ebook img

Modeling and Optimization of Air Traffic PDF

336 Pages·2013·3.134 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling and Optimization of Air Traffic

Modeling and Optimization of Air Traffic Modeling and Optimization of Air Traffic Daniel Delahaye Stéphane Puechmorel Series Editor Narendra Jussien First published 2013 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2013 The rights of Daniel Delahaye and Stéphane Puechmorel to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2013936316 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN: 978-1-84821-595-5 Printed and bound in Great Britain by CPI Group (UK) Ltd., Croydon, Surrey CR0 4YY Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . xi PART 1. OPTIMIZATION AND ARTIFICIAL EVOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 1. Optimization: State of the Art . . . . . . 3 1.1. Methodological principles in optimization . . . . 3 1.1.1. Introduction . . . . . . . . . . . . . . . . . . . . 3 1.1.2. Modeling . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3. Complexity . . . . . . . . . . . . . . . . . . . . . 12 1.1.4. Computation time . . . . . . . . . . . . . . . . . 13 1.1.5. Conclusion . . . . . . . . . . . . . . . . . . . . . 13 1.2. Optimization algorithms . . . . . . . . . . . . . . . 14 1.2.1. Introduction . . . . . . . . . . . . . . . . . . . . 14 1.2.2. Linear programming . . . . . . . . . . . . . . . 15 1.2.3. Nonlinear programming (NLP). . . . . . . . . 16 1.2.4. Local methods subject to constraints . . . . . 19 1.2.5. Deterministic global methods. . . . . . . . . . 21 1.2.6. Stochastic global methods . . . . . . . . . . . . 25 1.2.7. Genetic algorithms . . . . . . . . . . . . . . . . 33 1.2.8. Conclusion . . . . . . . . . . . . . . . . . . . . . 34 vi ModelingandOptimizationofAirTraffic Chapter 2. Genetic Algorithms and Improvements . . . . . . . . . . . . . . . . . . . . . . 37 2.1. General points . . . . . . . . . . . . . . . . . . . . . 37 2.1.1. Introduction . . . . . . . . . . . . . . . . . . . . 37 2.1.2. Principle of genetic algorithms . . . . . . . . . 39 2.1.3. Coding principles . . . . . . . . . . . . . . . . . 42 2.1.4. Random generation of the initial population . . . . . . . . . . . . . . . . . . . . . 42 2.1.5. Crossover operators . . . . . . . . . . . . . . . . 43 2.1.6. Mutation operators . . . . . . . . . . . . . . . . 45 2.1.7. Selection principles . . . . . . . . . . . . . . . . 47 2.2. Classic improvements . . . . . . . . . . . . . . . . . 48 2.2.1. Scaling . . . . . . . . . . . . . . . . . . . . . . . . 49 2.2.2. Sharing . . . . . . . . . . . . . . . . . . . . . . . 50 2.2.3. Crowding . . . . . . . . . . . . . . . . . . . . . . 52 2.2.4. Memetic algorithms . . . . . . . . . . . . . . . 53 2.2.5. Multi-objective genetic algorithms . . . . . . 53 2.3. Our contributions . . . . . . . . . . . . . . . . . . . 57 2.3.1. Adaptive clustered sharing . . . . . . . . . . . 58 2.3.2. Association of genetic algorithms with simulated annealing . . . . . . . . . . . . . . . 60 2.3.3. Parallel genetic algorithms . . . . . . . . . . . 64 2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 66 Chapter 3. A New Concept for Genetic Algorithms Based on Order Statistics . . . . . . . . 67 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 67 3.2. Order statistics . . . . . . . . . . . . . . . . . . . . . 68 3.3. Estimating the probability that the global optimum belongs to a given domain . . . . . . . . 71 3.4. Genetic algorithms and order statistics . . . . . . 71 3.4.1. Introduction . . . . . . . . . . . . . . . . . . . . 71 3.4.2. Coding . . . . . . . . . . . . . . . . . . . . . . . . 72 3.4.3. Recombination operators . . . . . . . . . . . . 73 3.4.4. Evaluation of fitness . . . . . . . . . . . . . . . 75 TableofContents vii 3.5. Application to test functions . . . . . . . . . . . . . 75 3.5.1. Results for the Griewank function . . . . . . . 77 3.5.2. Results for the Rosenbrook function . . . . . 78 3.5.3. Results for the Lennard-Jones function . . . 79 3.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 81 PART 2. APPLICATIONS TO AIR TRAFFIC CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Chapter 4. Air Traffic Control . . . . . . . . . . . . . . 85 Chapter 5. Contributions to Airspace Sectorization . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 91 5.2. Modeling in 2D . . . . . . . . . . . . . . . . . . . . . 93 5.2.1. Model based on a transportation network . . 93 5.2.2. Associated complexity . . . . . . . . . . . . . . 98 5.3. Continuous modeling . . . . . . . . . . . . . . . . . 99 5.3.1. Principle. . . . . . . . . . . . . . . . . . . . . . . 99 5.3.2. Chromosome coding . . . . . . . . . . . . . . . 101 5.3.3. Initial population generation principle . . . . 101 5.3.4. Crossover operator . . . . . . . . . . . . . . . . 101 5.3.5. Mutation operator. . . . . . . . . . . . . . . . . 103 5.3.6. Calculation and normalization of the fitness function . . . . . . . . . . . . . . 104 5.3.7. Results. . . . . . . . . . . . . . . . . . . . . . . . 106 5.3.8. Conclusion . . . . . . . . . . . . . . . . . . . . . 110 5.4. Discrete modeling . . . . . . . . . . . . . . . . . . . 111 5.4.1. Principle. . . . . . . . . . . . . . . . . . . . . . . 111 5.4.2. Coding . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4.3. Recombination operators . . . . . . . . . . . . 115 5.4.4. Results. . . . . . . . . . . . . . . . . . . . . . . . 117 5.4.5. Conclusion . . . . . . . . . . . . . . . . . . . . . 119 5.5. Extension 3D . . . . . . . . . . . . . . . . . . . . . . 119 5.5.1. Introduction . . . . . . . . . . . . . . . . . . . . 119 5.5.2. Mathematical modeling . . . . . . . . . . . . . 122 viii ModelingandOptimizationofAirTraffic 5.5.3. Application of artificial evolution to the problem . . . . . . . . . . . . . . . . . . . . . . . 127 5.5.4. Results. . . . . . . . . . . . . . . . . . . . . . . . 132 5.5.5. Conclusion . . . . . . . . . . . . . . . . . . . . . 135 5.6. Accounting for the dynamic aspect . . . . . . . . . 136 5.6.1. Formalization of objectives and associated mathematical model . . . . . . . . . . . . . . . 136 5.6.2. Optimization using a genetic algorithm: continuous approach . . . . . . . . . . . . . . . 140 5.6.3. Optimization using a genetic algorithm: discrete approach . . . . . . . . . . . . . . . . . 144 Chapter 6. Contribution to Traffic Assignment . . 151 6.1. Summary of traffic assignment methods based on transportation network theory . . . . . . . . . 152 6.1.1. Transportation networks . . . . . . . . . . . . 153 6.1.2. Static assignment . . . . . . . . . . . . . . . . . 155 6.1.3. Dynamic assignment . . . . . . . . . . . . . . . 163 6.2. Other approaches to traffic assignment . . . . . . 167 6.2.1. Temporal extension of the network . . . . . . 167 6.2.2. Optimal control . . . . . . . . . . . . . . . . . . 168 6.2.3. Dynamic programming approaches (ground holding problem) . . . . . . . . . . . . . . . . . 169 6.2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . 171 6.3. Using artificial evolution in all-or-nothing traffic assignment . . . . . . . . . . . . . . . . . . . . . . . 173 6.3.1. Mathematical formalization of objectives . . 173 6.3.2. Coding and operators of the genetic algorithm . . . . . . . . . . . . . . . . . . . . . . 176 6.3.3. Introduction of an inter-chromosome distance for sharing. . . . . . . . . . . . . . . . 179 6.3.4. Example of results . . . . . . . . . . . . . . . . 182 6.3.5. Conclusion . . . . . . . . . . . . . . . . . . . . . 185 6.4. Allocation of routes and slots using artificial evolution . . . . . . . . . . . . . . . . . . . . . . . . . 186 6.4.1. System architecture . . . . . . . . . . . . . . . 187 TableofContents ix 6.4.2. The fitness function . . . . . . . . . . . . . . . . 192 6.4.3. Simple genetic algorithm . . . . . . . . . . . . 194 6.5. Modification of the algorithm – adaptive modifications . . . . . . . . . . . . . . . . 198 6.5.1. Establishing congestion levels in the chromosome . . . . . . . . . . . . . . . . . . . . 198 6.5.2. Establishment of trends . . . . . . . . . . . . . 200 6.5.3. New coding and biased initial population . . 203 6.5.4. New crossover operator . . . . . . . . . . . . . 203 6.5.5. New mutation operator . . . . . . . . . . . . . 204 6.5.6. New results . . . . . . . . . . . . . . . . . . . . . 205 6.5.7. Dynamic bi-allocation . . . . . . . . . . . . . . 207 6.5.8. Multi-objective approach . . . . . . . . . . . . 210 6.5.9. Conclusion . . . . . . . . . . . . . . . . . . . . . 211 6.6. Sequencing flights for landing . . . . . . . . . . . 211 6.6.1. Introduction . . . . . . . . . . . . . . . . . . . . 212 6.6.2. Single runway formulation . . . . . . . . . . . 213 6.6.3. Modeling using GA . . . . . . . . . . . . . . . . 214 6.6.4. Results. . . . . . . . . . . . . . . . . . . . . . . . 217 6.7. Trajectory planning . . . . . . . . . . . . . . . . . . 220 6.7.1. Introduction . . . . . . . . . . . . . . . . . . . . 220 6.7.2. The light propagation algorithm . . . . . . . . 222 6.7.3. Approach using genetic algorithms on B-splines . . . . . . . . . . . . . . . . . . . . . . 234 6.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 241 Chapter 7. Airspace Congestion Metrics . . . . . . . 243 7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 243 7.2. Flow-based approach . . . . . . . . . . . . . . . . . 248 7.2.1. Mathematical modeling of the control workload . . . . . . . . . . . . . . . . . . . . . . 253 7.3. Geometrical approaches . . . . . . . . . . . . . . . 253 7.3.1. Proximity metric . . . . . . . . . . . . . . . . . 254 7.3.2. Convergence . . . . . . . . . . . . . . . . . . . . 258 7.3.3. Clusters . . . . . . . . . . . . . . . . . . . . . . . 263 7.3.4. Grassmannian indicator . . . . . . . . . . . . . 265 x ModelingandOptimizationofAirTraffic 7.4. Approach based on dynamic systems . . . . . . . 268 7.4.1. Linear dynamic systems . . . . . . . . . . . . . 268 7.4.2. Spatial extension using nonlinear dynamic systems . . . . . . . . . . . . . . . . . . . . . . . 273 7.4.3. Spatiotemporal extension using nonlinear dynamic systems . . . . . . . . . . . . . . . . . 281 7.4.4. Local linear models . . . . . . . . . . . . . . . . 285 7.4.5. Stochastic extension . . . . . . . . . . . . . . . 288 Conclusion and Future Perspectives . . . . . . . . . 291 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 Introduction This book presents the main research topics that we have worked on over the last 15 years. Research is a fascinating occupation that allows permanent enrichment of knowledge and sustains rich intellectual activity. Moments of doubt do arise when a problem seems impossible to solve, but this is intrinsically linked to one of the great advantages of research: the feeling of satisfaction when a solution is finally found. As researchers at the Ecole Nationale de l’Aviation Civile (French Civil Aviation University), our research activityfocusesonthethemeofairtransportand,specifically, on the domain of mathematical optimization. It is always fascinating to look at real problems taken from the operationaldomainastheircharacteristicsareoftencomplex, representing a significant challenge with applicable results. When observing real situations, we note that they are often considerably different from theoretical models, and our mathematical tools are of limited use when attempting to tackle a complex problem as a whole. These practical problems present a certain interest for researchers as they require the development of new tools. Our research focuses on issues linked to reducing congestion in airspace. These types of problems are generally

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.