ebook img

Modeling and Analyzing IVR Systems, as a Special Case of Self-services Research Thesis Nitzan PDF

119 Pages·2015·1.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling and Analyzing IVR Systems, as a Special Case of Self-services Research Thesis Nitzan

Modeling and Analyzing IVR Systems, as a Special Case of Self-services Research Thesis SubmittedinPartialFulfillmentofthe RequirementsfortheDegreeof MasterofScienceinOperationsResearchandSystemAnalysis Nitzan Carmeli SubmittedtotheSenateofthe Technion-IsraelInstituteofTechnology Sivan,5775 Haifa June10,2015 ThisResearchThesisWasDoneUndertheSupervisionof ProfessorHayaKaspiandProfessorAvishaiMandelbaumintheFacultyof IndustrialEngineeringandManagement. IwouldliketogratefullythankProfessorHayaKaspiandProfessor AvishaiMandelbaumfortheirendlessguidanceandsupport,forgivingme thewonderfulopportunitytoworkwiththemandlearnfromthem. Ithas beenagreatprivilege,andapleasure. IwouldalsoliketothankDr. GalitYom-Tovforhervaluableguidance, ArikSenderovich,YuvalMichaelandAnatBernshteinfortheir contributiontothiswork,andgreatlythanktheSEELabteam: Ella Nadjharov,IgorGavakoandDr. ValeryTrofimovforalltheirsupportand assistance. TheGenerousFinancialHelpoftheTechnion isGratefullyAcknowledged. Contents 1 Introduction 2 2 LiteratureReview 5 2.1 MethodologiesforevaluatingIVRs . . . . . . . . . . . . . . . . . 5 2.2 DesigningandoptimizingIVRs . . . . . . . . . . . . . . . . . . 6 2.3 ModelingaCallCenterwithanIVR . . . . . . . . . . . . . . . . 7 2.4 StochasticSearchinaForest . . . . . . . . . . . . . . . . . . . . 8 2.5 PredictingSearchSuccessinSelf-ServiceSystems . . . . . . . . 9 3 ModelingCustomerFlowasaStochasticSearchonaTree 11 3.1 TheSearchModel . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.1 BuildingBlocks . . . . . . . . . . . . . . . . . . . . . . 12 3.1.2 StateSpaceandSearchProtocol . . . . . . . . . . . . . . 14 3.2 PropertiesofCandidates . . . . . . . . . . . . . . . . . . . . . . 17 3.3 ModelingtheSearchProtocolasaRootedGraph . . . . . . . . . 24 4 AdmissibleTreeCreation 30 4.1 AlgorithmDescription . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 AlgorithmFormulation . . . . . . . . . . . . . . . . . . . . . . . 34 4.3 The Equivalence between Admissible Tree and the Set of Admis- sibleCandidates . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 ProofsofLemmas5–7 . . . . . . . . . . . . . . . . . . . . . . . 41 4.5 ProofsofLemmas8–10 . . . . . . . . . . . . . . . . . . . . . . . 44 5 IndexCalculationsOvertheAdmissibleTree 50 5.1 IndexCalculations . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2 FindingOptimalSearchPolicyAlgorithm . . . . . . . . . . . . . 52 5.2.1 OptimalPolicyAlgorithm . . . . . . . . . . . . . . . . . 54 6 ExploratoryDataAnalysis 56 6.1 DataDescription . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.2 DemandforIVRServices . . . . . . . . . . . . . . . . . . . . . . 59 ii 6.3 CustomerPaths . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4 SuccessRateofIVRServices. . . . . . . . . . . . . . . . . . . . 65 6.5 FurtherSupporttoanAbandonmentHypothesis . . . . . . . . . . 72 6.5.1 CustomerExperienceEffectonTimeSpentinIVRServices 73 7 ModelImplications 79 7.1 ComparingDifferentIVRDesigns . . . . . . . . . . . . . . . . . 81 7.1.1 EstimatingtheModelParameters . . . . . . . . . . . . . 81 7.1.2 NumericalExample . . . . . . . . . . . . . . . . . . . . 86 7.2 FurtherImplications. . . . . . . . . . . . . . . . . . . . . . . . . 96 8 SummaryandDiscussion 98 8.1 FutureResearch . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 A IVRDataTable 101 B IVRLastServicesDistribution 103 C Measurements-ReadingTimeofMenuOptions 106 iii List of Figures 1.1 CallcenterwithanIVR . . . . . . . . . . . . . . . . . . . . . . . 3 3.1 Anexampleofarootedtree,representinganIVRsystem . . . . . 15 3.2 An example of a proper candidate represented by a path in GF. HereGistakenfromFigure3.1. . . . . . . . . . . . . . . . . . . 28 3.3 ApartialexampleofaProperGraphcreatedfromanIVRtreeG. 29 4.1 ExampleofavertexinF4 . . . . . . . . . . . . . . . . . . . . . 33 exc 4.2 ExampleofapartialProperGraphandexcludedpaths . . . . . . 35 4.3 ExampleofapartialAdmissibleTree . . . . . . . . . . . . . . . 37 4.4 ExamplesofProposition3,caseIV . . . . . . . . . . . . . . . . . 39 4.5 Exampleofpathsrepresentingunwantedsequences,resultingfrom addingverticesinF2 . . . . . . . . . . . . . . . . . . . . . . . 43 exc 4.6 AnexampleofLemma8 . . . . . . . . . . . . . . . . . . . . . . 46 4.7 AnexampleofLemma8 . . . . . . . . . . . . . . . . . . . . . . 47 6.1 ILBankIVRmenu . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2 ILBankHybridanimation(link) . . . . . . . . . . . . . . . . . . 62 6.3 ILBankNetworkanimation(link) . . . . . . . . . . . . . . . . . 63 6.4 RecentAccountActivityduration,N = 1,983,161 . . . . . . . . 66 6.5 AccountSummaryduration,N = 1,081,992 . . . . . . . . . . . 66 6.6 AccountActivityTodayduration,N = 353,328 . . . . . . . . . . 67 6.7 CreditCardVouchersduration,N = 608,529 . . . . . . . . . . . 67 6.8 IVRservicesduration . . . . . . . . . . . . . . . . . . . . . . . . 68 6.9 Fittingmixtureofdistributions,RecentAccountActivity . . . . . 70 6.10 Fittingmixtureofdistributions,AccountSummary . . . . . . . . 71 6.11 DistributionofthetimeintheIDphase,asafunctionofthenumber ofpriorcalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.12 Zoomin-DistributionofthetimeintheIDphase,asafunctionof thenumberofpriorcalls . . . . . . . . . . . . . . . . . . . . . . 74 6.13 Distributionofthetimein‘RecentAccountActivity’,asafunction ofthenumberofpriorcalls . . . . . . . . . . . . . . . . . . . . . 75 6.14 Distributionofthetimein‘RecentAccountActivity’,asafunction ofthenumberofpriorcalls,zoominfrom0to20seconds . . . . 76 iv 6.15 Distributionofthetimein‘RecentAccountActivity’,asafunction ofthenumberofpriorcalls,zoominfrom45to75seconds . . . . 76 6.16 Distributionofthetimein‘RecentAccountActivity’,asafunction ofthenumberofpriorvisitstotheservice,acrosscalls . . . . . . 77 6.17 Distributionofthetimein‘RecentAccountActivity’,asafunction ofthenumberofpriorvisitstotheservice,withinonecall . . . . 78 7.1 Calculatingorganizationalprofit-Simpleexample. . . . . . . . . 80 7.2 OriginalIVRdesign. Boldrepresentsserviceswithpositivereward 89 7.3 ShallowIVRdesign. Boldrepresentsserviceswithpositivereward 90 7.4 DeepIVRdesign. Boldrepresentsserviceswithpositivereward . 91 A.1 IVRdatatable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 B.1 RecentAccountActivityduration . . . . . . . . . . . . . . . . . 103 B.3 AccountSummaryduration . . . . . . . . . . . . . . . . . . . . . 104 B.5 AccountActivityTodayduration . . . . . . . . . . . . . . . . . . 104 B.7 CreditCardVouchersduration . . . . . . . . . . . . . . . . . . . 105 C.1 TimemeasurementofILBankIVRmenuoptions . . . . . . . . . 108 v List of Tables 6.1 TotalnumberofIVRcallsbytheiroutcome,May2008toJune2009 57 6.2 Total number of IVR calls, by customer type, May 2008 to June 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3 IVRservices-relativedemandfrequency,May2008toJune2009 60 6.4 Frequentpaths . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.5 Fittingmixtureofdistributions,RecentAccountActivity . . . . . 70 6.6 Fittingmixtureofdistributions,AccountSummary . . . . . . . . 71 6.7 Statistics of time in the ID phase, as a function of the number of priorcalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.1 AveragesojourntimewithinILBankIVR,May2008toJune2009 85 7.2 Average patience, by customer type, based on Khudyakov et al. [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.3 Rewardsandcosts,byAksinetal. [2] . . . . . . . . . . . . . . . 87 7.4 Laplacetransformforsuccessfulandunsuccessfulservicedurations 88 7.5 Results,optimalpathsandexpectedutility,Highpriority . . . . . 92 7.6 Results,optimalpathsandexpectedutility,Mediumpriority . . . 93 7.7 Results,optimalpathsandexpectedutility,Lowpriority . . . . . 94 7.8 Numericalexample-averagenumberofrelevantcallsbycustomer type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.9 Organizationalrevenue . . . . . . . . . . . . . . . . . . . . . . . 95 vi Glossary Abbreviation FullForm IVR InteractiveVoiceResponse EDA ExploratoryDataAnalysis Notation1 Explanation G = (V,E) Arootedtree. M Thesetoftreeleaves. s TherootvertexofG = (V,E). A(i) Thesetofallimmediatesuccessorsofvertexi. pre(i) Theimmediatepredecessorofvertexi. dep(i) Depthoftheuniquepathleadingfromtherootstovertexi. Γ(i) Thesub-treespanningfromvertexi. M Thesetofleavesinthesub-treespanningfromvertexi. Γ(i) c Costperunitoftime. τ ∼ exp(θ) Customerpatience. P Successprobabilityofvertexi. i r Rewardearnedfromasuccessfulvisitatvertexi. i t (i) Timespentinvertexigivenasuccessfulvisit. ser t (i) Timespentinvertexigivenanunsuccessfulvisit. F T Timespentinvertexi. i N(j) The number of times that option (vertex) j was previously ex- plored. N(j) t Theexplorationtimeofedgee = (i,j) ∈ E, giventhatoptionj i,j inmenuiwaspreviouslyexploredN(j)times. Place (j) Theplaceofoptionj inmenui. i l