ebook img

Modeling and Simulation of Functionalized Materials for Additive Manufacturing and 3D Printing: Continuous and Discrete Media: Continuum and Discrete Element Methods PDF

308 Pages·2018·8.281 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling and Simulation of Functionalized Materials for Additive Manufacturing and 3D Printing: Continuous and Discrete Media: Continuum and Discrete Element Methods

Lecture Notes in Applied and Computational Mechanics 60 Tarek I. Zohdi Modeling and Simulation of Functionalized Materials for Additive Manufacturing and 3D Printing: Continuous and Discrete Media Continuum and Discrete Element Methods Lecture Notes in Applied and Computational Mechanics Volume 60 Series editors Peter Wriggers, Leibniz Universität Hannover, Hannover, Germany e-mail: [email protected] Peter Eberhard, University of Stuttgart, Stuttgart, Germany e-mail: [email protected] This series aims to report new developments in applied and computational mechanics—quickly,informallyandatahighlevel.Thisincludesthefieldsoffluid, solid and structural mechanics, dynamics and control, and related disciplines. The applied methods can be of analytical, numerical and computational nature. More information about this series at http://www.springer.com/series/4623 Tarek I. Zohdi Modeling and Simulation of Functionalized Materials for Additive Manufacturing and 3D Printing: Continuous and Discrete Media Continuum and Discrete Element Methods 123 Tarek I.Zohdi University of California Berkeley, CA USA ISSN 1613-7736 ISSN 1860-0816 (electronic) Lecture Notesin AppliedandComputational Mechanics ISBN978-3-319-70077-9 ISBN978-3-319-70079-3 (eBook) https://doi.org/10.1007/978-3-319-70079-3 LibraryofCongressControlNumber:2017957665 ©SpringerInternationalPublishingAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To my patient and loving wife, Britta Schöenfelder-Zohdi and to the memory of my close friend, colleague and mentor, David Dornfeld. Preface Withinthelastdecade,severalindustrializedcountrieshavestressedtheimportance of advanced manufacturing to their economies. Many of these plans have high- lightedthedevelopmentofadditivemanufacturingtechniques,suchas3Dprinting which, as of 2018, are still in their infancy. The objective is to develop superior products,producedatloweroveralloperationalcosts.Forthesegoalstoberealized, adeepunderstandingoftheessentialingredientscomprisingthematerialsinvolved in additive manufacturing is needed. The combination of rigorous material mod- eling theories coupled with the dramatic increase of computational power can potentially play a significant role in the analysis, control, and design of many emerging additive manufacturing processes. Specialized materials and the precise design of their properties are key factors in these processes. Specifically, particle-functionalized materials play a central role in this field, in three main regimes: (cid:129) (1) To enhance overall filament-based material properties, by embedding par- ticles within a binder, which is then passed through a heating element and deposited onto a surface, (cid:129) (2) To “functionalize” inks by adding particles to freely flowing solvents forming a mixture, which is then deposited onto a surface, and (cid:129) (3) Todirectlydepositparticles,asdrypowders, onto surfacesandthen toheat them with a laser, e-beam, or other external sources, in order to fuse them into place. The goal of these processes is primarily to build surface structures which are extremely difficult to construct using classical manufacturing methods. The objective of this monograph is to introduce the readers to basic techniques which canallowthemtorapidlydevelopandanalyzeparticulate-basedmaterialsneededin such additive manufacturing processes. This monograph is broken into two main parts: “Continuum Method” (CM) approaches and “Discrete Element Method” (DEM) approaches. The mate- rials associated with methods (1) and (2) are closely related types of continua (particles embedded in a continuous binder) and are treated using continuum vii viii Preface approaches. The materials in method (3), which are of a discrete particulate char- acter, are analyzed using discrete element methods. I am certain that, despite painstaking efforts, there remain errors of one sort or another in this monograph. Therefore, I would be grateful if readers who find such flaws could contact me at [email protected]. This document is under copyright. No part can be copied, electronically stored, transmitted, reproduced, or translated into another language without written permission from Tarek I. Zohdi. Berkeley, USA Tarek I. Zohdi September 2017 Contents 1 Introduction: Additive/3D Printing Materials—Filaments, Functionalized Inks, and Powders. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Continuum Methods (CM): Basic Continuum Mechanics . . . . . . . . 9 2.1 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Kinematics of Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Deformation of Line Elements . . . . . . . . . . . . . . . . . . 11 2.3 Equilibrium/Kinetics of Continua. . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Postulates on Volume and Surface Quantities. . . . . . . . 12 2.3.2 Balance Law Formulations . . . . . . . . . . . . . . . . . . . . . 14 2.4 The First Law of Thermodynamics/An Energy Balance. . . . . . . 14 2.5 Linearly Elastic Constitutive Equations . . . . . . . . . . . . . . . . . . 16 2.5.1 The Infinitesimal Strain Case . . . . . . . . . . . . . . . . . . . 16 2.5.2 Material Response . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.3 Material Component Interpretation . . . . . . . . . . . . . . . 18 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 CM Approaches: Characterization of Particle-Functionalized Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Basic Micro–Macro Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 Testing Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.2 The Average Strain Theorem . . . . . . . . . . . . . . . . . . . 24 3.2.3 The Average Stress Theorem . . . . . . . . . . . . . . . . . . . 25 3.2.4 Satisfaction of Hill’s Energy Condition . . . . . . . . . . . . 25 3.2.5 The Hill–Reuss–Voigt Bounds . . . . . . . . . . . . . . . . . . 26 3.2.6 Improved Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 27 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ix x Contents 4 CM Approaches: Estimation and Optimization of the Effective Properties of Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1 Combining Bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Local Fields: Stresses and Strains . . . . . . . . . . . . . . . . . . . . . . 32 4.3 Optimization: Formulation of a Cost Function . . . . . . . . . . . . . 34 4.4 Suboptimal Properties Due to Defects—Effects of Pores/voids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 CM Approaches: Numerical Thermo-Mechanical Formulations . . . 43 5.1 Transient Thermo-Mechanical Coupled Fields . . . . . . . . . . . . . 44 5.2 Iterative Staggering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3 Temporal Discretization of Fields . . . . . . . . . . . . . . . . . . . . . . 50 5.4 The Overall Solution Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.5 Numerical Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.6 Summary and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.7 Chapter Appendix 1: Summary of Spatial Finite Difference Stencils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.8 Chapter Appendix 2: Second-Order Temporal Discretization . . . 63 5.9 Chapter Appendix 3: Temporally Adaptive Iterative Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.10 Chapter Appendix 4: Laser Processing. . . . . . . . . . . . . . . . . . . 67 5.10.1 Formulations for Particulate-Laden Continua . . . . . . . . 68 5.10.2 A Specific Numerical Example—Controlled Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.10.3 Numerical Examples. . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.10.4 Extensions: Advanced Models for Conduction Utilizing Thermal Relaxation . . . . . . . . . . . . . . . . . . . 75 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6 PART II—Discrete Element Method (DEM) Approaches: Dynamic Powder Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.1 Direct Particle Representation/Calculations. . . . . . . . . . . . . . . . 86 6.1.1 Comments on Rolling. . . . . . . . . . . . . . . . . . . . . . . . . 86 6.1.2 Particle-to-particle Contact Forces . . . . . . . . . . . . . . . . 87 6.1.3 Particle-Wall Contact . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.1.4 Contact Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.1.5 Regularized Contact Friction Models. . . . . . . . . . . . . . 89 6.1.6 Particle-to-particle Bonding Relation . . . . . . . . . . . . . . 90 6.1.7 Electromagnetic Forces. . . . . . . . . . . . . . . . . . . . . . . . 90 6.1.8 Inter-particle Near-Field Interaction . . . . . . . . . . . . . . . 91 6.1.9 Magnetic Forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.1.10 Interstitial Damping . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.2 Time-Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.