Modeling and Simulation of Anchor Handling Vessels Lars Andreas Lien Wennersberg Master of Science in Engineering Cybernetics Submission date: June 2009 Supervisor: Thor Inge Fossen, ITK Norwegian University of Science and Technology Department of Engineering Cybernetics Problem Description The purpose of the thesis is to develop a simulator of an anchor handling vessel that is capable of simulating anchor handling operations under influence of environmental forces with realistic vessel motions. The following elements must be considered: 1. Give an overview of the best practice for anchor handling operations. Classification rules, regulations and operational procedures should be considered. 2. Based on a vessel model from the MSS Toolbox, develop and implement a simulator of an anchor handling vessel in MATLAB/Simulink. The simulator should contain the necessary modules for ballast tanks, roll reduction, cable systems and anchor handling equipment on deck. 3. Verify the simulator by simulating relevant anchor handling scenarios. 4. Present your findings and theoretical results in a report. Assignment given: 12. January 2009 Supervisor: Thor Inge Fossen, ITK Abstract The topic of this thesis is modeling and simulation of anchor handling vessels. Computer simulations of anchor handling vessels can be used to evaluate the forces acting on them, andtogainvaluableinsightintotheiroperationallimitations. Introductorily,anoverview containingimportantaspectsofanchorhandlingoperationsispresented. Theobjectiveis to highlight important subjects that must be considered before a simulator is developed. A simulator of an anchor handling vessel is successfully implemented in Matlab and Simulink. The simulator contains modules for ballast tanks, anti-roll tanks, cables, seabed and anchor interaction, winch systems and guide pins. The vessel model is matched up against a real anchor handling vessel to give realistic thrust characteristics. The simulator is capable of simulating both anchor deployment and anchor recovery operations in real time. Catenary equations are used to model cables. A quasi-static polynomial approach with look-up tables is used for implementation. The method allows the use of di(cid:27)erent cate- nary models to simulate di(cid:27)erent phases of the anchor handling operation. A catenary model of two cables with a point load, imitating the e(cid:27)ect of an anchor, is developed based on existing catenary models in the literature. The simulator is veri(cid:28)ed through simulations. A set of case studies is used to evaluate the vessel performance during anchor deployment and recovery. The case studies con- sider operation in ideal and rough weather conditions, and it is shown how equipment failures and poor vessel con(cid:28)guration can lead to decreased vessel stability and loss of maneuvering capabilities. I Preface ThismasterthesisiswrittenattheDepartmentofEngineeringCyberneticsattheNorwe- gian University of Science and Technology. It represents the end of my days as a student at NTNU. The years I’ve spent as a student in Trondheim have been very rewarding, both academically and socially. First and foremost, I would like to thank my supervisors Thor Inge Fossen at the De- partment of Engineering Cybernetics and (cid:216)yvind N. Smogeli at Marine Cybernetics for their advices and support throughout the work on this thesis. They guided me in the right directions and gave me valuable help on technical modeling issues. Marine Cybernetics presented me with the opportunity to write this thesis. I would like to thank Tor Arne Johansen at Marine Cybernetics/Department of Engineering Cybernetics for introducing me to the topic of anchor handling operations. Thanks also to Carl M. Larsen and Odd M. Faltinsen at CeSOS, Rune Dahlberg at DNV and Ivar Fylling at Sintef Marintek for their literature suggestions and contributions. Finally I would like to thank my fellow students for creating a good atmosphere and a constructive working environment. Lars Andreas Lien Wennersberg Trondheim, June 2009 III Contents Abstract I Preface III List of Figures X Nomenclature XIV 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contributions and Scope of the Report . . . . . . . . . . . . . . . . . . . . 2 1.3 Organization of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Anchor Handling Operations 3 2.1 Vessel Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Anchor Handling Equipment . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Rules and Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 Operational Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4.1 The Rig Move Procedure . . . . . . . . . . . . . . . . . . . . . . . 7 2.4.2 Requirements for Anchor Handling Vessels . . . . . . . . . . . . . . 8 2.5 Deployment and Recovery of Anchors . . . . . . . . . . . . . . . . . . . . 8 2.5.1 Mooring Con(cid:28)gurations . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5.3 Anchor Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5.4 Anchor Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5.5 Reduced Procedures for Simulation Purposes . . . . . . . . . . . . 14 2.6 Deep Water Anchor Handling Operations . . . . . . . . . . . . . . . . . . 15 3 Cable Modeling 17 3.1 Cable Modeling Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Catenary Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.1 Basic Cable Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.2 The General Elastic Catenary . . . . . . . . . . . . . . . . . . . . . 20 V VI Contents 3.2.3 Horizontal Cable Con(cid:28)guration . . . . . . . . . . . . . . . . . . . . 22 3.2.4 Double Catenary Con(cid:28)guration with Point Load . . . . . . . . . . 23 3.2.5 Inclined Elastic Catenary with Stretching . . . . . . . . . . . . . . 29 3.3 Quasi-Static Polynomial Approach . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.2 Two-Dimensional Polynomial Creation . . . . . . . . . . . . . . . . 30 3.3.3 Look-Up Tables and Cable Span Segmentation . . . . . . . . . . . 32 3.3.4 Parameter Selection and Polynomial Generation . . . . . . . . . . 33 4 Seabed and Anchor Interaction 37 4.1 Anchor Types and Their Use . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 The Breakout Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 Dynamic Friction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 Vessel Model 41 5.1 Zero Speed DP Model with Fluid Memory E(cid:27)ects . . . . . . . . . . . . . . 41 5.2 Thrust Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.3 O(cid:27)shore Installation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.4 Cable Forces and Moments on the Vessel . . . . . . . . . . . . . . . . . . . 44 5.4.1 Cable Attachment Points . . . . . . . . . . . . . . . . . . . . . . . 44 5.4.2 Decomposing the Catenary Forces . . . . . . . . . . . . . . . . . . 45 6 Deck Equipment 49 6.1 Winch System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.1.1 Motor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.2 Gear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.3 Winch Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.1.4 Winch System Simulations. . . . . . . . . . . . . . . . . . . . . . . 52 6.2 Guide Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.2.2 Logical Guide Pin Model . . . . . . . . . . . . . . . . . . . . . . . 55 6.2.3 Active Guide Pin Algorithm . . . . . . . . . . . . . . . . . . . . . . 55 6.2.4 End-Point Cable Position . . . . . . . . . . . . . . . . . . . . . . . 57 7 Ballast and Anti-Roll Tank System 61 7.1 Ballast Tank System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.1.1 Ballast Tank Properties . . . . . . . . . . . . . . . . . . . . . . . . 61 7.1.2 Ballast Forces and Moments . . . . . . . . . . . . . . . . . . . . . . 62 7.1.3 Water Pump Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 63 7.1.4 Ballast Tank System Simulations . . . . . . . . . . . . . . . . . . . 64 7.2 Anti-Roll System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7.2.1 Roll Reduction Fundamentals . . . . . . . . . . . . . . . . . . . . . 66 7.2.2 Roll Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7.2.3 Free Surface Correction . . . . . . . . . . . . . . . . . . . . . . . . 67
Description: