ebook img

Modeling and detection of limit cycle oscillations in thin-wing aircraft using adaptable linear models PDF

231 Pages·2003·8.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling and detection of limit cycle oscillations in thin-wing aircraft using adaptable linear models

MODELINGANDDETECTIONOFLIMITCYCLEOSCILLATIONSINTHIN- WINGAIRCRAFTUSINGADAPTABLELINEARMODELS By MICHAELRAYJOHNSON ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 2003 ACKNOWLEDGMENTS Iwouldliketoacknowledgethecontributionsofseveralindividualsinmypursuit ofeducation. FirstandforemostIacknowledgemyfather,Dr.M.RayJohnson,who taughtmethattheprimarypurposeofaformaleducationistolearnhowtolearn,that learningisaprocessuniquetoeachindividual,andthatlearningisalife-longendeavor thatmoreoftenthannotdoesn’tinvolveaclassroom. Hisexampleasafather,astudent, ateacherandafriendhasbeenaguideinmylife. NextIacknowledgeProfessorJosePrincipewho,bymeansofhistalentasa teacherandadvisor(andperhapsatouchofthesupernatural)understandsmylearning processbetterthanIdo. Healwaysseemsonestepaheadofme. Forhisguidance, patienceandfriendshipIamverygrateful. IwouldberemissifIdidn’tacknowledgethesupportoftheAirForceSEEK EAGLEOffice. Dr.BillDyessencouragedandsupportedmyeffortsandmadeit possibleformetoconcentratefulltimeonthisresearch. Dr.ChuckDenegri,myfriend andmentor,wasareadyandwillingsoundingboard,withoutwhosehelpthiswork wouldnothavebeenpossible. Finallyacknowledgmentstomywifeandkids. Wordscannotdescribethesupport andencouragementtheygave. Sufficeittosaythattheword‘quit’wasnevertolerated,a — — closeddoor anall-too-oftenoccurrence wasalwaysrespected,andhugswerewell- timedandreadilyavailable. Everyguyshouldbesolucky. n TABLEOFCONTENTS page ACKNOWLEDGMENTS ii LISTOFTABLES vi LISTOFFIGURES vii CHAPTER 1 INTRODUCTION 1 ProblemDescriptionandProposedSolution 3 Motivation 9 DissertationOrganization 10 2 BACKGROUND 12 TheFlutterPhenomenon 12 LinearFlutterAnalysis 14 ABriefFlightTestOverview 21 FlightTestDataSetsandConfigurationLinearFlutterAnalysis 23 AircraftAccelerometerLocations 23 MissionParticulars 24 LinearAnalysisofFlightTestConfiguration 25 FlightTestSignals 27 TestLine17TestSignal 27 TestLine3TestSignal 31 AlternativeApproaches 36 EngineeringApproaches 36 Volterraseries 36 Nonlinearempiricalmethods 37 NASAsolutions 38 SimilarANNwork 38 PhysicalModelingApproaches 39 Computationalfluiddynamics 39 Locallinearmodels 42 3 MODELINGAPPROACH 44 T.I.MApproach:Quasi-FixedHR/AdaptiveFIRModularApproximationofanIIR System 44 iii 1 ModelImplementation 49 Kuo’sTwo-PEOscillatorasaFoundation 49 Spring-MassLinearOscillator 51 ConversiontoSingle-WeightAdaptation 53 NetworkTransferFunctionAnalysis 56 LinearDamping 60 LocalLinearModels 61 GeneralizedLikelihoodRatioTestBasisforDetectingSignalChanges 63 AProposedModificationtotheGLRT 68 GLRTPracticalConsiderations 73 ChapterSummary:TheInitialModel 75 4 MODELTUNINGANDREFINEMENTS 77 ChapterOrganization 78 LinearOscillatorExperiments 79 NetworkTraining 79 FrequencyTraining 83 PhaseandGainTraining 86 SampleFrequencyTrainingResults 90 DualSinusoidPhaseandGainTrainingExample 91 DualSinusoidPhaseandGainTrainingExampleResults 93 PostAnalysisOscillatorDesignModifications 98 LinearOscillatorSummary 99 ModifiedGeneralizedLikelihoodRatioTestforDetectingSignalChanges 