ebook img

Modeling and Experimental Studies of Miniature Lithium Air Batteries and Alkaline Direct Ethanol PDF

339 Pages·2017·7.43 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling and Experimental Studies of Miniature Lithium Air Batteries and Alkaline Direct Ethanol

University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-18-2015 Modeling and Experimental Studies of Miniature Lithium Air Batteries and Alkaline Direct Ethanol Fuel Cells Jing Huang University of Connecticut - Storrs, [email protected] Follow this and additional works at:https://opencommons.uconn.edu/dissertations Recommended Citation Huang, Jing, "Modeling and Experimental Studies of Miniature Lithium Air Batteries and Alkaline Direct Ethanol Fuel Cells" (2015). Doctoral Dissertations. 887. https://opencommons.uconn.edu/dissertations/887 Modeling and Experimental Studies of Miniature Lithium Air Batteries and Alkaline Direct Ethanol Fuel Cells Jing Huang, PhD University of Connecticut, 2015 Batteries and fuel cells directly convert chemical energy to electricity through controlled electrochemical reactions. Batteries also serve as energy storage devices, while fuel cells rely on a continuous supply of fuel to maintain power output. In this dissertation, modeling and experimental studies on lithium air batteries and alkaline direct ethanol fuel cells are presented. Both technologies can be designed as small-scale electrochemical devices that are suitable for miniature electronics and energy systems. Innovative concepts are presented regarding miniaturization of both technologies, including detailed physical simulation. The lithium air (Li- air) battery is considered a promising candidate for next generation secondary battery technology because of its extremely high theoretical energy density. Its application, however, has been impeded by issues including electrode clogging, electrolyte degradation, low cycling efficiency, and safety concerns. A unique Li-air battery concept is proposed to enhance oxygen supply and alleviate electrode clogging. The proposed flow cell has a specific capacity of 15.5 times higher than that of a conventional Li-air cell. Based on the physical modeling, a multi-layer electrode structure is also proposed which helps to increase cell capacity by 105%. A comprehensive 2D physical model of the battery is developed at the cell-level. Through the deformed mesh technique, the change of electrolyte level in a Li-air coin cell during discharge is tracked. It is found that without considering this effect, a battery model may underestimate cell capacity by up to 22%. The model also includes an air chamber in the computation domain to account for solvent evaporation. For highly volatile solvent-based cells, the chamber size may affect the experimental results significantly. These findings provide direction for further enhancement of battery Jing Huang – University of Connecticut, 2015 performance and better design of experiments. Alkaline direct ethanol fuel cells (ADEFC) are considered as a replacement of direct methanol fuel cells. The alkaline environment improves reaction kinetics while ethanol is well regarded for wide availability and low toxicity. Through detailed modeling and experimental studies, it is shown that the costly anion exchange membrane in a conventional ADEFC can be replaced by a much less expensive porous separator without lowering overall cell performance. Modeling and Experimental Studies of Miniature Lithium Air Batteries and Alkaline Direct Ethanol Fuel Cells Jing Huang B.S., Xi’an Jiaotong University, 1999 M.S., Xi’an Jiaotong University, 2002 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Connecticut 2015 Copyright by Jing Huang 2015 ii University of Connecticut 2015 iii Acknowledgements In the past four and half years, I received countless help from my advisor, professors, lab-mates and family. I would like to express my deepest appreciation here. First and foremost I want to thank my advisor Dr. Amir Faghri. It has been an honor to be able to work under his direction. His vision, encouragement, and patience have helped me to learn how to be a better researcher and present high quality works. Dr. Faghri always encourages me to think out of box, which I will keep in my mind forever. I also want to express my thanks to my co-advisors, Dr. Fan, Dr. Lu, Dr. Mustain and Dr. Pasaogullari for their insightful advices during my PhD study. During my stay in the heat transfer lab, I shared a lot of times with my lab mates. I would like to express my appreciation for helpful discussions with them. Finally I would like to thank my parents for their consistent support and understanding. iv Table of Contents Table of Contents ............................................................................................................................ v List of Tables ................................................................................................................................. xi List of Figures ............................................................................................................................... xii Chapter 1 A Critical Review of Modeling Studies on Li–O2 and Li–Air Batteries: Challenges and Opportunities ........................................................................................................ 1 Background ................................................................................................................. 1 Development of continuum-scale physical models ..................................................... 4 1.2.1 Model formulation ........................................................................................... 4 1.2.2 Features of existing models ............................................................................. 9 1.2.3 Cathode modeling .......................................................................................... 11 1.2.4 Anode modeling ............................................................................................. 22 1.2.5 Special features of continuum-scale models .................................................. 24 Particle-scale and multi-scale models ....................................................................... 33 Property data .............................................................................................................. 34 1.4.1 Fundamentals ................................................................................................. 36 1.4.2 Summary of property data ............................................................................. 37 1.4.3 Discussion ...................................................................................................... 38 Unresolved issues and future opportunities ............................................................... 42 Concluding remarks .................................................................................................. 43 v References ........................................................................................................................... 47 Tables .................................................................................................................................. 62 Figures................................................................................................................................. 74 Chapter 2 Modeling study of a Li-O2 battery with an active cathode ........................................ 87 Introduction ............................................................................................................... 87 Existing models ......................................................................................................... 90 Model development ................................................................................................... 92 2.3.1 Governing equations ...................................................................................... 93 2.3.2 Boundary conditions ...................................................................................... 98 Results and discussion ............................................................................................. 101 2.4.1 Model validation .......................................................................................... 101 2.4.2 Distributions of pressure, velocity and temperature .................................... 102 2.4.3 Compare the capacity to conventional Li-O2 battery .................................. 103 2.4.4 Discharge capacities of passive vs. active batteries ..................................... 104 2.4.5 Distribution of lithium ion and oxygen ....................................................... 105 2.4.6 Effect of pressure difference between channels .......................................... 106 2.4.7 Effect of exchange current density .............................................................. 107 2.4.8 Effect of porosity ......................................................................................... 107 Conclusions ............................................................................................................. 109 References ......................................................................................................................... 111 vi Tables ................................................................................................................................ 116 Figures............................................................................................................................... 117 Chapter 3 Capacity Enhancement of a Lithium Oxygen Flow Battery ................................... 132 Introduction ............................................................................................................. 132 Background ............................................................................................................. 134 Model development ................................................................................................. 137 3.3.1 Governing equations .................................................................................... 138 3.3.2 Electrochemical Kinetics ............................................................................. 144 3.3.3 Boundary and initial conditions ................................................................... 145 Results and discussion ............................................................................................. 147 3.4.1 Model validation .......................................................................................... 147 3.4.2 Parametric study .......................................................................................... 148 3.4.3 Energy consumption by electrolyte pump ................................................... 153 3.4.4 Capacity enhancement using dual layer cathode ......................................... 154 3.4.5 Capacity enhancement using alternating flow ............................................. 155 Conclusion ............................................................................................................... 156 References ......................................................................................................................... 160 Tables ................................................................................................................................ 166 Figures............................................................................................................................... 169 Chapter 4 Analysis of Electrolyte Level Change in a Li–Air Battery ..................................... 180 vii

Description:
Alkaline direct ethanol fuel cells (ADEFC) are relevant to Li–O2 batteries is provided in response to their critical role in modeling studies. the layer (tunneling limit) to reach reaction sites and therefore the surface is no [63] E.M. Tan, J; Ryan, Numerical Modeling of Dendrite Growth in a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.