MODERN ASPECTS OF ELECTROCHEMISTRY, No. 49: MODELING AND DIAGNOSTICS OF POLYMER ELECTROLYTE FUEL CELLS Forothertitlespublishedinthisseries,goto http://www.springer.com/series/6251 Modern Aspects of Electrochemistry SeriesEditors: RalphE.White DepartmentofChemicalEngineering UniversityofSouthCarolina Columbia,SC29208 ConstantinosG.Vayenas DepartmentofChemicalEngineering UniversityofPatras Patras26500 Greece ManagingEditor: MariaE.Gamboa-Aldeco 1107RaymerLane Superior,CO80027 MODERN ASPECTS OF ELECTROCHEMISTRY, No. 49: MODELING AND DIAGNOSTICS OF POLYMER ELECTROLYTE FUEL CELLS Edited by Ugur Pasaogullari UniversityofConnecticut,USA Chao-Yang Wang ThePennsylvaniaStateUniversity,USA 123 Editors UgurPasaogullari Chao-YangWang UniversityofConnecticut DepartmentofMechanical CenterforCleanEnergy andNuclearEngineering Engineering PennStateUniversity 44WeaverRoadU-5233 16802UniversityPark StorrsCT06269-5233 Pennsylvania USA 301CReberBldg. [email protected] USA [email protected] SeriesEditors RalphE.White ConstantinosG.Vayenas DepartmentofChemical DepartmentofChemical Engineering Engineering UniversityofSouthCarolina UniversityofPatras Columbia,SC29208 Patras26500 Greece ManagingEditor MariaE.Gamboa-Aldeco 1107RaymerLane Superior,CO80027 ISSN0076-9924 ISBN978-0-387-98067-6 e-ISBN978-0-387-98068-3 DOI10.1007/978-0-387-98068-3 SpringerNewYorkDordrechtHeidelbergLondon LibraryofCongressControlNumber:2010930615 ©SpringerScience+BusinessMedia,LLC2010 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpart withoutthewrittenpermissionofthepublisher(SpringerScience+BusinessMedia, LLC,233SpringStreet,NewYork,NY10013,USA),exceptforbriefexcerptsin connectionwithreviewsorscholarlyanalysis.Useinconnectionwithanyformof information storage and retrieval, electronic adaptation, computer software, or by similarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilar terms,eveniftheyarenotidentifiedassuch,isnottobetakenasanexpressionof opinionastowhetherornottheyaresubjecttoproprietaryrights. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Polymer electrolyte fuel cells (PEFCs) or proton exchange mem- brane fuel cells (PEMFCs) have been suggested as alternatives to replace many existing energy conversion technologies, includ- inginternalcombustionenginesandbatteries.Themostsignificant advances in PEFC technology achieved in the last decade have occurred in areas related to automotive applications, namely cold- start capabilities, enhanced durability and better understanding of watermanagementandmasstransportlosses. This volume of Modern Aspects of Electrochemistry is intended to provide an overview of advancements in experimental diagnosticsandmodelingofpolymerelectrolytefuelcells.Chapters by Huang and Reifsnider and Gu et al. provide an in-depth review of the durability issues in PEFCs as well as recent developments in understanding and mitigation of degradation in the polymer membraneandelectrocatalyst. Enabling cold start, the startup of PEFC stacks from subzero temperatures, is a very important capability achieved only within thelastfewyears.TajiriandWangprovideatutorialoverviewofthe requirementsforcoldstart,andprovideasummaryofexperimental diagnosticsandcold-startmodelingstudies. Chapters 4–6 address specific diagnostic methods in PEFCs. Martin et al. provide a detailed review of methods for distributed diagnostics of species, temperature, and current in PEFCs in Chapter 4. In Chapter 5, Hussey and Jacobson describe the oper- ationalprinciplesofneutronradiographyforin-situvisualizationof liquidwaterdistribution,andalsooutlineissuesrelatedtotemporal and spatial resolution. Tsushima and Hirai describe both magnetic resonance imaging (MRI) technique for visualization of water in PEFCs and tunable diode laser absorption spectroscopy (TDLAS) formeasurementofwatervaporconcentrationinChapter6. Diffusionmedia(DM)arepronetofloodingwithliquidwater. Although the DM is an essential component of PEFCs that enable distributionofspeciesandcollectionofcurrentandheat,littlewas knownaboutcapillarytransportinDMsuntilrecently.InChapters7 Gostick et al. provide a description of liquid water transport in porousDMduetocapillarityanddescribeexperimentaltechniques usedtocharacterizeDMproperties. v vi Preface ThefinaltwochaptersdiscussmodelingofPEFCs.Mukherjee and Wang provide an in-depth review of meso-scale modeling of two-phase transport, while Zhou et al. summarize both the sim- ulation of electrochemical reactions on electrocatalysts and the transport of protons through the polymer electrolyte using atom- isticsimulationtoolssuchasmoleculardynamicsandMonteCarlo techniques. Eachchapterinthevolumeisself-contained;thereforetheydo notneedtobereadinacertainorder. Special thanks are due to 23 authors who contributed to this volume. U.Pasaogullari UniversityofConnecticut,Storrs,CT,USA C.-Y.Wang ThePennsylvaniaStateUniversity,UniversityPark,PA,USA Contents Chapter1 DURABILITYOFPEMFUELCELLMEMBRANES XinyuHuangandKenReifsnider 1. Summary . . . . . . . . . . . . . . . . . . . . . . 1 2. ReviewofPEMFuelCellDegradation PhenomenaandMechanisms . . . . . . . . . . . . 2 3. MembraneDegradation . . . . . . . . . . . . . . 6 3.1. StressinMembraneandMEAs . . . . . . . . 7 3.2. MechanicalCharacterizationofMembranes . 11 3.3. ChemicalDegradationProcesses . . . . . . . 15 3.4. MechanicalDegradationProcesses . . . . . . 18 3.5. Interactions of Chemical and MechanicalDegradation . . . . . . . . . . . 26 4. AcceleratedTestingandLifePrediction . . . . . . 31 4.1. AcceleratedDegradationTestingand DegradationMetrics. . . . . . . . . . . . . . 31 4.2. ProgressiveDegradationModelof CombinedEffects . . . . . . . . . . . . . . . 35 5. Mitigation. . . . . . . . . . . . . . . . . . . . . . 39 References . . . . . . . . . . . . . . . . . . . . . . . . 42 Chapter2 MODELINGOFMEMBRANE-ELECTRODE-ASSEMBLY DEGRADATIONINPROTON-EXCHANGE-MEMBRANE FUELCELLS–LOCALH STARVATIONANDSTART–STOP 2 INDUCEDCARBON-SUPPORTCORROSION WenbinGu,PaulT.Yu,RobertN.Carter,RohitMakharia,and HubertA.Gasteiger 1. Introduction . . . . . . . . . . . . . . . . . . . . . 45 2. KineticModel . . . . . . . . . . . . . . . . . . . 49 vii viii Contents 2.1. ElectrodeKinetics . . . . . . . . . . . . . . . 49 2.2. LocalH StarvationModel . . . . . . . . . . 54 2 2.3. Start–StopModel . . . . . . . . . . . . . . . 57 3. CoupledKineticandTransportModel . . . . . . . 60 3.1. ModelDescription . . . . . . . . . . . . . . 60 3.2. LocalH StarvationSimulation . . . . . . . . 63 2 3.3. Start–StopSimulation . . . . . . . . . . . . . 72 4. Pseudo-CapacitanceModel. . . . . . . . . . . . . 76 4.1. MechanismDescription . . . . . . . . . . . . 76 4.2. ModelDescription . . . . . . . . . . . . . . 78 4.3. ThePseudo-capacitiveEffect . . . . . . . . . 80 5. SummaryandOutlook . . . . . . . . . . . . . . . 82 ListofSymbols . . . . . . . . . . . . . . . . . . . . . 83 References . . . . . . . . . . . . . . . . . . . . . . . . 85 Chapter3 COLDSTARTOFPOLYMERELECTROLYTEFUELCELLS KazuyaTajiriandChao-YangWang 1. Introduction . . . . . . . . . . . . . . . . . . . . . 89 2. EquilibriumPurgeColdStart. . . . . . . . . . . . 96 2.1. EquilibriumPurge . . . . . . . . . . . . . . . 96 2.2. IsothermalColdStart . . . . . . . . . . . . . 