ebook img

Modeling and Performance Studies of Data Communication Networks using Dynamic Complex Networks PDF

0.23 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling and Performance Studies of Data Communication Networks using Dynamic Complex Networks

Modeling and Performance Studies of Data Communication Networks using Dynamic Complex Networks SuchiKumari DepartmentofComputerScienceandEngineering, NationalInstituteofTechnology, Delhi,India email:[email protected] AnuragSingh DepartmentofComputerScienceandEngineering, 7 NationalInstituteofTechnology, 1 Delhi,India 0 email:Correspondingauthor:[email protected] 2 n a J 7 1 Abstract ] All the existing real world networks are evolving, hence, study of traffic dynamics in these enlarged networks is a I challengingtask. Thecriticalissueistooptimizethenetworkstructuretoimprovenetworkcapacityandavoidtraffic N congestion. We are interested in taking user’s routes such that it is least congested with optimal network capacity. . s Network capacity may be improved either by optimizing network topology or enhancing in routing approach. In c thiscontext,weproposeanddesignamodelofthetimevaryingdatacommunicationnetworks(TVCN)basedonthe [ dynamicsofin-flowinglinks.Newlyappearednodepreferstoattachwithmostinfluentialnodepresentinthenetwork. 1 Inthispaper,influenceistermedasreputationandisappliedforcomputingoverallcongestionatanynode.Userpath v withleastbetweennesscentralityandmostreputationispreferredforrouting. Kelly’soptimizationformulationfora 1 8 rate allocationproblemisused forobtainingoptimalratesof distinctusersatdifferenttime instants anditis found 5 thattheuser’spathwithlowestbetweennesscentralityandhighestreputationwillalwaysgivemaximumrateatstable 4 point. 0 . Keywords: 1 0 DataCommunicationNetworks,TimevaryingNetworksmodel,SystemUtility,Routing 7 1 : v 1. Introduction i X Manyrealworldnetworks,suchasdatacommunicationnetwork,WorldWideWeb, transportationnetworketc., r follow heavy tailed power law degree distribution results in scale free behavior [1]. These networks are evolving, a hence,dynamicsofthenetworkshavebeenstudiedinpastfewyears. Incommunicationnetworks,datapacketsare transportedfromsomesource(S)todestination(D)viaapath. Thecriticalissueconcernedwiththecommunication networksistooptimizethenetworkstructuretoimprovesearchingorroutingefficiencyandavoidtrafficcongestion. The next issue is related to efficient usage of the capacity of the networks. It is observed that few nodes become congestedandthen,lateritresultsinpropagationofcongestioninthewholenetwork.Ithappensbecausethesenodes are used most in the communicationpath as they are more central. Network capacity may be improvedusing two methods:(i)Methodstooptimizenetworktopology,and(ii)Enhancementinroutingapproach. 1.1. Optimizationofnetworktopology Optimization of network topologycorrespondsto reorganizationof the network for minimizingcongestionand getting improved network capacity. Zhao et al. [2] have enhanced network capacity by redistributing the load of heavily loaded nodes to other nodes in the network. Links are sorted in descending order according to their end PreprintsubmittedtoElsevier January18,2017 nodedegreesandlinksareremovedinthedescendingsortedlist[3]. Forheterogeneousnetworks,Zhangproposed amethodinwhichnodeshavinghighbetweennesscentralityareremovedfirst[4]. Networksaregrowingduringthe wholeofthelifespanandnodesareconnectedviapreferentialattachment(BAmodel)[5]. InBAmodel,appearance ofnewconnectionstotallydependsontheadditionofnewnodestothesystem. But,inrealsystems,linksareadded andupdatedcontinuously.Tadic[1]hasdevelopedamodelfordynamicsofdirectednetworks.Degreedistributionof boththeoutgoingandincominglinksfollowpowerlawdegreedistributionandthereisacorrelationbetweenthem.It