Modeling and Analyzing IVR Systems, as a Special Case of Self-services Research Thesis SubmittedinPartialFulfillmentofthe RequirementsfortheDegreeof MasterofScienceinOperationsResearchandSystemAnalysis Nitzan Carmeli SubmittedtotheSenateofthe Technion-IsraelInstituteofTechnology Sivan,5775 Haifa June10,2015 ThisResearchThesisWasDoneUndertheSupervisionof ProfessorHayaKaspiandProfessorAvishaiMandelbaumintheFacultyof IndustrialEngineeringandManagement. IwouldliketogratefullythankProfessorHayaKaspiandProfessor AvishaiMandelbaumfortheirendlessguidanceandsupport,forgivingme thewonderfulopportunitytoworkwiththemandlearnfromthem. Ithas beenagreatprivilege,andapleasure. IwouldalsoliketothankDr. GalitYom-Tovforhervaluableguidance, ArikSenderovich,YuvalMichaelandAnatBernshteinfortheir contributiontothiswork,andgreatlythanktheSEELabteam: Ella Nadjharov,IgorGavakoandDr. ValeryTrofimovforalltheirsupportand assistance. TheGenerousFinancialHelpoftheTechnion isGratefullyAcknowledged. Contents 1 Introduction 2 2 LiteratureReview 5 2.1 MethodologiesforevaluatingIVRs . . . . . . . . . . . . . . . . . 5 2.2 DesigningandoptimizingIVRs . . . . . . . . . . . . . . . . . . 6 2.3 ModelingaCallCenterwithanIVR . . . . . . . . . . . . . . . . 7 2.4 StochasticSearchinaForest . . . . . . . . . . . . . . . . . . . . 8 2.5 PredictingSearchSuccessinSelf-ServiceSystems . . . . . . . . 9 3 ModelingCustomerFlowasaStochasticSearchonaTree 11 3.1 TheSearchModel . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.1 BuildingBlocks . . . . . . . . . . . . . . . . . . . . . . 12 3.1.2 StateSpaceandSearchProtocol . . . . . . . . . . . . . . 14 3.2 PropertiesofCandidates . . . . . . . . . . . . . . . . . . . . . . 17 3.3 ModelingtheSearchProtocolasaRootedGraph . . . . . . . . . 24 4 AdmissibleTreeCreation 30 4.1 AlgorithmDescription . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 AlgorithmFormulation . . . . . . . . . . . . . . . . . . . . . . . 34 4.3 The Equivalence between Admissible Tree and the Set of Admis- sibleCandidates . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 ProofsofLemmas5–7 . . . . . . . . . . . . . . . . . . . . . . . 41 4.5 ProofsofLemmas8–10 . . . . . . . . . . . . . . . . . . . . . . . 44 5 IndexCalculationsOvertheAdmissibleTree 50 5.1 IndexCalculations . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2 FindingOptimalSearchPolicyAlgorithm . . . . . . . . . . . . . 52 5.2.1 OptimalPolicyAlgorithm . . . . . . . . . . . . . . . . . 54 6 ExploratoryDataAnalysis 56 6.1 DataDescription . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.2 DemandforIVRServices . . . . . . . . . . . . . . . . . . . . . . 59 ii 6.3 CustomerPaths . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4 SuccessRateofIVRServices. . . . . . . . . . . . . . . . . . . . 65 6.5 FurtherSupporttoanAbandonmentHypothesis . . . . . . . . . . 72 6.5.1 CustomerExperienceEffectonTimeSpentinIVRServices 73 7 ModelImplications 79 7.1 ComparingDifferentIVRDesigns . . . . . . . . . . . . . . . . . 81 7.1.1 EstimatingtheModelParameters . . . . . . . . . . . . . 81 7.1.2 NumericalExample . . . . . . . . . . . . . . . . . . . . 86 7.2 FurtherImplications. . . . . . . . . . . . . . . . . . . . . . . . . 96 8 SummaryandDiscussion 98 8.1 FutureResearch . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 A IVRDataTable 101 B IVRLastServicesDistribution 103 C Measurements-ReadingTimeofMenuOptions 106 iii List of Figures 1.1 CallcenterwithanIVR . . . . . . . . . . . . . . . . . . . . . . . 3 3.1 Anexampleofarootedtree,representinganIVRsystem . . . . . 15 3.2 An example of a proper candidate represented by a path in GF. HereGistakenfromFigure3.1. . . . . . . . . . . . . . . . . . . 28 3.3 ApartialexampleofaProperGraphcreatedfromanIVRtreeG. 29 4.1 ExampleofavertexinF4 . . . . . . . . . . . . . . . . . . . . . 33 exc 4.2 ExampleofapartialProperGraphandexcludedpaths . . . . . . 35 4.3 ExampleofapartialAdmissibleTree . . . . . . . . . . . . . . . 37 4.4 ExamplesofProposition3,caseIV . . . . . . . . . . . . . . . . . 39 4.5 Exampleofpathsrepresentingunwantedsequences,resultingfrom addingverticesinF2 . . . . . . . . . . . . . . . . . . . . . . . 43 exc 4.6 AnexampleofLemma8 . . . . . . . . . . . . . . . . . . . . . . 46 4.7 AnexampleofLemma8 . . . . . . . . . . . . . . . . . . . . . . 47 6.1 ILBankIVRmenu . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2 ILBankHybridanimation(link) . . . . . . . . . . . . . . . . . . 62 6.3 ILBankNetworkanimation(link) . . . . . . . . . . . . . . . . . 63 6.4 RecentAccountActivityduration,N = 1,983,161 . . . . . . . . 66 6.5 AccountSummaryduration,N = 1,081,992 . . . . . . . . . . . 66 6.6 AccountActivityTodayduration,N = 353,328 . . . . . . . . . . 67 6.7 CreditCardVouchersduration,N = 608,529 . . . . . . . . . . . 67 6.8 IVRservicesduration . . . . . . . . . . . . . . . . . . . . . . . . 68 6.9 Fittingmixtureofdistributions,RecentAccountActivity . . . . . 70 6.10 Fittingmixtureofdistributions,AccountSummary . . . . . . . . 71 6.11 DistributionofthetimeintheIDphase,asafunctionofthenumber ofpriorcalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.12 Zoomin-DistributionofthetimeintheIDphase,asafunctionof thenumberofpriorcalls . . . . . . . . . . . . . . . . . . . . . . 74 6.13 Distributionofthetimein‘RecentAccountActivity’,asafunction ofthenumberofpriorcalls . . . . . . . . . . . . . . . . . . . . . 75 6.14 Distributionofthetimein‘RecentAccountActivity’,asafunction ofthenumberofpriorcalls,zoominfrom0to20seconds . . . . 76 iv 6.15 Distributionofthetimein‘RecentAccountActivity’,asafunction ofthenumberofpriorcalls,zoominfrom45to75seconds . . . . 76 6.16 Distributionofthetimein‘RecentAccountActivity’,asafunction ofthenumberofpriorvisitstotheservice,acrosscalls . . . . . . 77 6.17 Distributionofthetimein‘RecentAccountActivity’,asafunction ofthenumberofpriorvisitstotheservice,withinonecall . . . . 78 7.1 Calculatingorganizationalprofit-Simpleexample. . . . . . . . . 80 7.2 OriginalIVRdesign. Boldrepresentsserviceswithpositivereward 89 7.3 ShallowIVRdesign. Boldrepresentsserviceswithpositivereward 90 7.4 DeepIVRdesign. Boldrepresentsserviceswithpositivereward . 91 A.1 IVRdatatable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 B.1 RecentAccountActivityduration . . . . . . . . . . . . . . . . . 103 B.3 AccountSummaryduration . . . . . . . . . . . . . . . . . . . . . 104 B.5 AccountActivityTodayduration . . . . . . . . . . . . . . . . . . 104 B.7 CreditCardVouchersduration . . . . . . . . . . . . . . . . . . . 105 C.1 TimemeasurementofILBankIVRmenuoptions . . . . . . . . . 108 v List of Tables 6.1 TotalnumberofIVRcallsbytheiroutcome,May2008toJune2009 57 6.2 Total number of IVR calls, by customer type, May 2008 to June 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3 IVRservices-relativedemandfrequency,May2008toJune2009 60 6.4 Frequentpaths . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.5 Fittingmixtureofdistributions,RecentAccountActivity . . . . . 70 6.6 Fittingmixtureofdistributions,AccountSummary . . . . . . . . 71 6.7 Statistics of time in the ID phase, as a function of the number of priorcalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.1 AveragesojourntimewithinILBankIVR,May2008toJune2009 85 7.2 Average patience, by customer type, based on Khudyakov et al. [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.3 Rewardsandcosts,byAksinetal. [2] . . . . . . . . . . . . . . . 87 7.4 Laplacetransformforsuccessfulandunsuccessfulservicedurations 88 7.5 Results,optimalpathsandexpectedutility,Highpriority . . . . . 92 7.6 Results,optimalpathsandexpectedutility,Mediumpriority . . . 93 7.7 Results,optimalpathsandexpectedutility,Lowpriority . . . . . 94 7.8 Numericalexample-averagenumberofrelevantcallsbycustomer type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.9 Organizationalrevenue . . . . . . . . . . . . . . . . . . . . . . . 95 vi Glossary Abbreviation FullForm IVR InteractiveVoiceResponse EDA ExploratoryDataAnalysis Notation1 Explanation G = (V,E) Arootedtree. M Thesetoftreeleaves. s TherootvertexofG = (V,E). A(i) Thesetofallimmediatesuccessorsofvertexi. pre(i) Theimmediatepredecessorofvertexi. dep(i) Depthoftheuniquepathleadingfromtherootstovertexi. Γ(i) Thesub-treespanningfromvertexi. M Thesetofleavesinthesub-treespanningfromvertexi. Γ(i) c Costperunitoftime. τ ∼ exp(θ) Customerpatience. P Successprobabilityofvertexi. i r Rewardearnedfromasuccessfulvisitatvertexi. i t (i) Timespentinvertexigivenasuccessfulvisit. ser t (i) Timespentinvertexigivenanunsuccessfulvisit. F T Timespentinvertexi. i N(j) The number of times that option (vertex) j was previously ex- plored. N(j) t Theexplorationtimeofedgee = (i,j) ∈ E, giventhatoptionj i,j inmenuiwaspreviouslyexploredN(j)times. Place (j) Theplaceofoptionj inmenui. i l Theleftmostsonofvertexi. i N Avectorrepresentingthenumberofrepeatedexplorationsofeach vertex. R∗(v) Theexpectedutilityofthetreespanningfromvertexv. R∗,v Theindexofedge(u,v). u L (s) TheLaplacetransformofX. X 1Listedhereareonlynotationswhichappearinmorethanonechapter.Therestareexplainedin theirrelevantchapter. vii Abstract Callcentersplayaprominentroleintoday’seconomy. Theyserveasthemain customer contact channel in various enterprises, which makes them highly labor- intensive operations. Thus, call centers look for means to reduce the number of agents handling calls, and trying to do so without degrading service level. Inter- active Voice Response (IVR) systems are presently one of the main self-service channels employed by call centers. They are used as means to reduce operating expensesderivedfromagentemploymentcosts. The goal of our research is to improve and enhance IVR systems, aiming to create a body of knowledge that will generalize to other self-service systems. We model customers flow within an IVR system as a stochastic search in a directed tree. ThesearchgoalistofindtheoptimalpathontheIVRtree,whichwillresult in maximal expected discounted utility for customers. We show that a calculable index can be assigned to each feasible option, and the optimal policy is to choose theoptionwiththehighestindexateachstage. OurmodelbuildingblockswerecreatedthroughanExploratoryDataAnalysis (EDA) of real IVR transactions, in a call center of a large Israeli bank. The EDA revealed interesting phenomena regarding customer abandonments and learning withintheIVR. OurworkenablesthecomparisonbetweenalternativeIVRdesigns,bothfrom the customer and the enterprise point of view. This complements related research inotherfields,suchasHuman-Factor-EngineeringandTelecommunication. The model for IVR systems that we developed can easily be implemented to otherself-servicesystemssuchasInternetwebsiteswhichhavebecomeprevalent. 1 Chapter 1 Introduction Call centers play a prominent role in today’s economy. Indeed, they serve as the main customer contact channel in various enterprises [1], public or private, product-based or service-based. Call centers are also highly labor-intensive; they employ sometimes hundreds, or even thousands of Customer Service Representa- tives(CSRsorAgents)tohandleincomingcalls. Typically,60%-70%oftheover- all operating expenses of call centers are derived from agent employment costs [10]. Reducing the number of agents handling calls, without degrading service level, is thus of interest and importance, and enabling customers to self-serve is one of the basic means for doing so. As customers self-serve, the agent workload isbeingreduced,andlessagentsarerequiredinordertomaintainacertainservice level. Interactive Voice Response (IVR) systems, also known as Voice Response Units (VRU), are one of the main self-service channels [18], along with Internet websitesanddesignatedsmart-phoneapplications. IVR systems, if properly designed, can increase customer satisfaction and loyalty, cut staffing costs and increase revenue by extending business hours and market reach [3]. Poorly designed IVR systems, on the other hand, will cause the oppositeeffectandleadtodissatisfiedcustomers,increasedcallvolumeandmight even increase agent turnover, as agents would serve frustrated customers [7]. A PurdueUniversitystudyshowedthatmorethan90%ofUSconsumersareforming their image on a certain company based on their experience with its call center. Furthermore, more than 60% stopped using the products of a company in which they had a negative call center experience [7]. Since the IVR system is the front gateofmostcallcenters,havinganeffective,efficient,andcustomer-friendlyIVR systemisextremelyimportant. The goal of our research is to improve and enhance IVR systems, aiming to generalizetootherself-servicesystems. Todoso,wemodelandanalyzecustomer flow within an IVR system. The model building blocks were established and in- spired by an Exploratory Data Analysis (EDA) of real IVR transactions in a call centerofalargeIsraelibank,basedonmorethanoneyearofdatawhichincludes millions of calls. The theoretical basis for our model then relies on the work of 2
Description: