ebook img

MODELING AND SIMULATION OF FLOW IN CEREBRAL ANEURYSMS J M PDF

134 Pages·2012·4.23 MB·Dutch
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview MODELING AND SIMULATION OF FLOW IN CEREBRAL ANEURYSMS J M

MODELING AND SIMULATION OF FLOW IN CEREBRAL ANEURYSMS JULIA MIKHAL Depromotiecommissie: Voorzitterensecretaris: Prof.dr.ir.A.J.Mouthaan UniversiteitTwente Promotoren: Prof.dr.ir.B.J.Geurts UniversiteitTwente Prof.dr.ir.C.H.Slump UniversiteitTwente Leden: Prof.dr.ing.V.Armenio Universita`degliStudidiTrieste Prof.dr.S.A.vanGils UniversiteitTwente Prof.dr.J.G.M.Kuerten UniversiteitTwente Prof.dr.C.B.L.M.Majoie AcademischMedischCentrumAmsterdam Prof.dr.A.E.P.Veldman RijksuniversiteitGroningen Prof.dr.ir.F.N.vandeVosse TechnischeUniversiteitEindhoven TheresearchpresentedinthisthesiswasdoneinthegroupMultiscaleModelingandSimu- lation(Dept.ofAppliedMathematics),incollaborationwiththegroupSignalsandSystems (Dept.ofElectricalEngineering),FacultyEEMCS,UniversityofTwente,TheNetherlands. ComputingresourcesweregrantedbytheNationalComputingFacilitiesFoundation(NCF), withfinancialsupportfromtheDutchOrganizationforScientificResearch(NWO). Modelingandsimulationofflowincerebralaneurysms.Ph.D.Thesis,UniversityofTwente, P.O.Box217,7500AEEnschede,TheNetherlands. c JuliaMikhal,Enschede,2012. (cid:13) PrintedbyWo¨hrmannPrintService,Zutphen,TheNetherlands. Coverphoto‘LightsandWater’ c JamesAdamson. (cid:13) ISBN:978-90-365-3433-8 DOI:10.3990/1.9789036534338 MODELING AND SIMULATION OF FLOW IN CEREBRAL ANEURYSMS PROEFSCHRIFT terverkrijgingvan degraadvandoctoraandeUniversiteitTwente, opgezagvanderectormagnificus, prof.dr.H.Brinksma, volgensbesluitvanhetCollegevoorPromoties inhetopenbaarteverdedigen opvrijdag19oktober2012om12:45uur door IuliiaOlegivnaMikhal geborenop6juni1984 teKharkiv,Oekra¨ıne Ditproefschriftisgoedgekeurddoordebeidepromotoren: Prof.dr.ir.B.J.GeurtsenProf.dr.ir.C.H.Slump To myparents Contents 1 Introduction........................................................... 1 2 Immersed boundarymethodforthe computationofflow invesselsand cerebralaneurysms .................................................... 7 2.1 Introduction ....................................................... 7 2.2 Computationalmodelforflowinsidecerebralaneurysms ................. 12 2.2.1 Incompressibleflowincomplexdomains ........................ 12 2.2.2 Numericalmethodforsimulatingincompressibleflowwith an immersedboundaryapproach.................................. 14 2.2.3 Maskingfunctionstrategy..................................... 18 2.3 ValidationoftheIBmethod.......................................... 22 2.3.1 Flowinstraightvessels ....................................... 23 2.3.2 Flowincurvedvessels........................................ 27 2.3.3 Flowinamodelaneurysm..................................... 29 2.4 Shearstressincurvedvesselandmodelaneurysm ....................... 30 2.4.1 ValidationoftheIBcomputedshearstress ....................... 30 2.4.2 Analysisoftheshearstressdistributioninsidecurvedvesseland modelaneurysm ............................................. 33 2.5 Concludingremarks ................................................ 36 3 Flowincerebralaneurysmsderivedfrom3Drotationalangiography ........ 39 3.1 Introduction ....................................................... 39 3.2 Computationalmodelforbloodflowincerebralaneurysms ............... 43 3.2.1 Navier-Stokesequationsandimmersedboundarymethod........... 43 3.2.2 Segmentationof3Drotationalangiographydata .................. 45 3.2.3 Elementaryoperationsonthemaskingfunction................... 49 3.3 Flowinarealisticaneurysm.......................................... 52 3.3.1 Motivationanddefinitionofthereferencecase.................... 52 vii viii Contents 3.3.2 Qualitativeimpressionofflowandforcesinsidetheaneurysm....... 55 3.3.3 Flowinpartiallyfilledcerebralaneurysms ....................... 58 3.3.4 ReliabilityofIBpredictions:agridrefinementstudy............... 61 3.4 Sensitivityofflowpredictionstoelementaryoperationsonmaskingfunction. 64 3.5 Sensitivityofflowpredictionsinboundinggeometries ................... 67 3.5.1 Gridcoarseningandboundinggeometries........................ 68 3.5.2 Numericalboundingsolutions ................................. 70 3.6 Concludingremarks ................................................ 73 4 Transitionofpulsatileflowincerebralaneurysms.......................... 75 4.1 Introduction ....................................................... 75 4.2 Computationalmodelofcerebralpulsatilebloodflow .................... 78 4.2.1 ImmersedBoundarymethodandaneurysmgeometry.............. 78 4.2.2 Flowconditionsandpulsatileforcing ........................... 82 4.2.3 Referencepulsatileflow....................................... 84 4.3 Transitionalpulsatileflow ........................................... 86 4.3.1 Shearstressresponseinnormalandpathologicalflow.............. 86 4.3.2 Robustnessofpulsatiletransition............................... 89 4.3.3 Frequenciesofthepulsatilesolution ............................ 91 4.4 Concludingremarks ................................................ 94 5 ConclusionsandOutlook ............................................... 