97 2.3. ProtonConductivityatLowTemperature . . . 97 2.4. EffectsofKeyParameters . . . . . . . . . . . 100 2.5. ORRKineticsatLowTemperatures . . . . . 107 2.6. Short-PurgeColdStart . . . . . . . . . . . . 110 3. WaterRemovalDuringGasPurge . . . . . . . . . 112 3.1. Introduction . . . . . . . . . . . . . . . . . . 112 3.2. PurgeCurve . . . . . . . . . . . . . . . . . . 114 3.3. TwoCharacteristicParametersfor WaterRemoval . . . . . . . . . . . . . . . . 115 3.4. StagesofPurge . . . . . . . . . . . . . . . . 117 3.5. EffectofKeyParameters . . . . . . . . . . . 118 3.6. HFRRelaxation . . . . . . . . . . . . . . . . 124 4. ConcludingRemarks . . . . . . . . . . . . . . . . 126 References . . . . . . . . . . . . . . . . . . . . . . . . 127 Contents ix Chapter4 SPECIES,TEMPERATURE,ANDCURRENTDISTRIBUTION MAPPINGINPOLYMERELECTROLYTEMEMBRANEFUEL CELLS JonathanJ.Martin,JinfengWu,XiaoZiYuan, andHaijiangWang 1. Introduction . . . . . . . . . . . . . . . . . . . . . 129 2. SpeciesDistributionMapping . . . . . . . . . . . 130 2.1. SpeciesandPropertiesofInterest . . . . . . . 130 2.2. MethodologyandResults . . . . . . . . . . . 132 2.3. DesignImplications . . . . . . . . . . . . . . 149 3. TemperatureDistributionMapping. . . . . . . . . 152 3.1. MethodologyandResults . . . . . . . . . . . 153 3.2. DesignImplications . . . . . . . . . . . . . . 155 4. CurrentDistributionMapping . . . . . . . . . . . 156 4.1. MethodologyandResults . . . . . . . . . . . 156 4.2. DesignImplications . . . . . . . . . . . . . . 165 5. ConcludingRemarks . . . . . . . . . . . . . . . . 166 References . . . . . . . . . . . . . . . . . . . . . . . . 167 Chapter5 HIGH-RESOLUTIONNEUTRONRADIOGRAPHYANALYSIS OFPROTONEXCHANGEMEMBRANEFUELCELLS D.S.HusseyandD.L.Jacobson 1. Introduction . . . . . . . . . . . . . . . . . . . . . 175 2. NeutronRadiography FacilityLayout AndDetectors . . . . . . . . . . . . . . . . . . . 177 2.1. NeutronSourcesandRadiographyBeamlines 177 2.2. NeutronImagingDetectors . . . . . . . . . . 181 3. WaterMetrologywithNeutronRadiography . . . 184 3.1. NeutronAttenuationCoefficientof Water,μ . . . . . . . . . . . . . . . . . . . 184 w x Contents 3.2. SourcesofUncertaintiesinNeutron Radiography . . . . . . . . . . . . . . . . . . 187 4. RecentInSituHigh-ResolutionNeutron RadiographyExperimentsofPEMFCs. . . . . . . 195 4.1. Proof-of-PrincipleExperiments . . . . . . . . 195 4.2. InSitu,Steady-StateThrough-Plane WaterContent . . . . . . . . . . . . . . . . . 196 4.3. Dynamic Through-Plane Mass TransportMeasurements . . . . . . . . . . . 197 5. Conclusions . . . . . . . . . . . . . . . . . . . . . 198 References . . . . . . . . . . . . . . . . . . . . . . . . 199 Chapter6 MAGNETICRESONANCEIMAGINGANDTUNABLEDIODE LASERABSORPTIONSPECTROSCOPYFORIN-SITU WATERDIAGNOSTICSINPOLYMERELECTROLYTE MEMBRANEFUELCELLS ShohjiTsushimaandShuichiroHirai 1. Introduction . . . . . . . . . . . . . . . . . . . . . 201 2. MagneticResonanceImaging(MRI):As aDiagnosticToolforIn-SituVisualization ofWaterContentDistributioninPEMFCs . . . . . 202 2.1. BasicPrincipleofMRI . . . . . . . . . . . . 202 2.2. MRISystemHardwareforPEMFC Visualization . . . . . . . . . . . . . . . . . 206 2.3. MRISignalCalibrationforWater ContentinPEM . . . . . . . . . . . . . . . . 209 2.4. InSituVisualizationofWaterin PEMFCUsingMRI . . . . . . . . . . . . . . 209 3. Tunable Diode Laser Absorption Spectroscopy(TDLAS):AsaDiagnostic ToolforIn-SituDetectionofWaterVapor ConcentrationinPEMFCs . . . . . . . . . . . . . 213 3.1. BasicPrincipleofTDLAS . . . . . . . . . . 213 3.2. TDLASSystemHardwareforWater VaporMeasurement . . . . . . . . . . . . . . 214