suggeststhatlocalstructureofthenetworkisdifferentincomparisonwiththecaseofwithoutupdates.Thereisaneed toincludetimeparameterwiththenodesandlinksofthebasicnetworkstructureso,manymodelshavebeenproposed forthesetime-varyinggraphs(TVGs)[6,7,8,9]. ModeldevelopedbyKostakosetal. [10]isbasedontheconceptof quicktransferanddelayedtransactionofdatabetweendistinctnodesinthecommunicationnetwork. Kimetal. [8] focustheirworkondiscoveringclosestandmostbetweennesscentralnodeinthedynamicallychangingnetworks.A seriesofstaticgraphs(i.e.,thesnapshots)areusedtorepresentthenetworkatagiventimeinstant[11]. Thesnapshot model makes an external assumption that the network must be capable of retaining the link transitivity during the periodof disconnection. Recently, Wehmuth et al. [6] have proposeda new unifyingmodelfor representingfinite discreteTVGs. TVGnodesareconsideredasindependententitiesateachtimeanditisanalyzedtheproposedTVGis isomorphictoastaticgraph. Itisanimportantresultbecauseoftheuseoftheisomorphicdirectedgraphasatoolto analyzeboththepropertiesofaTVGandthebehaviorofdynamicprocessesoveraTVG.Aframeworktorepresent mobilenetworksdynamicallyinaSpatio-temporalfashionisdesignedandalgebraicstructuralrepresentationisalso provided[12]. 1.2. Enhancementinroutingapproach Networkrestructuringcostismore,hencemostoftheresearchersfocusonfindingbetterroutingstrategies. Tra- ditionally,packetsaresentalongtheshortestpathsinthetermofhopcountorminimalsumsofweightedlinks[13]. Mostoftheshortestpathsarepassingthroughmostcentralnodesandhence,sendingdataonlythroughshortestpath isnotefficient. Yanetal. [14]havefocusedtheirworkonsearchingefficientpath,instead ofsearchingofshortest paths. Incommunicationnetworks,tworatesareassociatedwitheachnode:packetgenerationratel andpacketfor- wardingratem . Thereisacriticalrateofpacketgeneration(l ),belowwhichnetworkwillbefreefromcongestion. c TwomodelsareproposedbyZhaoetal. [2]forfindingpacketdeliveryrateofanode,(i)basedonnode’slinksand (ii)numberoftheshortestpathpassingthroughthenode.Inlatermodel,criticalrateisindependentofnetwork’ssize andtopology,unlike,previousmodel. Duetal. [15]havedevelopedamodelinwhichpacketsaregeneratedwitha ratel betweenrandomsourceanddestinationpairs. Packetsarepropagatedintothenetworksuchthatloadismin- imizedandwillbedeliveredbyShortestRemainingPacketFirst(SRPF) algorithm. Theyalsostudiedthebehavior ofcongestednodewiththearrivaloflargenumberofpackets. AheuristicroutingstrategiesareusedbyJiangetal. [16],inwhichroutingprocessisdividedintoN (sizeofnetwork)steps. Alltheroutesfromthesourcenodearebased onthebetweennesscentralityandnode’sdegreeinformation. Puetal. [17]haveformedanetworkmodelbasedon BarabasiAlbert(BA)modelandroutingbetweenpairofnodesaredonesuchthatcostfunctionisminimized.Robust- nessandnetworkefficiencyarecalculatedagainstcascadingfailure.Networksarechangingrapidlywithtime,hence, acquiringglobalinformationofthenetworkusingglobalroutingstrategyisnotusefulforlongertime. Variouslocal routingstrategiesareproposedbyLinetal. [18]. Proposedmethodsincludenodeduplicationavoidance,searching nextnearestneighborsandrestrictedqueuelength. Alltheproposedstrategiesareusedtoenhancetheperformance ofthesystem,byincreasingpacketgenerationrateofthenodesandreducingpackettransmissiontime. 1.3. Ratecontrolmechanism Somenodesaswellaslinksaregettingaddedorremovedbutthereisanetincrementinthesizeofthenetworks withtime.Asnetworkisexpandingdaybydaysodesignandcontrolofsuchnetworkisachallengingwork.Structure ofnetworksisdependentondistributionoflinksanddirectlyaffectstheaccessibilityofparticularnode. Topologyis changingandduetochangeintopology,theperformanceofthenetworkisalsoaffected.Communicationnetworkcan respondtothe randomlychangingtrafficbutmoderncommunicationnetworksface multiplechallengesatdifferent layers. Reallifecommunicationnetworksareextremelyvolatileandmakingconnectionsinthevolatileenvironment withoptimalnetworkutilityisachallengingtask. Modelingtheirratecontrolbehavior[19]withvolatileanddynamic connectivity helps us in getting optimal utilization of the system. La et al. [20] have extended Kelly’s work by 2 introducingasuitablepricingscheme.Analgorithmisproposedforadjustingnetwork’spriceandusers’windowsize is re-framedto achieve optimalsystem utility by maintainingweighted proportionallyfairness. Priya Ranjan et al. [21]haveinvestigatedKelly’soptimizationframeworkandusedforfindingstabilityconditionswiththeconsideration ofarbitrarydelays.Effectofthenonresponsivetrafficonthesystemstabilityisstudied.Itisshownthatubietyofsuch elementshelpinimprovingthestabilityofthesystem. Recently,progressismadeontheearlierworkofmodelingof TVCNandanewLyapunovfunctionisbeingformulatedforratecontrolschemeandlongtermstabilityisobtained [22]. In previous researches, various routing strategies are proposed to avoid congestion in the communication net- works. Here, work is focused on congestion and network utility both and the routing of the users are established with minimumcongestionand maximumnetworkutility alongthem. Networkutility is calculatedby summingup all individualuser’s utilities, and it will be maximum when, each user send data to their destinations with optimal rate. Oncenetworkisdesignedthen, usersselecttheirroutesfordatacommunicationwith theirdestinednodes. In thispaper, networkis designedwith the considerationof expansion,rewiringand removalof the links. A modelis proposedforremovinginfrequentlyusedlinksinthenetworkapartfromadditionandrewiringoflinks. Additionand rewiringoflinksarebasedonpreferentialattachment. Theremovedlinksincreaseunnecessarilymaintenancecost, hence, the removalof these links will reduce the cost. In the proposed model, the links attached to a node having lower degree, will be preferredto remove. Optimality of the routes are checked by analyzing Kelly’s optimization approach[19]forarateallocationproblemincommunicationnetworksatdifferenttimeinstants. Centralityplaysanimportantroleforcongestioninthenetwork,especiallybetweennesscentrality. Betweenness centralityofanodevisequaltothenumberofshortestpathsfromallnodepairspassthroughthatnodevandisgiven by, g(v)= (cid:229) s S→D(v). s S,v,D S→D Iflargernumberofshortestpathsarepassingthroughanodethen,betweennesscentralityanddegreeofthatnodewill bemorebut,vice-versaisnottrue[23]. Connectivitydistributionofbothbetweennessanddegreecentralityofthereal world networksfollow power law distribution with differentbut, correlatedexponents[24]. Nodes with maximum betweennesscentralityisthemostcongestednodeinthenetwork[2]. Intheproposedroutingstrategy,shortestpaths withlowesttotalsumofbetweennesscentralityofnodesareselectedforsendingdatapackets. Somenodesareendorsedbythecongestednodesandcauseincreaseinloadatthatnode.Hence,thesenodesmay beavoidedforreducingdatatrafficinthenetwork. Eigenvectorcentralityisusedtocheckinfluenceofonenodeto others. In thispaper,influenceismeasuredintermsof congestioninthe networks. A nodewith highEigenvector centralityis highly congestedand it is undesirableto connectwith thatnode. We have used a term, “reputation”, forfindingoverallcongestionatanynode. ReputationofanodeisinverselyrelatedtoEigenvectorcentralityofthe particularnode,hence,mostEigenvectorcentralnodeisleastreputed. Both,betweennesscentralityandreputation are collectively used for avoiding congestion in the network. Among all the shortest paths, the path having lowest betweennesscentralandmostreputedaredesirablefordatacommunicationbetweenuserpairs.Thesedesirablepaths aretakenasaninputforKelly’soptimizationframeworkandaretheachieversofoptimaldataratesx∗. Section 2 states background information about the related work and describe the mathematical model used in the analysis of rate controlbehaviorof the user route. Section 3 introducesmodelfor growthdynamicsof TVCN, formulationofscalingexponentandtheproposedroutingstrategiesforcommunicationnetwork. Section4presents theoreticalandsimulationresults,andinSection5,conclusionandfutureresearcharediscussed. 