97 References.................................................................105 Chapter 1 Introduction There is a growing medical interest in the prediction of flow and forces inside cerebral aneurysms [48, 103], with the ultimate goal of supporting medical procedures and deci- sions by presenting viable scenarios for intervention. The clinical background of cerebral aneurysmsand possible hemorrhagesis well introducedin the literature such as [93, 101]. Thesedays,withthedevelopmentofhigh-precisionmedicalimagingtechniques,thegeome- tryandstructureofbloodvesselsandpossibleaneurysmsthathaveformed,canbedetermined forindividualpatients.Todate,surgeonsandradiologistshavetomakedecisionsaboutpos- sibletreatmentofananeurysmbasedonsize,shapeandlocationcriteriaalone.Inthisthesis wefocusontheroleofComputationalFluidDynamics(CFD)foridentifyingandclassifying therapeuticoptionsinthetreatmentofaneurysms. CFD allows to add qualitative and quantitative characteristics of blood flow inside the aneurysmtothecomplexprocessofmedicaldecisionmaking.Wecontributetothisbycom- puting the precise patient-specific pulsatile flow in all spatial and temporal details, using a so-called‘ImmersedBoundary’(IB)method.Thisrequiresanumberofsteps,frompreparing therawmedicalimagerytodefinethecomplexpatient-specificflowdomain,totheexecution ofhigh-fidelitysimulations.Subsequently,detailedinterpretationoftheconsequencesofthe flow shouldbe givenjointly by medicalexpertsandCFD specialists in termsof flow visu- alization and quantitative measures of relevance to medical practice. We compute the flow inside theaneurysmto predicthighandlowstress regions,indicativeofpossiblegrowthof ananeurysm.Wealsovisualizevorticalstructuresintheflowindicatingthequalityoflocal blood circulation. We show that, as the size of the aneurysmincreases, qualitative changes intheflowbehaviorcanarise,whichexpressthemselvesashigh-frequencyvariationsinthe flow and shear stresses. These rapid variations could be used to quantify the level of risk associated with the growing aneurysm. Such computationalmodeling may lead to a better understandingoftheprogressiveweakeningofthevesselwallanditspossiblerupture. 1 2 1 Introduction Beforepresentingthecontentofthisthesis,wewillbrieflydiscussthemedicalmotivation oftheproblem,thevariousrolesCFDcanplayandgiveanoverviewofnumericalmethods beingusedforbloodflowsimulations.Subsequently,thefocuspointsofeachchapterwillbe presentedandfinallythegeneraloutlineofthisthesiswillbegiven. Cerebral Aneurysm. Medical motivation. The medical condition known as cerebral aneurysmisoneofthecardiovasculardiseasesthatinvolvesvesselwallsofcerebralvessels. Bulgeformationsmightdeveloponthevesselwalls,andovertime,underpermanentpulsat- ingforces,theaneurysmmaygrowfurtherandevenrupture.Thedegradationofendothelial cells in the vessel walls is often associated with regions of relatively low shear stress [9] while locations of relatively high shear stress could be important for initial formation of a bulge[84].Commonly,cerebralaneurysmsarelocatedinorneartheCircleofWillis[101]– the centralvesselnetworkforthe supplyofbloodto thehumanbrain.Therisk-areasareat ‘T’and‘Y’-shapedjunctionsinthevessels[34].Treatmentofcerebralaneurysmsoftenin- volvesinsertionofaslendercoil.Thiscoilingprocedurerepresentsconsiderableriskduringa surgicalintervention,aswellasuncertaintyaboutthelong-termstabilityofcoiledaneurysms [86,94].Bloodvesselsandaneurysmsarerathercomplexbytheirstructureandgeometrical shapes.Thewallsofbloodvesselscontainseverallayersofdifferenttypesofbiologicalcells, which provide elasticity to the vessels and determine their compliance [76]. The shape of cerebralaneurysmsdevelopingin patientscanbe inferredbyusingseveraltechniquessuch asCTA(ComputedTomographicAngiography),DSA(DigitalSubtractionAngiography)and 3DRA (Three-DimensionalRotationalAngiography)[64]. In these proceduresa small part ofthebrainisscanned,andaneurysmsevenofasizelessthan3mmcanbeobserved[8,95]. These techniques allow a reconstruction of three-dimensional arteries and aneurysms and hence an approximate identification of the blood vessels and parts of the soft tissue in the scannedvolume. ComputationalFluidDynamics.ThetremendouspotentialofCFDinsupportingmedi- caldecisionsandproposingtherapeuticoptionsinthetreatmentofcerebralaneurysms,was already anticipatedin [57]. The value of numericalsimulationsfor treating aneurysmswill likely increase further with better quantitative understanding of hemodynamicsin cerebral bloodflow.AprimarychallengeforanyCFDmethod,whetheritisabody-fittedmethod[35] oranIBmethod[37,62,73],istocapturetheflownearsolid-fluidinterfaces.Inthisregion thehighestvelocitygradientsmayoccur,leadingtocorrespondinglyhighestlevelsofshear stress, but also potentially highest levels of numerical error. In methods employing body- fittedgrids,thequalityofpredictionsisdirectlylinkedtothedegreetowhichgrid-linescan beorthogonaltothesolid-fluidinterfaceandtoeachother.Also,variationinlocalmeshsizes andshapesofadjacentgridcellsisafactordeterminingnumericalerror.Thegenerationofa suitablegridisfurthercomplicatedastherawdatathatdefinetheactualaneurysmgeometry

Description:
MODELING AND SIMULATION OF FLOW IN CEREBRAL ANEURYSMS PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magnificus,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.