<0.05only We used the phylogenies proposed by Bininda- if one of Moran’s I is significant at p = 0.05/4 distance Emonds et al. (1999), designated the supertree (ST) phy- classes. logeny,andJohnsonetal.(2006),designatedtheJohnson Itisalsopossibletouseadirectmodelingstrategyto (JN) phylogeny, to establish pairwise phylogenetic dis- describepatternsofbodysizeevolution.Diniz-Filhoetal. tancematricesD,whichwerethebasisformodelingbody (1998) developed a new technique called phylogenetic sizeevolutionusingMoran’sIphylogeneticcorrelograms eigenvectorregression(PVR)topartitionthetotalvariance (Gittleman and Kot, 1990; Diniz-Filho, 2001) and phylo- genetic eigenvector regression (Diniz-Filho et al., 1998). ((cid:17)2T)ofatraity(e.g.,bodysize)measuredinasetofspe- Forallanalysis,thespeciesCatopumabadia,Feliscatus, cies into phylogenetic ((cid:17)2 ) and unique variances or eco- P FelisilbycaandPardofelisbadiawereeliminatedbecause logical((cid:17)2 )variances,suchthat(cid:17)2 =(cid:17)2 +(cid:17)2 .Theidea S T P S theywereabsentinbothphylogenies.Thetwophylogenies beingthataphylogenycanbeexpressedasasetoforthogo- 172 Felinephylogeniesandphylogeneticanalysis Table1-FelidspeciesfortheSupertree(ST)*andJohnson(JN)†phylogenies.Thescientificnamesaremostlythesameinboththephylogenies,theex- ceptionsbeingthatthegenusnamesinparenthesesareasgivenintheJNphylogeny.Commonnamesandroundedmeanbodymassvaluesarealsogiven. Code Scientificname Commonname Approximatemeanbodymass(kg)- 1 Pantheraleo Lion 159 2 Pantherapardus Leopard 52 3 Pantheraonca Jaguar 85 4 Pantheratigris Tiger 163 5 Unciauncia Snowleopard 33 6 Neofelisnebulosa Cloudedleopard 15 7 Pardofelismarmorata Marbledcat 3 8 Lynxcanadensis Canadianlynx 10 9 Lynxlynx Eurasianlynx 19 10 Lynxpardinus Iberian,orSpanish,lynx 11 11 Lynxrufus Bobcat 27 12 Catopuma(Pardofelis)temminckii Asiangoldencat 8 13 Profelis(Caracal)aurata Africangoldencat 11 14 Leopardustigrinus Oncillaorlittlespottedcat 2 15 Oncifelisgeoffroyi Geoffroy’scat 3 16 Oncifelisguigna Kodkod 3 17 Oncifeliscolocolo Pampascat 4 18 Oreailurusjacobita Andeanmountaincat 8 19 Leoparduspardalis Ocelotorpaintedleopard 12 20 Leoparduswiedii Margay 3 21 Felismargarita Sandcat 3 22 Felisnigripes Black-footedcat 1 23 Felissilvestris Wildcat 5 24 Felisbieti Chinesemountaincat 6 25 Felischaus Junglecat 7 26 Otocolobusmanul Pallas,orsteppe,cat 3 27 Caracalcaracal African,orPersian,lynx 12 28 Leptailurus(Caracal)serval Serval 12 29 Prionailurusbengalensis Leopardcat 3 30 Prionailurusviverrinus Fishingcat 9 31 Prionailurusrubiginosus Rustyspottedcat 1 32 Prionailurusplaniceps Flat-headedcat 4 33 Herpailurus(Puma)yagouaroundi Jaguarundicat 7 34 Pumaconcolor Cougar 54 35 Acinonyxjubatus Cheetah 51 *Bininda-Emondsetal.(1999).†Johnsonetal.(2006).-MainlyfromSmithetal.(2003). nalvectorsobtainedbyaneigenanalysisofaphylogenetic take into account a different number of predictors, of the distancematrixD.Thesevectorscanthenbeusedaspre- multiple regression model of the trait y against the eigen- dictors of y in any form of linear or non-linear modeling. vectorsinVprovidesanestimateofthephylogeneticsignal For analogous applications in a spatial context see Diniz- inthedata((cid:17)2 /(cid:17)2 ). P T FilhoandBini(2005)andGriffithandPeres-Neto(2006). There are different ways to establish how many Thus,PVRfollowsthestandardframeworkofgenerallin- eigenvectorsofDshouldbeusedformodeling.Inthework earmodels,suchthat describedinthepresentpaperweusedanexhaustivesearch strategybasedonAkaikeInformationCriterion(AIC)de- y=V(cid:18)+(cid:19) scribedbyBurnhamandAnderson(2002).Whenperform- ing the PVR, the AIC value of a particular model (i.e., whereVistheorthogonaleigenvectorsextractedfromthe basedonsomecombinationofeigenvectors)wasgivenby double-centered phylogenetic distance matrix D, and (cid:18) is thepartialregressioncoefficients.TheR2value,adjustedto AIC=nln((cid:17)2 )+2K S Diniz-FilhoandNabout 173 alternative models (i.e., 2m model minus the model with interceptonly),allowingtheestablishmentofthemostpar- simoniousmodelforexplainingbodysizevariationbased on phylogenetic eigenvectors. Moran’s I correlograms of thesePVRresidualswerealsoappliedtotestifthemodel was effective in taking phylogenetic autocorrelation into account. Results The correlograms based on the two phylogenies showed slightly different patterns, although there was a generaltrendofpositiveautocorrelationinthefirsttwodis- tanceclasses,withalargervalueinthesecondclassdueto themorerecenttimeslices,coupledwithanegativeauto- correlation in the last distance class (Figure 2; Table 2) (Diniz-Filho and Tôrres, 2002). In both phylogenies, closelyrelatedspecieshavesimilarbodysizesandthissim- ilaritydecreaseswhenincreasingdistancesintimearecon- sidered, stabilizing in the last distance class (Table 2). However,despitetheexistenceofamonotonicrelationship betweenthetwocorrelogramswhenusingtheJNtreethere was a much lower Moran’s I in the first distance classes, suggesting that there is some relatively high dissimilarity betweenmorecloselyrelatedspecies. Theproportionofvariationexplainedbythephylog- enyobtainedfromPVRissimilarwhenbasedonthetwo phylogenies, despite the fact that the correlation between thefirsteigenvectorsextractedfromthesematricesisrela- tively low (0.415). When based on the ST phylogeny, a model with 6 eigenvectors (summing 81.6% of the varia- tion in original distance matrix) was selected by the AIC criterionastheminimummodel,withR2=65.1%ascom- pared with R2 = 69.1% for the full model with 10 eigen- vectors. On the other hand, only three eigenvectors (explaining 45% of the total distances) were selected by Figure1-Phylogeniesusedinthisstudyshowingtherelationshipsbe- AICcriteriontoexplainbodysizevariationbasedontheJN tween the 35 felid species included in the analysis. In (A) the ST phylogeny, and they explained 67.5% of the variation in (Bininda-Emonds et al. (1999). Biol Rev 74:143-175) and (B) the JN bodysizeasagainstR2=70.6%forthefullmodelwith10 (†Johnsonetal.(2006).Science311:73-77)phylogeniesthenumbersre- eigenvectors. In both cases, all Moran’s I values for the latetothespeciesshowninTable1. PVR residuals were non-significant, indicating that these models were sufficient to explain phylogenetic structures where(cid:17)2Sisthevarianceofthepreviouslydefinedspecific intraitvariation. component(PVRresiduals)andKisthenumberofparame- ters(numberofeigenvectors,plustheinterceptandresidual Discussion variance(cid:17)2 ).Thevalueof(cid:17)2 canbeusedasaproxyfor S S Itisalwaysimportanttocheckhowresultsfromcom- thelikelihoodofthemodelgiventhedata,butthisapproxi- parativeanalysesoftraitevolutionareaffectedbyerrorsor mationisvalidonlyifmodelerrorsareindependent,nor- uncertaintiesinthephylogeny(MartinsandGarland,1991; mallydistributedandwithconstantvariance(Burnhamand Martins, 1996), when conflicting or alternative phylogen- Anderson,2002).Thebestmodelsarethosewiththelowest etichypothesesareavailableforthegroupoforganismsun- AICvaluesbutmultiplePVRmodelscanbegenerated,in der scrutiny. Since the number of available phylogenies whichcaseanewspatialanalysisinmacroecology(SAM) (includingsupertrees)israpidlyincreasingintheliterature, module software (Rangel et al., 2006; Diniz-Filho et al. the simple solution is frequently to model trait evolution 2008)wasusedtogenerateallpossiblecombinationofthe underthesemultiplephylogeniesandcomparetheoutcome first10eigenvectorsfromDaspredictors,producing1023 ofcomparativeanalyses,asperformedhere. 174 Felinephylogeniesandphylogeneticanalysis Table2-Moran’sI,standarderror(SE)andstandardnormaldeviate(SND)obtainedforbodysizeandthephylogeneticeigenvectorregression(PVR)re- sidualforeachphylogenyusedinthisstudy. Supertree(ST)phylogeny Johnson(JN)phylogeny Moran’sI SE SND Moran’sI SE SND Bodysize 1 0.840 0.142 6.140*** 0.550 0.209 2.770** 2 0.882 0.253 3.605** 0.979 0.153 6.597*** 3 0.046 0.092 0.820 0.093 0.036 3.436** 4 -0.144 0.020 -5.882*** -0.292 0.027 -9.753 PVRresiduals 1 -0.196 0.143 -1.170 -0.013 0.211 0.078 2 -0.251 0.255 -0.868 0.221 0.155 1.618 3 -0.066 0.093 -0.391 -0.094 0.036 -1.817 4 -0.003 0.020 1.361 -0.011 0.027 0.682 **p<0.01;***p<0.001. Our analyses show that, despite the differences be- Indeed, many papers have reported relatively strong tweenthetwophylogeniestested,phylogeneticautocorre- phylogenetic patterns of body size variation between spe- lation patterns in body size of world felids revealed by cies,sothisisprobablyduetorealprocessesthatgenerate correlogramsandPVRwerequalitativelysimilar.Thissug- strong phylogenetic inertia in this trait, almost independ- gests that previous general inferences about macroecolo- entlyoftaxonomicscaleandresolution.Hence,changesin gical and macroevolutionary patterns using the Bininda- phylogenyareunlikelytoaffecttheestimateofthispattern Emondsetal.(1999)supertreemayberobusttochangesin toomuch,atleastusingstatistically-basedtechniquessuch phylogeny,atleastintermsofrelativemagnitudeofphylo- asPVRandcorrelograms.Somemoregeneralstudieshave genetic patterns. For example, Diniz-Filho and Tôrres shownconsistentpatternsregardingthephylogeneticstruc- (2002)showedstrongpatternsinbodysizeforNewWorld turingofdifferenttraitswith,forexample,morphological Carnivora,usingphylogeneticeigenvectorregressionanda traits usually being more phylogenetically structured than significant correlation between body size and geographic behavioral or ecological traits (Freckleton et al., 2002; rangesize,whereasDiniz-Filhoetal.(2007)recentlyused Morales,2000;seealsoCarvalhoetal.,2005).Sincethese PVR to decouple adaptive and historical components of observationswereundertakeninameta-analyticalcontext, Bergmann`srule(i.e.,increaseinbodysizetowardshigher involving many different clades from different regions of latitudes) in European Carnivora. The correlogram shape theworld,theyareunliketohavebeenstronglyaffectedby andPVRresultsobtainedinthesestudiesfordifferentsub- changesintheparticularphylogeniesusedintheanalyses. setsofCarnivoraarequalitativelysimilartothethoseob- Itisdifficulttogeneralizetheresultsdescribedinthis tainedbyusforfelidsalone. paper, although it is possible to evaluate why statistical methodsusedherewouldworkfineandprovidesimilarre- sultsunderalternativephylogenies.Becauseeigenanalysis generates a hierarchical structure of representation of phylogenetic patterns of relationship from the root to the tipsofthephylogeny,PVRisprobablylesssensitivetoer- rorsinphylogenythatpresumablytendtooccurinmorere- cent branches (Diniz-Filho et al., 1998). If discussions aboutthevalidityoftherelationshiparemainlyfocusedon recentnodeswithlessclearsignals,therewillbereasonable estimates using different trees if trait evolution is station- ary.Evenso,inouranalysesthereweresomeimportantdif- ferencesindeepbranches(suchastherelationshipbetween Panthera and other subclades), although the correlogram