2. BackgroundandRelatedwork Incommunicationnetwork,eachnodecangenerateandforwardpacketswithdistinctrate,l andm respectively. Therearethreepossiblerelationshipsbetweenl andm : (i.) l <m impliesthatsysteminfreeflowstate,(ii.) l =m showsboundarycase forcongestionand(iii.) l >m allowssystem incongestion. Zhaoetal. [2]haveproposeda modelinwhichpacketforwardingratem ofanodeiformodel:(i)basedondegreeofanode,m =1+⌊b k⌋and(ii) i i basedonbetweennesscentralityofanode, m =1+⌊b gi⌋. Here,k =degreeofnodei, g =betweennesscentrality i N i i of node i, N = size of the network and b , 0<b <1. By theoretical estimation, the value of critical rate is given byl = mLmax(N−1). Thenodewithmaximumpacketforwardingcapacityandbetweennesscentralityaredenotedby c gLmax 3 m andg respectively. Lmax Lmax Anorderparameterz (l )[25],isusedtodescribethetrafficandgivenby, m hD Num i z (l )=limt→¥ l D t p D Num =Num (t+D t)−Num (t),Num (t)isnumberofpacketsattimetandh.ishowsthataveragevalueoverthe p p p p timewindowD t.hD Num i=0showsthatnopacketinthenetworkandwhenh =0,systemisinfreeflowstate. Yan p etal. [14]havefoundaveragebetweennesscentralityg(k)forthenodeswithsamedegreek: 1 (cid:229) g(k)= g(v) N(k) v:kv=k a where, N(k) is number of nodes with degree k. For Scale Free networks, g(k)∼k . An efficient path P(i→ j) between node i and j is calculated such that the sum L(P(i→ j :a )=(cid:229) N−1k(x)a should be minimized for an i=0 i optimal value of a . Critical rate, l also depends on m and hence, l (b )= N(N−1). Liu et al. [3] have studied c c b g Lmax networktrafficbyconsideringlocalandglobalroutingstrategies. BetweennessCentrality(globallycalculated)ofa linkwhoseendnodesaremwithdegreek andnwithdegreek ,islinearlycorrelatedwithmultiplicationofdegree m n ofendnodes,k k (locallyevaluated). Toavoidcongestioninthenetwork,linkshavingmaximumk k valuesare m n m n closed. Afterclosingfewlinks,l ,averagepathlength(L )andaveragetraveltime(hTi)arestudied. Jiangetal. c avg [16]havefoundheuristicmethodforroutingandusedanincrementalapproachforaddingnewpathsinthenetwork. Asadditionofnewpathscausechangeinbetweennessanddegreeofeachnode. v=N−1 Ls(P(i→ j))= (cid:229) fS(n ) v v=0 where, fS(n )=(gS DegS )a isdynamicweightofnodev,n forsourcenodeS,gS isdynamicbetweennesscentrality v nv nv v xv ofn andDegS is dynamicdegreeof nodev. Hence, weightof each link(i,j) is (gSDegS)a +(gSDegS)a . All the v nv i i j j previousworksdiscussedtillnowarefocusedonroutingandoptimizingnetworkstructure. Tadic[1]hasdiscussed aboutrestructuringofdirectednetworksbyconsideringgrowthandrearrangementatuniquetimescale. Ateachtime unitt a new nodeisaddedtothe network(growth)anda numberX(t)andfractionb areusedto findnewlyadded andrearrangedlinksinthenetwork. (i.) Aportion f (t)=b X(t)ofnewlinksareout-flowinglinksfromthenew add added node i=t and (ii.) the remaining part f (t)=(1−b )X(t) are the updated links at other nodes in the update network. Optimization of networktopologyand developingefficient routingstrategies help us to avoid congestion andtoimproveoverallnetworkperformance. Incommunicationnetwork,varioususerswanttoestablishconnection betweenspeciousnodepairsviaanoptimalroute. Routesareselectedsuchthatusercansenddatawithoptimalrate to their destinations. Kelly [19] has formulated the rate allocation problem into optimization problem for a static network. We have used the formulationof rate controlalgorithmand proposeda mathematicalmodelfor dynamic communicationnetworks. 2.1. Mathematicalmodel Abriefdescriptionispresentedaboutmathematicalrepresentationofthedynamicnetworks. Networkconsistsof N nodesandE linksandlifespanofthenetworkisT. AsetofRusersarewillingtosenddatainthenetwork. Any linke connectsnodemwithnodencansendmaximumC unitsofdatathroughit,where,C iscapacityofthe mn emn emn linke ande ∈E. InTVCN,eachuserrisassignedarouter∈Rforaparticulartimeinstantt ∈T. Attheend mn mn i oftth time,azero-onematrixAofthesize(N×N) isdefinedwhere,A =1,ifnoden andn areconnectedat i ti ni,nj,ti i j timet otherwisezero. Whentheuserrisassignedaratex then,utilityofuserratratex isgivenasU (x )is i r,ti r,ti r,ti r,ti increasing,strictlyconcavefunctionofx overtherangex ≥0. Aggregateutilityiscalculatedbysummingupall r,ti r,ti utilitiesofuserr withratex andisdenotedas(cid:229) U (x ). Rateallocationproblemcanbeformulatedasthe r,ti r∈R,ti r,ti r,ti followingoptimizationproblem. 4 SYSTEM(U ,A ) ti ti (cid:229) maximize U (x ) (1) r,ti r,ti r∈R,ti ATx ≤C andx ≥0 ti ti ti ti A is a matrix at time intervalt tot. The given constraint states that a link can not send data more than its ti i−1 i capacity[19]. Itisdifficultandunmanageabletoallocateasuitableutilityfunctionandoptimalratetodistinctusers in complex networks. Hence, Kelly has divided this problem into two simpler problems named as user’s optimal problemand network’soptimal problem [19]. Let user r decide an amount P (t) to pay per unit time, while r is r i demandedapriceh forunitflow. Hence,userwillacquireaflow,x (t)=P (t)/h attimet. User’soptimalprice r r i r i r i forsendingx (t)attimet canbeobtainedusingtheoptimizationproblemas r i i User (U (t),h (t)), r r i r i maximizeU (x (t))−P (t), (2) r r i r i P >0 r On the other hand, network wants to maximize weighted log function of P (t). Therefore, network optimization r i problemcanbeformulatedas NETWORK(A ,p ), ti ti maximize (cid:229) P (t)log(x (t)), (3) r i r i r∈R,ti ATx ≤C andx ≥0. ti ti ti ti As the network is time varying so, the values of h and x are varying with time. Each user r ∈R, initially r r computes the price per unit flow by using the Eq. ((2)) and it is willing to pay, P (t). Utility of each user r is r i assumed as a strictly concave function of user’s rate x (t) at that time (t). At each time instant if user wants to r i i accessa link e ∈E then, the costwill dependonthe totaldata flow throughthe link at thattime and is givenby mn y (t)=V ((cid:229) x (t))where,V (•)isgrowingifitcomesinlargenumberofuser’spathandV (y)isgiven emn i emn r:emn∈E r i emn e by V (y)=c .(y/C )w emn emn emn where,c isconstantandassumedwithvalueone,C isthecapacityoflinke ∈E. Now,considerthefollowing emn emn mn systemofdifferentialequationforgettingoptimaldatarate(x∗) dxr(ti) =J (P (t)−x (t) (cid:229) y (t)) (4) dt r r i r i emn i i emn∈r Here,J isproportionalityconstant. Eachuserfirstcomputesit’swillingnesstopayasP (t)then,itadjustsits r r i ratebasedontheresponseprovidedbythelinksinthenetworkandtryingtobalanceitswillingtopayandtotalprice. Eq. ((4))consistsoftwocomponents: asteadyincreaseintherateproportionaltoP (t)andsteadydecreaseinthe r i rateproportionaltotheresponsey (t)providedbythenetwork. emn i 3. Timevaryingcommunicationnetworkmodelandroutingstrategies Networktopologyandroutingareresponsibleforcongestionandnetworkefficiency. Anoptimalnetworkstruc- tureisgeneratedusinganefficientTVCN model. Proposedmodelconsidersalltheaspectof growthandalteration (rewiring& removal)of links in the network. In the established network, users establish dedicated connectionbe- tween the nodes with whom they want to communicate. These connections are able to manage traffic efficiently, whichresultsminimizedcongestioninthenetwork. 5 3.1. Timevaryingcommunicationnetworkmodel Timevaryingdatacommunicationnetworksaredesignedbymaintainingspecificsetofrulesandnodesarecon- nectedviadirectedlinks. Directedlinksmayhavetwocategories: linkswhichcomeoutfromanode(out-flowing) andotherlinksareincidentaltoanode(in-flowing).Degreedistributionofbothout-flowingandin-flowinglinksfol- lowaheavytailpowerlawdistributionwithdistinctpowerlawexponents.Intheproposedmodel,thepreferencesare assignedtoin-flowinglinks. Thenewlyincomingnodewillbeattachedtothenodeendorsedbythehighestnumber ofnodes[1,5]. 3.1.1. NetworkDynamics AcommunicationnetworkmodelisproposedbyusingtheBarabasi-Albert(BA)model[5]andthemodelusing thedynamicsofdirectedgraphs[1]. Theproposeddirectednetworkmodelhasfollowingproperties: 1. Networkconsistsofdirectedlinksforconnectingnodes. 2. Networkexpansion,linkrewiringandremovalaredoneatuniquetimescale. Ateachtimeinstantt ∈T,anewnoden isaddedtothenetwork(expansion)andanumberX(≤n )isselectedfor i i 0 networkexpansion,rewiringandremoval,wheren isinitialnumberofnodespresentintheseednetwork. Linksare 0 dividedintothreecategories: newlyadded,rewiredandremovedlinks. Distributionofthe linksaredoneusingthe givensetofrules[26]. Notations: (a.) b =Fractionoftheevolving(appearfromthenewincomingnodeandappear/disappearintheexistingnetwork) linksatanytimeinstant. Itinformsabouttheestablishmentofnewconnectionsfromthenewincomingnoden t attimet ,0<b <1. (b.) g =Fractionofthelinks,thosearerewiredintheexistingnetwork,0.5<g ≤1. Usingtheabovenotation,followingsetofrulesmaybedefined: (i) Totalnumberofnewout-flowinglinksfromthenewappearednode,i(=t)withthenodesexistinginthenetwork at(t−1)basedonpreferentialattachmentisgivenby, f (t)=b X add (ii) Fewlinksarerewiredintheexistingnetwork.g fractionoftheavailableX linksarechosenforrewiring, f (t)=g (X−f (t))=g (1−b )X rewire add (iii) LastpartoftheremainingsegmentofX areusedfordeletingmostinfrequentlyusedlinks. f (t)=X−f (t)−f (t)=(1−g )(1−b )X delete add rewire Theparameterd istheratioofalteredandaddedlinksinthemodelandisgivenby, f (t)+f (t) d = delete rewire f (t) add (1−g )(1−b )X+g (1−b )X = (5) b X (1−b ) = b Here,d isindependentofthenumberX andisknownascorrelationparameter. Whilestudyingthebehaviorofcommunicationnetworks,theconceptofpreferredlinkingtoanodeisdrivenby the demand of the node to outflow the data into the network. Only few influential nodes have the right to rewire theirlinks. Nodesrewiretheirinfrequentlyusedlinksandconnectittopreferrednodesfordatacommunication.The preferenceisgiventotheinfrequentlyusedlinksfortheremovaloflinks. Hence,thelinksattachedtoanodehaving lowerdegreewillbepreferredforremoval. 6 3.1.2. DegreeDistribution Thescalefreebehaviorisfound,afterstudyingthescalingpropertiesofthetimevaryingnetworkmodel.Amean field theoretical approach[5] is used to anticipate the growth dynamicsof distinct nodes, which is later applicable foranalyticalcomputationofconnectivitydistributionandscalingexponents. Networkisgrowingwithtimehence, someofthepreviouslyexistingnodeswillgetmoretimetoacquirelinksandarebeingtheholdersofhighestdegrees. Degreek ofthenodeiischangingcontinuouslywithtime,soprobabilityP (k)isinterpretedasrateofchangeofk. i i i Ateachtimestamp,fractionsb andg decidethenumberoflinkschosenforexpansion(addition),rearrangementand removal,andisdecidingparametersofdegreeofthenodei. Analysisisgivenusingfollowingsteps: 1. Afractionb ofthenumberX linksarenewlyaddedlinksattimet. dk k i =b X i (6) dt (cid:229) k (cid:18) (cid:19)add j j Effectofnewlyaddedlinksonthedegreeofnodeiiswrittenonthelefthandsideoftheequationandonthe rightsideb X linksareformedusingpreferentialattachment. 2. Afractiong (1−b )X linksarere-arrangedattimet. dk 1 1 k 1 k i =g (1−b )X + 1− i − 1− i (7) dt n +t n +t (cid:229) k n +t (cid:229) k (cid:18) (cid:19)rewire (cid:20) 0 (cid:18) 0 (cid:19) j j 0 (cid:18) j j(cid:19)(cid:21) When few links are rewired then, change in degree of node i depends on three terms: first term shows ran- domselectionofnodes,secondtermcorrespondstolinkingwithotherexistingnodeshavinghighpreferential attachmentprobabilityandthirdtermshowsremovaloflinkhavinglowpreferentialattachmentvalue. 3. Afraction(1−g )(1−b )X linksareremovedfromthenetworkattimet. dk 1 1 k 1 i =−(1−g )(1−b )X + 1− 1− i (8) dt n +t n +t (cid:229) k n +t (cid:18) (cid:19)delete (cid:20) 0 (cid:18) 0 (cid:19)(cid:18) j j(cid:19) 0 (cid:21) Removal of links affect the degree of node i and it is shown in above equation. First term shows random selectionofanodeandthatlinkwillberemovedwhichhaslowpreferentialattachmentvalue. Attimet,thesumofdegreesofnodesinthenetworkwillbe: (cid:229) k =2t[b X+(1−b )(g X−(1−g )X)]=2Xt[b +(1−b )(2g −1)] j j Letc=b +(1−b )(2g −1). Now,combiningtheeqns. (6)to(8)wegetthechangeindegreeofnodeiwithrespecttotimet. dk b k g (1−b )k i i i = + dt 2ct 2ct 2 1 k k −(1−b )(1−g )X − − i + i n +t (n +t)2 2ct(n +t) 2ct(n +t)2 (cid:20) 0 0 0 0 (cid:21) b g (1−b ) k 1 = + i −((1−b )(1−g )X) 2c 2c t t (cid:18) (cid:19) (forlarget) Letusassumeq = b +g(1−b ) andq =−(1−b )(1−g )X 1 2c 2c 2 Hence,theaboveequationcanbere-writtenas dk k 1 i =q i +q (9) 1 2 dt t t 7 Thesolutionofthe Eq. ((9)) isderivedbytakinginitialconditionthatnodeiappearsattimet with X connections i k(t)=X andisgivenas: i i q q t q1 2 2 k(t)= − + k(t)+ i q i i q t 1 (cid:18) 1(cid:19)(cid:18) i(cid:19) q q t q1 2 2 = − + X+ q q t 1 (cid:18) 1(cid:19)(cid:18) i(cid:19) Ateachtimestamp,anodeisaddedintothenetworkhence,Probabilitydensityoft is: i 1 P(t)= i i n +t 0 Theprobabilitythatanodehastotalk(t)connectionsandwhichissmallerthank,P(k(t)<k),canbewrittenas: i i q q t q1 2 2 P(k(t)<k)=P(− + X+ <k) i q q t 1 (cid:18) 1(cid:19)(cid:18) i(cid:19) X+qq2 q11 =P t > 1 t i q  k+q2 ! 1    X+qq2 q11 =1−P t ≤ 1 t i q  k+q2 ! 1     TheprobabilitydensityofkisP(k)andcanbewrittenas: ¶ P(k(t)<k) i P(k)= ¶ k (10) t q q1 q −(1+q1 ) 2 1 2 1 = X+ k+ q (n +t) q q 1 0 (cid:18) 1(cid:19) (cid:18) 1(cid:19) Now,assumea =−(1+ 1 ). q 1 Thevalueofthescalingexponentoftherealworldnetworkliesbetween2and3,hence,fordynamiccommunication network,exponent(a )mustliewithin2<a ≤3.Constraintona willbefulfilledif0.5<q <1. AsP(k)isalways 1 q positiveso,X+ 2 shouldbepositive. q 1 3.2. RoutingStrategies Eachnodeinthecommunicationnetworkgeneratespacketswithacertainrateandcandeliverpacketsaccording tothecapacityofthatparticularnode. Capacityofthenetwork(C)iscalculatedbysummingupthecapacityofall theindividualnodesinthecommunicationnetwork. Aggregatevaluesofthepacketgenerationrateofallthenodes aretermedastheloadofthenetwork. N−1 (cid:229) L= l v v=0 here,l = loadatnodev v When, load (L) exceeds the capacity (C) of the network then, it will become congested with the packets. If all the packets are sent throughthe shortest paths to their destinationsthen, some nodes may appear frequentlyin the formationofshortestpathanditwillbecomecongested.Inthelargecommunicationnetworks,multipleuserswantto establishaconnectionbetweenasource(S)anddestination(D). Theremayexistmultipleshortestpathss (S→D) z fromStoD,wherez=1,2,...,c andc istotalnumberofshortestpathsbetweenSandD. Intheshortestpath,anode may lie with high betweennesscentrality. Sending data throughthe shortestpath will lead to the congestionin the 8 network(mostoftheuserpairswilltrytofollowthesamepath). Therefore,itisimportanttoinvestigatea shortest paths (S→D)betweentheuserpairssuchthatoverallbetweennesscentralityofthenodesappearsinthepath q [s (S→D)]= (cid:229) g g z v v:v∈s z(S→D) here,g = betweennessofnodev v shouldbeminimum. Hence,wewanttofindoutapathwhosenodesshouldnotbethepartoflargenumberofother shortestpaths(lowbetweennesscentrality).Hence,itisdefinedby, min{∀z:q (s (S→D))} g z Apartfromroutingstrategyusingbetweennesscentralityofthenodes,alocalstrategyisusedbyconsideringinfluence of the neighbornodes. If a heavily loaded nodeis connectedwith some other nodesthen, it will make all the suc- ceedingnodescongested. Heavilycongestedprecedingnodeshavenegativeimpactonsuccessornodes. Theimpact ofonenodetoothersismeasuredbyEigenvectorcentralityofthenodev, 1 (cid:229) x = a x v k vj j j∈N Here,k islargestEigenvalueofthematrixAandifnodevand jareconnectedthen,a =1. IfanodeismostEigen vj vectorcentral,thenitwillbehighlycongestedandhence,leastreputed.So,amongalltheshortestpath,thatpathwill bereputedifaggregatevalueofthereputationofthepathq [s (S→D)] r q [s (S→D)]= (cid:229) 1 r z x v:v∈s z(S→D) v x = Eigenvectorcentralityofnodev v ismaximizedandandthefunctionisdefinedby, max{∀z:q (s (S→D))}. r z OptimalpathbetweenSandD q s (S→D)]= (cid:229) g x gr z v v v:v∈s z(S→D) iscalculatedbyconsideringbothbetweennesscentralityandreputation. Apathisoptimalifit’selementswillhave leastbetweennesscentralaswellasreputedandisgivenby, min{∀z:q (s (S→D))}. gr z AsnapshotoftheproposedmethodisdiscussedinFig. 1. Twousers,U andU wanttosenddatafromnode9to 1 2 node4andfromnode10tonode5,respectively. Theirrespectiveroutesare9−1−4,9−5−4and10−1−5,10− 2−5.Boththeusersavoidcongestedrouteshence,U avoidstheroute9−1−4andU prefers10−2−5.FromFig. 1 2 1,itisevidentthatnode1ishighlycongestednodeinthenetwork,sobothusersavoidtosenddatathroughnode1 andselectotherpossibleoptionsavailableforsendingdatatotheirdestinednode. Packetgenerationrate(PGR)ofa nodedependsonthepacketforwardingrateandbetweennesscentralityofthenode. Packetforwardingratedepends onthecapacityofanode,thataffectsbandwidthofalink. Capacity of a linkC is dependent on the degrees k and k of node m and n. It can be approximated by a emn m n power-lawdependence[27] a C =b(k k ) emn m n a isthedegreeinfluencedexponentwhichdependsonthetypeofnetworksandbisapositivequantity.Threepossible relationsbetweencapacityC andexponenta : (i)ifa >0then,dataistransmittedthroughhighdegreenodes(ii) emn whena <0then,datawillbesentthroughlowdegreenodesand(iii)a =0showsdegreeindependenttransmission. 9 Users: U1 = U9,4 and U2 = U10,5 2 U routes: (9-1-4) and (9-5-4) 1 10 7 U routes: (10-1-5) and (10-2-5) 2 Congested 9 1 3 λ1 = µ1(Ng1−1) C16 = k1k6 µ1 = 1+ βNg1 r1 = e11 Cong. ∝ g 4 5 Cong. ∝ 1 r Cong. = congestion g = betweenness 8 k = degree, C= capacity, 6 λ = packet generation rate Highest Betweenness µ= packet forwarding rate Central Node Figure1:Blockdiagram Thevalueofa intheproposedmodelistakenpositivevaluewithconstanta =1andbisalsoequalto1. Reputation andbetweennesscentralityaredecidingparameterforevaluatingcongestion. Reputationofanodeisinverseofthe Eigenvectorcentralityofanode. While,congestionisproportionallyrelatedtobetweennesscentralityandinversely relatedwithreputation. Algorithmicstepsaregivenforexpansion,rewireandremovaloflinksintheTVCN(Algorithm1). Algorithm1NetworkEvolution 1: Input: Anumberofnodes(n0)forcreatingseednetwork,n(≤n0),b ,g andT. 2: Output:Timevaryingdatacommunicationnetworks. 3: whilet≤T do 4: Expandthenetworkwithonenodeateachtimeinstantt. 5: forx: 1to fadd(t)do 6: Attachthenewlyaddednodewithnodehavinghighestinflowinglinkattachmentprobabilityintheexisting network. 7: endfor 8: for y: 1to frewire(t)do 9: Removetheinfrequentlyusedlinkofaninfluencednodeandattachtothenodehavinghigherinflowinglink probability. 10: endfor 11: forz:1to fdelete(t)do 12: Removetheinfrequentlyusedlinkofarandomlyselectednode. 13: endfor 14: endwhile Steps involved in Algorithm 1, are used to design TVCN. In the time varying network, various users want to communicatedata from a source S to destination D. User gives informationabout the source and destination, and accordinglyS→Dpairsaregenerated. Incrementsinthenumberofusersleadtothenetworkintocongestedstate. Therefore,ouraimistofindefficientroutingpathssuchthatmaximumnumberofusersaregettingbenefitedwitha 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.