100 PreliminaryExperiments 102 Experiment1 104 Experiment2 109 Experiment3 11 Experiment4 113 NetworkParametricEvaluation 116 Reduced-ModelSimplifiedGLRTExperimentConclusions 119 Fixed-LengthFlightTestSignalTrainingExperiments 121 PreliminaryWork: ConstantMach,AltitudeandNormalAccelerationLCO Evaluation(Test8c) 121 EvaluationofthePracticalValueofMSEforTraining 125 Increased-TimeExperimentResults 126 ConsecutiveFixedLengthExperiments(Test8c) 132 ConsecutiveFixedLengthExperiments(TestLine17) 145 ChapterSummary 152 5 FLIGHTTESTEXPERIMENTS 155 TestLine17LLMExperiments 157 ParametricPredictions 160 Reduced-OrderNetworks 163 Reduced-OrderModelResults 173 Reduced-ModeResults 175 IV Linearly-FitLLMParameterResults 177 TestLine3LLMExperiments 179 Third-OrderParametricFitPredictionResults 181 ParametricPredictionResults 187 Reduced-ModeResults 187 FrequencyAdaptationAnalysis 189 ModelGeneralizationEvaluation 192 ChapterSummary 194 6 DISCUSSIONANDCONCLUSIONS 197 ModelingConclusions 199 LinearOscillator 199 Fixed-lengthSignalModeling 200 Reduced-ModelSimplifiedGLRT 201 FlightTestDataExperiments 202 Furtheranalyses 206 Confirmationofexistingmethods 210 LISTOFREFERENCES 212 BIOGRAPHICALSKETCH 217 v LISTOFTABLES Table Eige 2-1 Flight8951freevibrationanalysisfrequenciesbymode 26 4-1 Oscillatortrainabilitywithin1%desiredfrequency 85 44--2 Oscillatortrainabilitywithin1%desiredfrequency,plasticinputweight 86 5- 4-3 Dualsinusoidalfrequencyphase/gaintestphasevalues 93 4-4 Experiment1desiredandANNmodels 106 4-5 Experiment1Results 108 4-6 InitialModalFrequencies(freevibrationvalues) 122 7 InitialModalAmplitudes(fluttersolutionresults) 132 1 Testline17modes1to8adaptedfrequencies(Hz) 190 5-2 Testline17modes9to16adaptedfrequencies(Hz) 191 5-3 Testline3adaptedfrequencies(Hz) 192 vi LISTOFFIGURES Figure P.4ge 1-1 LLMconceptualdiagram 6 2-1 DMMpointsonawing 20 2-2 Aircraftconfigurationandsensorlocations 24 2-3 Linearflutteranalysisoftestconfiguration,Damping 26 2-4 Linearflutteranalysisoftestconfiguration.Frequency 26 22--5 KCAS,Mach,andaltituderelationship 27 23--6 Testline17sensortraces:altitude,Machandnormalacceleration 30 2-7 Testline17forwardwingtipsignalandpowerspectraldensity 30 2-8 Testline17aftwingtipsignalandpowerspectraldensity 31 2-9 Testline3flightteststatesandsignals 32 2-10 Test8forwardwing-tipaccelerometer 33 2-11 Testline3analysispoints,flightteststatesandsignals 35 12 Testline3PSD,forwardandaftsensors 35 1 ConceptualdiagramofoscillatordrivenFIRfiltersystem 48 3-2 Kuotwo-PEoscillatornetwork 50 3-3 Originalfour-weightspring-massoscillatornetwork 52 3-4 Spring-massoscillatoroutput 53 3-5 Singleweightoscillatornetwork 56 3-6 Singleweightspring-massoscillatoroutput 56 3-7 Impulseresponseoftotalsystemandtwopartsystem 57 3-8 Multi-modalimpulseresponse 58 vii 1 3- 4- 9 ThreemodelGLRT 64 1 Single-weightoscillatornetwork 81 4-2 Single-weightoscillatorarchitecture 81 4-3 Initialsignaltraceoflinearoscillatoranddesiredresponse 82 4-4Trainedsignaltraceoflinearoscillatoranddesiredresponse 82 4-5 Oscillatorfrequencyweightcurves 84 4-6 Completesinglefrequencyoscillatorarchitecture 87 4-7 Gradientsurfacefor7Hzinitialfrequency 88 4-8 Gradientsurfacefor14Hzinitialfrequency 89 4-9 Freq.trainingtest,twocycles. Trainedinputweight,7to9Hz 91 4-10 Freq.trainingtest,one-second. Trainedinputweight,14.0to14.5Hz 92 4-11 Completedouble-frequencyoscillatorarchitecture 93 4-12 Dualfrequencyoutputwithtrainedinputweights 94 4-13 Dualfrequencywithtrainedinputweightstrainingresults 95 4-14 Dualfrequencyoutputwithfixedinputweights 97 4-15 DualFrequencyoutputwithnotrainedinputtrainingresults 97 4-16 Modifiedsaturatedlinearactivationfunction 98 4-17 Experiment1testsignal 105 4-18 Experiment1L-values 107 4-19 Experiment2testsignalcomparison 110 4-20 Experiment2L-values 11 4-21 Experiment3testsignalcomparison 112 4-22 Experiment3L-values 113 4-23 Experiment4testsignalcomparison 115 4-24 Experiment4L-values 115 4-25 Experiment3networkparametercomparison 117 viii 4-26 Experiment4networkparametercomparison 118 4-27 Complete16-modeLLMarchitecture 122 4-28 Test8cSpectrogram 125 4-29 One-eightsecondsignaltrainingtest 127 4-30 One-quartersecondsignaltrainingtest 127 4-31 One-halfsecondsignaltrainingtest 128 4-32 Onesecondsignaltrainingtest 128 4-33 Foursecondsignaltrainingtest 129 4-34 Fivesecondsignaltrainingtest(failure) 129 4-35 Test8cquarter-secondbursttrainingresults 137 4-36Test8cquarter-secondburstnetworkparameters 138 4-37 Test8cone-secondbursttrainingresults 140 4-38 Test8cone-secondburstnetworkparameters 141 44--39 Test8cone-secondpredictionplots 142 5- 4-40Test8cfour-secondbursttrainingresults 143 4-41 Test8cfour-secondburstnetworkparameters 144 4-42 Testline17forwardwingtipaccelerometersignalandPSD 146 4-43 Testline17originalarchitecturetrainingresults 147 4-44Testline17originalarchitecturenetworkparameters 148 4-45 Completetwo-delayoscillatorarchitecturewithoutputbias 149 4-46 Testline17two-delay,biasedarchitecturetrainingresults 150 47 Testline17two-delay,biasedarchitecturenetworkparameters 151 1 Complete2-delay,16-modeLLMarchitecture 156 5-2 ResultsofTestline17auto-switchedLLMdatasynthesis 158 5-3 PSDfortestline17auto-switchedLLMdatasynthesis 159 5-4 L-valuesfortestline17auto-switchedLLMdatasynthesis 159 IX 5-5 Testline17zero-orderFIRweight(mode1)vs.Mach. 161 5-6 Testline17zero-ordervs.second-orderFIRweights(mode1) 161 5-7 Testline17firstorderFIRweight(mode1)vs.Mach 162 5-8 Testline17LLMbiasvs.Mach 163 5-9 Testline17reduced-orderLLMFIRmodalvectoranglesbysegments 167 5-10Testline17reduced-orderFIRweightvectoranglesvs.Mach 170 5-11 Testline17reduced-orderFIRzero-ordervs.first-orderweights 171 5-12 Testline17reduced-orderFIRweightvectors 172 5-13 Testline17synthesisusingreduced-orderFIRfilters 174 5-14 PSDoftestline17synthesisusingreduced-orderFIRfilters 174 5-15 Datasynthesisoftestline17usingLLMsformodes1,2,and7 175 5-16PSDcomparisonoftestline17usingLLMsformodes1,2,and7 176 5-17 Datasynthesisoftestline17usinglinear-approximatedLLMs 177 5-18 PSDcomparisonofdatasynthesisusinglinear-approximatedLLMs 179 5-19 Testline3reducedorderresults 181 5-20Testline3reduced-orderLLMFIRmodalvectoranglesbysegments 182 5-21 Testline3reduced-orderFIRweightvectoranglesvs.g-loading 184 5-22 Testline3reduced-orderFIRfirst-ordervs.second-orderweights 185 5-23 Testline3reduced-orderFIRweightvectors 186 5-24 DatasynthesisofTestline3usingThirdorderapproximatedLLMs 188 5-25 DatasynthesisofTestline17usingLLMsformodes1,2,and7 189 5-26 Datasynthesisoftestline3segment1,LLMforTestline17Model1 193 x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.