ebook img

Modeling and control of a cable-driven series elastic actuator PDF

0.55 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling and control of a cable-driven series elastic actuator

Modeling and Control of A Cable-Driven Series Elastic Actuator WulinZou1,2,NingboYu1,2 1.InstituteofRoboticsandAutomaticInformationSystems,NankaiUniversity,Tianjin300353,P.R.China 2.TianjinKeyLaboratoryofIntelligentRobotics,NankaiUniversity,Tianjin300353,P.R.China E-mail:[email protected],[email protected] Abstract: Serieselasticactuators(SEA)areplayinganincreasinglyimportantroleinthefieldsofphysicalhuman-robotinteraction. This paperfocusesonthemodelingandcontrolofacable-drivenSEA.First,theschemeofthecable-drivenSEAhasbeenproposed,and avelocitycontrolledDCmotorhasbeenusedasitspowersource. Basedonthis,themodelofthecable-drivenSEAhasbeenbuilt up. Further,atwodegreesoffreedom(2-DOF)controlapproachhasbeenemployedtocontroltheoutputtorque. Simulationresults 7 haveshownthatthe2-DOFmethodhasachievedbetterrobustperformancethanthePDmethod. 1 0 KeyWords:Serieselasticactuator,Stabilizing2-DOFcontroller,Physicalhuman-robotinteraction,Torquecontrol 2 n a 1 Introduction and noise. Horowitz revealed that the 1-DOF configuration J isunabletocopewiththetwoproblemsofachievingadesired 4 Series elastic actuator was first recommended by Pratt and trackingresponseandattainingagooddisturbance/noiserejec- 1 Williamson for its benefits of greater shock tolerance, accu- tionatthesametime,butthe2-DOFcontrollercouldachieve rate and stable force output and the ability of energy storage ] thesetwogoalssimultaneously[17]. Thereasonisthatthe2- Y [1]. Nowadays, SEAs are widely applied in various physical DOFcontrollerprovidesanindependentwaytodesigntrack- human-robotinteractionapplications, e.g., theSEAforwalk- S ing response and optimize disturbance/noise rejection. Sys- ing robots [2], the compact rotary SEA for human assistive . tematic introduction and design procedures about the 2-DOF s robots [3], the compact compliant actuator for rehabilitation c controlmethodcanbefoundin[18,19]. Thispaperisalsoan [ robots[4],etc. extensiveworkof[20–22]. Cable actuation has attracted intensive research for its ad- 1 Thispaperisorganizedasfollows. Section2describesthe vantagesoflowinertia,flexibleinstallation,remoteactuation, v conceptandmodelofthevelocitysourcedcable-drivenSEA. 3 etc. Cables with low weight to length ratio can change the DetailsforthetorquecontrollerdesignaregiveninSection3. 1 force direction intentionally and easily, enable power trans- Simulations and results are presented in Section 4. Section 5 9 mission to a remote distance with less energy loss and space concludesthepaper. 3 occupation [5, 6], and allow detachment of the actuation mo- 0 2 TheCable-DrivenSEA tor from the robot frame [7]. Besides, a cable actuated sys- . 