suggeststhat,forbothphylogenies,covarianceinbodysize has been stronger in recent times, probably due to non- linearcomponents(stabilizingselection)involvedinbody Figure2-Phylogeneticcorrelogramsforfelidbodysizevariationbased onthephylogeniesshowninFigure1. sizeevolution(Diniz-Filho,2004).Correlogramsmayalso Diniz-FilhoandNabout 175 benotverysensitivewhenusinglargedistanceclassesbe- Diniz-FilhoJAF,Sant’AnaCERandBiniLM(1998)Aneigen- tweentimeslices,asusedhere,becauseofthesmallnum- vector method for estimating phylogenetic inertia. Evolu- berofspecies.Eveniftherearedifferentphylogenies,itis tion52:1247-1262. Diniz-FilhoJAF(2001)Phylogeneticautocorrelationunderdis- likelythatmostofthepairwisecomparisonsfallwithinthe tinctevolutionaryprocesses.Evolution55:1104-1109. same distance classes, creating similarity between corre- Diniz-FilhoJAFandTôrresNM(2002)Phylogeneticcompara- lograms. tivemethodsandthegeographicrangesize-Bodysizerela- However, other patterns detected from phylogenies tionship in new world terrestrial carnivora. Evol Ecol may be more sensitive to errors and uncertainties and 16:351-367. shouldbetestedinfuturestudies.Forinstance,estimation Diniz-FilhoJAF(2004)Phylogeneticdiversityandconservation of phylogenetic diversity, based on summing branch priorities under distinct models of phenotypic evolution. lengths or the ages of the most recent common ancestors ConservBiol18:698-704. (Sechrest et al., 2002; Diniz-Filho, 2004; Tôrres and Diniz-FilhoJAFandBiniLM(2005)Modellinggeographicalpat- Diniz-Filho, 2004) may be more sensitive to changes in ternsinspeciesrichnessusingeigenvector-basedspatialfil- ters.GlobEcolBiogeogr14:177-185. phylogenysinceassemblagecompositionswillbeconsid- Diniz-FilhoJAF,BiniLM,RodriguezMA,RangelTFLVBand ered independently (reducing sample sizes) so that errors Hawkins BA (2007) Seeing the forest for the trees: Parti- wouldbemagnifiedatthesesmallergeographicalscales. tioning ecological and phylogenetic components of berg- It is worth noting that our main conclusions do not mannsruleinEuropeancarnivora.Ecography30:598-608. meanthatanyphylogeny,independentlyoftheresolution, Diniz-FilhoJAF,RangelTFLVBandBiniLM(2008)Modelse- canbeusedincomparativeanalysiswiththesamepower, lection and information theory in geographical ecology. or that “good” phylogenies are not necessary to give the GlobEcolBiogeogr17:479-488. correctinterpretationstotheevolutionarydynamicsofeco- Felsenstein J (1985) Phylogenies and the comparative method. logical, biogeographical, physiological or behavioral pat- AmNat125:1-15. terns.However,resultssuchasthosepresentedinthispaper Felsenstein J (2004) Inferring Phylogenies. Sinauer Associates, supporttheviewthatdevelopmentsincomparativeanaly- Sunderland,663pp. sis in many fields of biology can, and indeed must, occur Freckleton RP, Harvey PH and Pagel M (2002) Phylogenetic analysisandcomparativedata:atestandreviewofevidence. withinthecontextofdealingwithless-than-perfectornot AmNat160:712-726. fullyresolvedphylogenies. GarlandT,BennettAFandRezendeEL(2005)Phylogeneticap- proachesincomparativephysiology.JExpBiol208:3015- Acknowledgments 3035. GittlemanJLandKotM(1990)Adaptation:Statisticsandanull WorkbyJAFDFhasbeencontinuouslysupportedby model for estimating phylogenetic effects. Syst Zool productivityfellowshipsfromtheBrazilianAgencyCNPq 39:227-241. andtheFundaçãodeAmparoàPesquisadaUniversidade Gittleman JL and Luh HK (1992) On comparing comparative Federal de Goiás (FUNAPE/UFG). Work by JCN is sup- methods.AnnuRevEcolSyst23:383-404. portedbyaCAPESdoctoralfellowship. GriffithDAandPeres-NetoP(2006)Spatialmodelinginecology: The flexibility of eigenfunction spatial analyses. Ecology References 87:2603-2613. Hansen TF and Martins EP (1996) Translating between micro- AckerlyDD(2000)Taxonsampling,correlatedevolutionandin- evolutionary process and macroevolutionary patterns: The dependentcontrasts.Evolution54:1480-1492. correlation structure of interspecific data. Evolution Bininda-EmondsORP,GittlemanJLandPurvisA(1999)Build- 50:1404-1417. ing large trees by combining phylogenetic information: A JohnsonWE,EizirikE,Pecon-SlatteryJ,MurphyWJ,AntunesA, complete phylogeny of the extant Carnivora (Mammalia). TeelingEandO’BrienSJ(2006)ThelateMioceneradiation BiolRev74:143-175. of modern felidae: A genetic assessment. Science 311:73- Bininda-Emonds ORP (2004) Phylogenetic supertrees: Com- 77. bining information to reveal the Tree of Life. Springer, LegendrePandLegendreL(1998)NumericalEcology.2ndedi- Dordrecht,568pp. tion.Elsevier,Amsterdam,853pp. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, MartinsEPandGarlandJrT(1991)Phylogeneticanalysesofthe Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL correlatedevolutionofcontinuouscharacters:Asimulation andPurvisA(2007)Thedelayedriseofpresent-daymam- study.Evolution45:534-557. mals.Nature446:507-512. MartinsEP(1996)Conductingphylogeneticcomparativeanaly- Burnham KP and Anderson DR (2002) Model Selection and seswhenthephylogenyisnotknown.Evolution50:12-22. Multimodel Inference: A Practical Information-Theoretic Martins EP and Hansen TF (1996) The statistical analysis of Approach.2ndedition.Springer-Verlag,NewYork,488pp. interspecificdata:Areviewandevaluationofphylogenetic CarvalhoP,Diniz-FilhoJAFandBiniLM(2005)Theimpactof comparativemethods.In:MartinsEP(ed).Phylogeniesand Felsenstein’s “phylogenies and comparative method” on theComparativeMethodinAnimalBehavior.OxfordUniv. evolutionarybiology.Scientometrics62:53-66. Press,England,pp22-27. 176 Felinephylogeniesandphylogeneticanalysis Martins EP (2000) Adaptation and the comparative method. Sechrest W, Brooks TM, Fonseca GAB, Konstant WR, Mitter- TrendsEcolEvol15:295-299. meierRA,PurvisA,RylandsABandGittlemanJL(2002) Hotspotsandtheconservationofevolutionaryhistory.Proc MartinsEP,Diniz-FilhoJAFandHousworthEA(2002)Adaptive NatlAcadSciUSA99:2067-2071. constraints and the phylogenetic comparative method: a Smith FA, Lyons SK, Morgan-Ernest SK, Jones KE, Kaufman computersimulationtest.Evolution56:1-13. DM, Dayan T, Marquet PA, Brown JH and Haskell JP MartinsEPandHousworthEA(2002)Phylogenyshapeandthe (2003) Body mass of late Quaternary mammals. Ecology phylogeneticcomparativemethod.SystBiol51:873-880. 84:3403. Morales E (2000) Estimating phylogenetic inertia in Tithonia TôrresNMandDiniz-FilhoJAF(2004)Phylogeneticautocorre- (Asteraceae): A comparative approach. Evolution 54:475- lationandevolutionarydiversityofcarnivore(mammalia)in 484. conservation units of the new world. Genet Mol Biol 27:511-516. PagelM(1999)Inferringthehistoricalpatternsofbiologicalevo- WebbCO,AckerlyDD,McPeekMAandDonoghueMJ(2002) lution.Nature401:877-884. Phylogeniesandcommunityecology.AnnuRevEcolSyst Purvis A (1995) A composite estimate of primate phylogeny. 33:475-505. PhilosTransRSocLondBiolSciSeriesB348:405-421. RangelTFLVB,Diniz-FilhoJAFandBiniLM(2006)Towardsan AssociateEditor:JoãoS.Morgante integratedcomputationaltoolforspatialanalysisinmacro- ecology and biogeography. Glob Ecol Biogeogr 15:321- Licenseinformation:Thisisanopen-accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,and 431. reproduction in any medium, provided the original work is properly cited.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.