Theleftmostsonofvertexi. i N Avectorrepresentingthenumberofrepeatedexplorationsofeach vertex. R∗(v) Theexpectedutilityofthetreespanningfromvertexv. R∗,v Theindexofedge(u,v). u L (s) TheLaplacetransformofX. X 1Listedhereareonlynotationswhichappearinmorethanonechapter.Therestareexplainedin theirrelevantchapter. vii Abstract Callcentersplayaprominentroleintoday’seconomy. Theyserveasthemain customer contact channel in various enterprises, which makes them highly labor- intensive operations. Thus, call centers look for means to reduce the number of agents handling calls, and trying to do so without degrading service level. Inter- active Voice Response (IVR) systems are presently one of the main self-service channels employed by call centers. They are used as means to reduce operating expensesderivedfromagentemploymentcosts. The goal of our research is to improve and enhance IVR systems, aiming to create a body of knowledge that will generalize to other self-service systems. We model customers flow within an IVR system as a stochastic search in a directed tree. ThesearchgoalistofindtheoptimalpathontheIVRtree,whichwillresult in maximal expected discounted utility for customers. We show that a calculable index can be assigned to each feasible option, and the optimal policy is to choose theoptionwiththehighestindexateachstage. OurmodelbuildingblockswerecreatedthroughanExploratoryDataAnalysis (EDA) of real IVR transactions, in a call center of a large Israeli bank. The EDA revealed interesting phenomena regarding customer abandonments and learning withintheIVR. OurworkenablesthecomparisonbetweenalternativeIVRdesigns,bothfrom the customer and the enterprise point of view. This complements related research inotherfields,suchasHuman-Factor-EngineeringandTelecommunication. The model for IVR systems that we developed can easily be implemented to otherself-servicesystemssuchasInternetwebsiteswhichhavebecomeprevalent. 1 Chapter 1 Introduction Call centers play a prominent role in today’s economy. Indeed, they serve as the main customer contact channel in various enterprises [1], public or private, product-based or service-based. Call centers are also highly labor-intensive; they employ sometimes hundreds, or even thousands of Customer Service Representa- tives(CSRsorAgents)tohandleincomingcalls. Typically,60%-70%oftheover- all operating expenses of call centers are derived from agent employment costs [10]. Reducing the number of agents handling calls, without degrading service level, is thus of interest and importance, and enabling customers to self-serve is one of the basic means for doing so. As customers self-serve, the agent workload isbeingreduced,andlessagentsarerequiredinordertomaintainacertainservice level. Interactive Voice Response (IVR) systems, also known as Voice Response Units (VRU), are one of the main self-service channels [18], along with Internet websitesanddesignatedsmart-phoneapplications. IVR systems, if properly designed, can increase customer satisfaction and loyalty, cut staffing costs and increase revenue by extending business hours and market reach [3]. Poorly designed IVR systems, on the other hand, will cause the oppositeeffectandleadtodissatisfiedcustomers,increasedcallvolumeandmight even increase agent turnover, as agents would serve frustrated customers [7]. A PurdueUniversitystudyshowedthatmorethan90%ofUSconsumersareforming their image on a certain company based on their experience with its call center. Furthermore, more than 60% stopped using the products of a company in which they had a negative call center experience [7]. Since the IVR system is the front gateofmostcallcenters,havinganeffective,efficient,andcustomer-friendlyIVR systemisextremelyimportant. The goal of our research is to improve and enhance IVR systems, aiming to generalizetootherself-servicesystems. Todoso,wemodelandanalyzecustomer flow within an IVR system. The model building blocks were established and in- spired by an Exploratory Data Analysis (EDA) of real IVR transactions in a call centerofalargeIsraelibank,basedonmorethanoneyearofdatawhichincludes millions of calls. The theoretical basis for our model then relies on the work of 2

Description:
Thus, call centers look for means to reduce the number of agents handling Our work enables the comparison between alternative IVR designs, both from Interactive Voice Response (IVR) systems, also known as Voice Response ac.il/serveng/References/CCA-Patience.pdf. 66(3):215–237.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.