1 temcanbeasafesolutionduetoitsunidirectionalforcecon- 2.1 TheModeloftheCable-DrivenSEA 0 straint and property of breaking when the tension exceeding 7 The principle of a cable-driven SEA is shown in Fig. 1. A the threshold. Many cable actuated systems have been ap- 1 cable-spring series structure is introduced between the motor : pliedforphysicalhuman-robotinteraction,suchastheLOwer v andtheload. Thepowersourceoftheactuatorissuppliedby extremity Powered ExoSkeleton (LOPES) [7], the Universal i avelocitycontrolledDCmotor. X HapticDrive(UHD)forupperextremityrehabilitation[8],the r MR-compatiblewristrobot[9],etc.  a  Theforce/torquecontrollerofaserieselasticactuatorisde- d Velocity Sourced Gearbox T signed to generate a spring deflection force/torque to follow DC Motor o Spring agivencommandtrajectory. Variouscontrolapproacheshave Cable Load beendevelopedfordifferentSEAstoachievehighforce/torque tracking performance. A Proportional-Integral-Differential (PID) control method was introduced in [10] to illustrate the Fig.1: Thevelocitysourcedcable-drivenSEA. concept and performance of a SEA explicitly. A lot of re- searchers have made important contributions to the develop- Neglecting the deflection of the cable, the velocity of the mentofSEAbasedonPIDcontrol[8,9,11–13]. Disturbance cableisgivenas ω observer(DOB)basedcontrolmethodshavebeenalsoadopted ω = . (1) in[14–16]toenhancerobustness. Wyethproposedacascaded m Kg torquecontrolmethodwithaninnervelocitylooptoovercome Where,K isthegearboxratioandωistheoutputvelocityof g problemsofnon-linearities[11]. theDCmotor. Then,thedisplacementofthecableis In this paper, the torque controller is designed using the 2- ω DOF method to track torque reference, eliminate disturbance θm = sm. (2) Ifthedisplacementoftheloadisθ ,thespringdeflectionθ 2.3 DesignoftheVelocityController l s canbederivedas InordertocontroltheDCmotortobeaneffectivevelocity θs =θm−θl. (3) source, a PI controller is designed there. As shown in Fig. 2, ThetorqueT appliedtotheloadisduetothedeflectionofthe thevelocitycontrollerhastheformof o spring,suchthat K To =Ksθs. (4) Cv(s)=Kpv+ siv. (10) Iftheinertiaanddampingofthespringareconsidered, itbe- comes The velocity controller is tuned in the case of no load at- T =(M s2+C s+K )(θ −θ ). (5) tachedandneglectingtheCoulombfriction,thatistosay,the o s s s m l loadtorqueT andtheCoulombfrictionf aresetaszero. To Letθ =0andcombine(1),(2)and(5),thereis l c l create a system that will be of type 1, change (9) and (10) to To(s) = Mss2+Css+Ks. (6) thefollowingform: ω(s) K s g ω(s) Kt 2.2 VelocitySourcedDCMotor G (s)= = JLa , (11) v v (s) (s+p )(s+p ) a 1 2 To design a well performed SEA, a DC motor is used as tahdeopvteeldociistythsaotuvrecleoocfitythceoancttruoaltoisr.eTashieerreaansdonmtohraetstthriasigidhetfaoirs- C (s)= Kpv(s+ KKpivv). (12) v s ward than current control. What’s more, velocity control can overcome some undesirable effects caused by motor internal Wherep2 > p1 > 0andbothcanbeobtainedfrom(9)and disturbance. (11). Let K The schematic diagram of a velocity sourced DC motor is iv =p , (13) K 1 shown in Fig. 2. The velocity feedback regulated by a well pv tuned PI controller forms a stable closed loop so that the DC then,theopenlooptransferfunctionbecomes Motorsystemcantrackthereferencesignalquicklyandaccu- rately. Hopen =Cv(s)Gv(s) ffcc Tl = Kpv(s+ KKpivv) · JKLta s (s+p )(s+p ) (14) d  KpvKsiv vav  Las1Ra ia Kt   1J  1s1s  KpvKt 1 2 b = JLa . K K s(s+p ) b f 2 Theclosedlooptransferfunctionwillbecomeatypicaltwo Fig.2: ThediagramofthevelocitysourcedDCmotor. ordersystem,andhastheformof Whenthecurrenti flowsthroughthemotorcoil,thereis ω2 a H = n . (15) L dia +i R +v =v . (7) closed s2+2ξωns+ωn2 a dt a a b a Accordingto(13),(14)and(15),thereare Wherev istheappliedvoltageacrossthemotorterminals,R a a itshethmeoretosirsctaonilc,eaonfdthvebmisotthoerbwaicnkdienmg,fLvoalitsagtheethinadtuisctlainnecaerolyf  Kpv = ωn2KJtLa proportional to the angular velocity ω of the motor, such that . (16) K =p K vb =Kbω.  iv 1 pv Theequationoftheshaftrotatingaboutafixedaxisis 2ξωn =p2 K i −K ω−f −T =Jα. (8) Given the desired performance of the closed loop system, t a f c l thenaturalfrequencyω anddampingratioξcanbeestimated. Where α is the angular acceleration such that α = ωs. The n Then, the controller parameters can be obtained from (16). magnetictorqueislinearlyproportional(K )tothecurrenti t a Further, the transfer function from the desired velocity input flowing through the motor coil. The viscous friction torque ω (s) to the actuator output torque T (s) can be obtained by is in the opposite direction of the motion and is linearly pro- d o T (s) portional (Kf) to the angular velocity ω. fc is the Coulomb P(s)= o . ω (s) frictionandT istheloadtorque. d l Substitute (7) into (8) and convert it to frequency domain 3 TorqueControllerDesign equation,ω(s)canbeobtainedas 3.1 ControllerwithOptimalTransient v (s)K −(L s+R )(f (s)+T (s)) ω(s)= a t a a c l . (9) In this subsection, a possible way to design the best stabi- JL s2+(JR +K L )s+K R +K K a a f a f a b t lizing controller and measure the quality will be introduced. AssumethatP(s)isstrictlyproperanddenotedastheformof 3.2 Stabilizing2-DOFController b(s) b sn−1+···+b Aclosedloopsystemusing2-DOFcontrollertostabilizethe P(s)= = 1 n . (17) a(s) a sn+a sn−1+···+a plantP(s)isshowninFig.4. Theoutputzcantracktherefer- 0 1 n enceinputsignalr inasatisfactoryway,also,thedisturbance Wherea(s)andb(s)arecoprimeanda (cid:54)=0. 0 d and the noise n can be eliminated close to zero in a short time. w u 1 1 P(s) d  y y r u v z 1 2 C(s) P(s) u w C(s) 2 2  y n Fig.3: Feedbacksystemforstabilization. Fig.4: The2-DOFcontrolconfiguration. ConsiderthesystemshowninFig.3,iftheclosedloopsys- temisinternallystableandtheexternalinputsw (t),i = 1,2, i The stabilizing 2-DOF controller based on the controller areallimpulsesignals,alltheinternalsignalsu (t),y (t),j = j j withoptimaltransientisshowninFig.5. LetC (s)beasta- 0 1,2, will eventually settle to zero when time goes to infinity. q(s) So,theRMSvalueofyi(t)i = 1,2,whenwi(t),i = 1,2,are bilizingcontrollerwithoptimaltransient: C0(s) = p(s). Let unitimpulsescanbeusedtomeasurethequalityoftheperfor- M(s),N(s),X(s),Y(s)be: manceasfollow: a(s) b(s) J =(||y1(t)||22+||y2(t)||22)|w1(t)=δ(t) M(s)= d(s),N(s)= d(s), w2(t)=0 (18) (21) +(||y (t)||2+||y (t)||2)| . p(s) q(s) 1 2 2 2 w1(t)=0 X(s)= ,Y(s)= . w2(t)=δ(t) d(s) d(s) For different stabilizing controllers, their RMS value J are Then M(s),N(s),X(s),Y(s) are all stable transfer func- different. TheminimumvalueofJ denotedbyJ∗ whenC(s) tionssatisfying: ischosenamongallstabilizingcontrollersmeansthatthebest performanceisachieved. N(s) Y(s) P(s)= ,C (s)= , Thetransferfunctionfrom(w1,w2)to(y1,y2)is: M(s) 0 X(s)  P(s)C(s) C(s)  M(s)X(s)+N(s)Y(s)=1. 1+P(s)C(s) 1+P(s)C(s)    . (19)  P(s) −P(s)C(s)  d 1+P(s)C(s) 1+P(s)C(s) r u v z Q(s) X1(s) P(s) 1 The next problem to be solved is how to find the most op- timal stabilizing controller. Firstly, there must exist a sta- ble polynomial d(s) called spectral factor of a(−s)a(s) + N(s) b(−s)b(s)suchthat: a(−s)a(s)+b(−s)b(s)=d(−s)d(s). q(s) Q (s) Now let C(s) = be the unique n-th order strictly 2 p(s)   properpoleplacementcontrollersuchthat: M(s) a(s)p(s)+b(s)q(s)=d2(s). Then, this controller C(s) is the most optimal controller Y(s) y n whichminimizesJ andgives d(s)−a(s) b(s) Fig.5: Stabilizing2-DOFcontrolstructure. J∗ =|| ||2+|| ||2 d(s) 2 d(s) 2 (20) d(s)−p(s) q(s) Denotethesetofallthe2-DOFcontrollerswhichgivestable +|| ||2+|| ||2. d(s) 2 d(s) 2 closedloopsystemsbyΩ(P): (cid:20) (cid:21) If w ,i = 1,2, are external disturbances or noises, a stabi- Q (s) Y(s)+M(s)Q (s) i Ω(P)={C(s)= 1 2 }. lizingcontrollerwithoptimaltransientcaneliminatethemina X(s)−N(s)Q (s) X(s)−N(s)Q (s) 2 2 shorttime. (22) Where,Q (s),Q (s)arearbitrarystabletransferfunctions. tobe50Hz,let 1 2 Every stabilizing 2-DOF controller has the form shown in 1 Fig.5. ForafixedplantP(s),ifweplugastabilizing2-DOF Q (s)= . 2 s/(100π)+1 controllerofthisformtoaclosedlooptransferfunction,then theclosedlooptransferfunctionbecomesafunctionofQ1(s) 4 SimulationsandResults and Q (s). The problem becomes choosing good Q (s) and 2 1 Thecable-drivenSEAparametersarelistedinTable1. Q (s) to meet the design specifications, as long as they are 2 stable. Table1: Parametersofthecable-drivenSEA. The four transfer functions from r to the internal variables u,v,y,zdependonlyonQ1(s): J 6.96×10−6kg·m2 L 0.62mH  C (s)  a 1 R 2.07Ω a  1+P(s)C2(s)  K 0.0525Nm/A   t  C (s)    K 0.0525Vs/rad  1  M(s) b  1+P(s)C2(s)   M(s)  Kf 0.00001Nm/(rad/s)  P(s)C (s) = N(s) Q1(s). (23) Ks 138Nm/rad  1+P(s)1C2(s)  N(s) KCsg 0.01N1m56/:(r1ad/s)  P(s)C1(s)  Jl 0.1kg·m2 M 0.00001kg·m2 1+P(s)C (s) s 2 The eight transfer functions from d,n to u,v,y,z depend onlyonQ2(s): 4.1 SimulationResultsoftheVelocityControl  −P(s)C2(s) −C2(s)  Thetransferfunctionfromva(s)toω(s)is:  1+P(s)C2(s) 1+P(s)C2(s)  v (s) 1.217e07   a = .  1 −C2(s)  ω(s) s2+3340s+6.435e05  1+P(s)C (s) 1+P(s)C (s)   2 2   = When the damping ratio ξ is chosen to be 0.88, the co-  P(s) 1    efficients of the proportional-integral controller are Kpv =  1+P(s)C2(s) 1+P(s)C2(s)  0.26,Kiv = 53.5. The step response of velocity closed loop    P(s) −P(s)C (s)  systemisshowninFig.6. Therisetimeofthevelocityclosed 2 1+P(s)C (s) 1+P(s)C (s) . (24) loop system is within 0.002s, almost no overshoot, can meet 2 2  −N(s)Y(s) −M(s)Y(s)  therequirementsofavelocitysource.  M(s)X(s) −M(s)Y(s)     N(s)X(s) M(s)Y(s)  N(s)X(s) −N(s)X(s)   M(s)  M(s)  (cid:2) (cid:3) − N(s) Q2(s) N(s) M(s) N(s) ThismakeschoosingQ (s)andchoosingQ (s)decoupled 1 2 andratherconvenient. 3.3 ParameterizationofQ (s)andQ (s) 1 2 Sincethetransferfunctionfromthereferenceinputrtothe Fig.6: Stepresponseofthevelocitycontrol outputsignalzisN(s)Q (s),let 1 ω¯2 Q1(s)= N(s)(s2+2nξ¯ω¯ s+ω¯2). 4.2 SimulationResultsoftheTorqueControl n n The transfer function P(s) from ω (s) to T (s) when the d o Then,thetransferfunctionfromrtozbecomes loadisfixedis: N(s)Q1(s)= s2+2ξ¯ω¯ω¯n2ns+ω¯n2. P(s)= 0.20s344+s33+34204s53.+1s32.+8127.e80468se20+6s6+.545e.70681se08 Considering that Q (s) is mainly used to filter the distur- Thestabilizing2-DOFcontrollercanbeobtainedbychoos- 2 bancedandnoisenwhoseindustrialfrequenciesareassumed ing ω¯ = 451.24 and ξ¯ = 0.826. In the simulation, a PD n d a cable-driven SEA. The 2-DOF torque controller performed T u  T bettercomparedwiththePDmethodinthepresenceofnoise d C(s) d P(s) o anddisturbanceinthesimulations. Thetorquecontrolperfor- mance can be conveniently adjusted by choosing appropriate  filterQ (s)andQ (s). 1 2 Further research will be focused on the impedance control y n ofthecable-drivenSEA. Fig.7: Torquecontrolstructureforthecable-drivenSEA. References [1] G.A.PrattandM.M.Williamson. Serieselasticactuators. In Proceedings of the IEEE/RSJ International Conference on In- controllerC (s) = 490+0.1sisusedforcomparison. The PD telligentRobotsandSystems,volume1,pages399–406,1995. torque control structure for the cable-driven SEA is shown in [2] D.W.Robinson,J.E.Pratt,D.J.Paluska,andG.Pratt. Series Fig.7. elastic actuator development for a biomimetic walking robot. Inthefirstsimulation,thedisturbancedandthenoisenare InProceedingsoftheIEEE/ASMEInternationalConferenceon settozero.Then,thestepresponsesfromT (s)toT (s)ofthe d o AdvancedIntelligentMechatronics,pages561–568,1999. twocontrolmethodareshowninFig.8. Boththetwomethod [3] K. Kong, J. Bae, and M. Tomizuka. A compact rotary series tracksthestepinputquicklyandaccurately. elasticactuatorforhumanassistivesystems.IEEE/ASMETrans- actionsonMechatronics,17(2):288–297,2012. [4] H.Yu,S.Huang,N.V.Thakor,G.Chen,S.L.Toh,M.S.Cruz, Y.Ghorbel, andC.Zhu. Anovelcompactcompliantactuator design for rehabilitation robots. In Proceedings of the IEEE InternationalConferenceonRehabilitationRobotics,pages1– 6,2013. [5] D.Chapuis,R.Gassert,G.Ganesh,E.Burdet,andH.Bleuler. Investigation of a cable transmission for the actuation of MR compatible haptic interfaces. In Proceedings of the FirstIEEE/RAS-EMBSInternationalConferenceonBiomedical RoboticsandBiomechatronics,pages426–431,2006. [6] R.J.Caverly,J.R.Forbes,andD.Mohammadshahi. Dynamic modelingandpassivity-basedcontrolofasingledegreeoffree- domcable-actuatedsystem. IEEETransactionsonControlSys- Fig.8: Trackingstepsignalwithoutdisturbanceandnoise temsTechnology,23(3):898–909,2015. [7] J.F.Veneman,R.Ekkelenkamp,R.Kruidhof,F.C.V.D.Helm, Inthesecondsimulation,thedisturbancedandthenoisen and H. V. D. Kooij. A series elastic-and bowden-cable-based are set as gaussian white noises with zero mean. The input actuation system for use as torque actuator in exoskeleton- signal Td is set as a sinusoidal signal with frequency of 5 Hz type robots. The International Journal of Robotics Research, and amplitude of 1 Nm. The tracking results are shown in 25(3):261–281,2006. Fig. 9. It is clear that the stabilizing 2-DOF controller can [8] J. Oblak, I. Cikajlo, and Z. Matjac˘ic´. Universal haptic drive: enhancethesystemrobustness. A robot for arm and wrist rehabilitation. IEEE Transactions onNeuralSystemsandRehabilitationEngineering,18(3):293– 302,2010. [9] F.SergiandM.K.O’Malley. Onthestabilityandaccuracyof high stiffness rendering in non-backdrivable actuators through serieselasticity. Mechatronics,26:64–75,2015. [10] D. W. Robinson. Design and analysis of series elasticity in closed-loop actuator force control. Thesis, Massachusetts In- stituteofTechnology,2000. [11] G. Wyeth. Control issues for velocity sourced series elastic actuators. In Proceedings of the Australasian Conference on RoboticsandAutomation,2006. [12] H.Vallery,R.Ekkelenkamp,H.V.D.Kooij,andM.Buss. Pas- sive and accurate torque control of series elastic actuators. In Proceedings of the IEEE/RSJ International Conference on In- telligentRobotsandSystems,pages3534–3538,2007. Fig.9: Trackingsinusoidalsignalwithdisturbanceandnoise [13] D. Accoto, G. Carpino, F. Sergi, N. L. Tagliamonte, L. Zollo, and E. Guglielmelli. Design and characterization of a novel 5 Conclusions high-powerserieselasticactuatorforalowerlimbroboticortho- sis. InternationalJournalofAdvancedRoboticSystem,10:359, This paper demonstrates the efficacy of the 2-DOF con- 2013. trol approach for the challenging torque control problem of [14] K. Kong, J. Bae, and M. Tomizuka. Control of rotary series elasticactuatorforidealforce-modeactuationinhuman-robot interactionapplications. IEEE/ASMETransactionsonMecha- tronic,14(1):105–118,2009. [15] S.YooandW.K.Chung. SEAforce/torqueservocontrolwith model-basedrobustmotioncontrolandlink-sidemotionfeed- back. InProceedingsoftheIEEEInternationalConferenceon RoboticsandAutomation,pages1042–1048,2015. [16] J. Lu, K. Haninger, W. Chen, and M. Tomizuka. Design and torque-modecontrolofacable-drivenrotaryserieselasticactu- atorforsubject-robotinteraction. InProceedingsoftheIEEE International Conference on Advanced Intelligent Mechatron- ics,pages158–164,2015. [17] I.M.Horowitz. Synthesisoffeedbacksystems. AcdemicPress, London,1963. [18] L.QiuandK.Zhou. Introductiontofeedbackcontrol. Pearson PrenticeHall,NewJersey,2010. [19] P.Huang. Theoreticalandexperimentalstudiesontwo-degree- of-freedomcontrollers. Thesis, HongKongUniversityofSci- enceandTechnology,2015. [20] W. Zou, W. Tan, Z. Yang, and N. Yu. Torque control of a cable-drivenserieselasticactuatorusingthe2-DOFmethod.In ProceedingsoftheChineneseControlConference,pages6239– 6243,2016. [21] W. Zou, Z. Yang, W. Tan, M. Wang, J. Liu, and N. Yu. Impedancecontrolofacable-drivenserieselasticactuatorwith the2-DOF controlstructure. InProceedingsoftheIEEE/RSJ International Conference on Intelligent Robots and Systems, pages3347–3352,2016. [22] W.Zou,W.Tan,Z.Yang,andN.Yu. Augmentedvirtualstiff- nessrenderingofacable-drivenSEAforhuman-robotinterac- tion. TheIEEE/CAAJournalofAutomaticaSinica,2017.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.