Modeling Analysis of Different Renewable Fuels in an Anode Supported SOFC Andersson, Martin; Paradis, Hedvig; Yuan, Jinliang; Sundén, Bengt Published in: Journal of Fuel Cell Science and Technology DOI: 10.1115/1.4002618 2011 Link to publication Citation for published version (APA): Andersson, M., Paradis, H., Yuan, J., & Sundén, B. (2011). Modeling Analysis of Different Renewable Fuels in an Anode Supported SOFC. Journal of Fuel Cell Science and Technology, 8(3). https://doi.org/10.1115/1.4002618 Total number of authors: 4 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Download date: 10. Feb. 2023 Appendix to Dissertation: Solid Oxide Fuel Cell Modeling at the Cell Scale - Focusing on Species, Heat, Charge and Momentum Transport as well as the Reaction Kinetics and Effects by Martin Andersson, Department of Energy Science, Lund University, 2011, ISBN 978-91-7473-180-4. Paper III This paper has been published in: ASME J. Fuel Cell Science and Technology, Vol. 8, 031013, 2011. © 2011 ASME. Modeling Analysis of Different Renewable Fuels in an Anode Supported SOFC MartinAndersson Itisexpectedthatfuelcellswillplayasignificantroleinafuturesustainableenergy e-mail: [email protected] systemduetotheirhighenergyefficiencyandpossibilitytouseasrenewablefuels.Fuels, suchasbiogas,canbeproducedlocallyclosetothecustomers.Theimprovementforfuel HedvigParadis cellsduringthepastyearshasbeenfast,butthetechnologyisstillintheearlyphasesof development;however,thepotentialisenormous.Acomputationalfluiddynamics(CFD) JinliangYuan approach(COMSOLMULTIPHYSICS)isemployedtoinvestigateeffectsofdifferentfuelssuch as biogas, prereformed methanol, ethanol, and natural gas. The effects of fuel inlet BengtSundén composition and temperature are studied in terms of temperature distribution, molar fractiondistribution,andreformingreactionrateswithinasingecellforanintermediate DepartmentofEnergySciences, temperaturesolidoxidefuelcell.Thedevelopedmodelisbasedonthegoverningequa- FacultyofEngineering, tions of heat, mass, and momentum transport, which are solved together with global LundUniversity, reforming reaction kinetics. The result shows that the heat generation within the cell Box118, dependsmainlyontheinitialfuelcompositionandtheinlettemperature.Thismeansthat 22100Lund,Sweden the choice of internal or external reforming has a significant effect on the operating performance.Theanodestructureandcatalyticcharacteristichaveamajorimpacton the reforming reaction rates and also on the cell performance. It is concluded that biogas,methanol,andethanolaresuitablefuelsinasolidoxidefuelcellsystem,while morecomplexfuelsneedtobeexternallyreformed. (cid:2)DOI:10.1115/1.4002618(cid:3) Keywords: SOFC,modeling,biogas,methanol,ethanol,naturalgas,reforming,COMSOL MULTIPHYSICS 1 IntroductionandProblemStatement withtheelectrochemicalreactionswithintheanode.Intheindi- Fuelcells(cid:4)FCs(cid:5)arepromisingduetoitsenvironmentaladvan- raepcpteainrteinrnaalrerefoformrmeirng(cid:4)w(cid:4)iItIhRin(cid:5)tahpeprcoealcl(cid:5)h,inthcelorseefocromnitnagctrweaitchtiothnes tages with higher efficiency and lower emissions of SO, NO, x x anodewheretheexothermicelectrochemicalreactionstakeplace. andCO2thanconventionalpowergeneration(cid:2)1(cid:3).Thesolidoxide TheIRreactionsdecreasetherequirementforcellcooling(cid:4)less fuel cell (cid:4)SOFC(cid:5) works at a high temperature such as surplusofair(cid:5).Lesssteamisneededandfinally,itoffersadvan- 600–1000°C (cid:2)2(cid:3). This allows SOFCs to operate with different tageswithrespecttothecapitalcost.Uptohalfoftheheatpro- typesoffuelsfrombothfossilandrenewablesources.Itopensup duced by the oxidation reaction could be “consumed” by the foraneasiertransitionfromconventionalpowergenerationwith steam reforming (cid:4)SR(cid:5) process. This would improve the system hydrocarbonbasedfuelstofuelcellswithpossibilityfordifferent electricalefficiency(cid:2)4,5(cid:3). fuels,especiallySOFCs.Duetotheincreasingglobalawareness It is known that the use of heavy hydrocarbons (cid:4)C(cid:2)(cid:5) can ofhowenergyusageaffectstheenvironment,theinterestofre- 4 causeconsiderablecokinganddeactivationproblemswithSOFC newableenergyhasincreased.SOFCsaregenerallymoretolerant anodecatalysts.Aprereformercanbreakdownthehydrocarbons tnoalclyon(cid:4)taasmwineallntasstehxatnerontahlelyr(cid:5)fureeflocrmellsthaenfduethlempaoksessibthileitmytionteinretesrt-- withlongercoalchainstoC1toC2moleculesplusH2andCO(cid:2)6(cid:3). ingforrenewableenergyresources(cid:2)1(cid:3).Attractivefuels,whichare Animportantpartofthesystemdesignistheheatrecovery,abig fractionoftheheatgeneratedinthecellcanbeusedforthesteam consideredinthisstudy,arebiogas,methanol,ethanol,andnatural reformingreaction(cid:2)7(cid:3). gas. The list of potential fuels for SOFC systems also includes Inthispaper,asingleintermediatetemperatureSOFCdesign, gasoline,diesel,aviationfuel,ammonia,aceticacid,formicacid, which uses externally reformed renewable fuels (cid:4)prereformed butanol,butyricacid,andbottledgas.Coalandbiomasscanbe methanolandethanolandbiogas(cid:5)isstudied.Therenewablefuels used as raw fuels in a gasification process, which takes place beforethefuelcellstack(cid:2)3(cid:3). arecomparedwithnaturalgasduetothelargequantityofinfor- mationavailableinopenliterature.Itwouldbeinterestingtoap- Theaimofthispaperistostudythepossibilityofusingrenew- plyDIRaswell;however,moreexperimentalstudiesneedtobe ablefuelsinSOFCs.ThereformingreactionsinSOFCsystems performedtoachievereliablekineticdataforNi/YSZreforming canbeconductedbothexternallyandinternally.Theexternalre- forming(cid:4)ER(cid:5),suchastheprereformerinaSOFCsystem,means ofmethanolandethanol.TheapproachwithIIRisnotyetvery welldevelopedbutitcanbeaninterestingdesigninthefuture. thatthereformerisplacedoutsidethecell,whichispossiblefor alltypesoffuelcells.Theinternalreforming(cid:4)IR(cid:5)meansthatthe 1.1 ElectrochemicalandReformingReactions.Theglobal reforming reactions occur within the cell. In the direct internal reactionsthattakeplacewithinaSOFCusinghydrogen,carbon reforming(cid:4)DIR(cid:5)approach,thereformingprocessesoccurtogether monoxide, and methane as fuel can be described as: oxygen is reducedinthecathode(cid:4)Eq.(cid:4)1(cid:5)(cid:5).Theoxygenionsaretransported through the electrolyte, but the electrons are prevented to pass ContributedbytheAdvancedEnergySystemsDivisionofASMEforpublication through the electrolyte. The electrochemical reactions (cid:4)Eqs. (cid:4)2(cid:5) intheJOURNALOFFUELCELLSCIENCEANDTECHNOLOGY.ManuscriptreceivedAugust and (cid:4)3(cid:5)(cid:5) take place in the anodic three-phase boundary (cid:4)TPB(cid:5). 12,2010;finalmanuscriptreceivedAugust16,2010;publishedonlineMarch1, 2011.Editor:NigelM.Sammes. Methaneneedstobereformed(cid:4)Eq.(cid:4)4(cid:5)(cid:5)beforetheelectrochemi- JournalofFuelCellScienceandTechnology JUNE2011,Vol.8 / 031013-1 Copyright©2011byASME Downloaded 02 Mar 2011 to 130.235.81.195. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm cal reactions. Carbon monoxide can be oxidized in the electro- Table 1 Enthalpy change of reforming reaction for different chemicalreaction(cid:4)Eq.(cid:4)3(cid:5)(cid:5)butcanalsoreactwithwater(cid:4)Eq.(cid:4)5(cid:5)(cid:5). fuelssuitableforSOFCs†10‡ Thereactionsdescribedherearetheoverallones,moredetailed riseancotitopnamrtiecciphaatniinsgmisnctahnebeelefcoturoncdhienmRiceafl.r(cid:2)e8a(cid:3)c.tNioontseathtatthemaenthoadniec Fuel (cid:4)k(cid:6)J/(cid:3)mhorl(cid:5) (cid:4)kJ/mogl(cid:6)ep(cid:3)neehrrram/tneoHdl2e(cid:5)ofH2 TPB, it is catalytically converted within the anode into carbon monoxideandhydrogen,whichareusedasfuelsintheelectro- Methane (cid:4)165 (cid:4)41.2 chemicalreactions(cid:2)9(cid:3), Methanol (cid:4)49.4 (cid:4)16.5 O2+4e−⇔2O2− (cid:4)1(cid:5) EDtMhaEnol (cid:4)(cid:4)117231 (cid:4)(cid:4)2280..82 H +O2−⇔HO+2e− (cid:4)2(cid:5) 2 2 CO+O2−⇔CO +2e− (cid:4)3(cid:5) 2 havetobeanissue,whentheyareproducedinarenewableman- CH +HO⇔3H +CO (cid:4)4(cid:5) ner,becauseitwillleadtothattheneteffectontheemissionswill 4 2 2 bezero(cid:2)12(cid:3). CO+HO⇔H +CO (cid:4)5(cid:5) Methanolisinterestingduetoitsreadyavailability,highspe- 2 2 2 cificenergy,andeasystorageandtransportation.Ethanolisalsoa The net reaction of methanol, ethanol, and dimethyl ether promisingcandidatesinceitisreadilyproducedfromrenewable (cid:4)DME(cid:5)tohydrogenandcarbonmonoxidearedescribedinEqs. resources.Whencomparingthese,ethanolhasextraadvantagesin (cid:4)6(cid:5)–(cid:4)8(cid:5),respectively.Theproducedcarbonmonoxidereactsthen terms of power density, nontoxicity, transportation, and storage. furtherwithsteamtohydrogenandcarbondioxidebythewater- However,becauseofincompleteoxidization,theethanolprocess- gasshiftreaction,Eq.(cid:4)5(cid:5)(cid:2)10(cid:3), ing reaction consists of a more complicated multistep reaction CHOH⇔2H +CO (cid:4)6(cid:5) mechanismandinvolvesanumberofadsorbedintermediatesand 3 2 by-products.Thechemicalformulaforbiomassisgenerallywrit- CHOH+HO⇔4H +2CO (cid:4)7(cid:5) tenasCxHyOz.Thecoefficientsofx,y,andzcanbecalculatedfor 2 5 2 2 eachbiomass.Biomasscanbeconvertedintobiogas,usuallyby CH3OCH3+H2O⇔4H2+2CO (cid:4)8(cid:5) asinsatsermobaiicnlbyreoafkmdoewthnanienathnedacbasrbenocnedoiofxoidxeyg(cid:2)e7n(cid:3)..Thebiogascon- Thesteamreformingreactionratesforsimplefuelsispresentedin SteamreformingofvariousfuelsavailableinSOFCs,suchas Eqs.(cid:4)4(cid:5)–(cid:4)8(cid:5).Alsomorecomplexhydrocarbons(cid:4)fromrenewable methane(cid:4)biogasandnaturalgas(cid:5),methanol,DME,andethanol, or fossil origin(cid:5) can be used as raw energy within a fuel cell consumesheat.Theenthalpychangeofthereactionforthemen- systemforhydrogenproduction.Externalreformingisnecessary tionedfuelscanbeseeninTable1.Ethanolconsumesthemost duetorelativelylongcarbonchains.Theoverallhydrocarbonre- heatpermoleoffuel.However,whenconsideringthatreforming formingreactioncanbewrittenas(cid:2)7(cid:3) ofthedifferentfuelsgenerateadifferentamountofhydrogen(cid:4)to CH O +yO +2·(cid:4)n−y−0.5·z(cid:5)·HO⇔nCO +2 beusedintheelectrochemicalreactions(cid:5),themostheatpermole n m z 2 2 2 ofhydrogengeneratedisrequiredbythereformingofmethane. ·(cid:4)n−y−0.5·z+0.25·m(cid:5)·H (cid:4)9(cid:5) Globally,alltheheatneededforthereformingreactionsisgener- 2 Equation (cid:4)9(cid:5) states the ideal reforming reaction where the only atedwithinthecell,thankstotheelectrochemicalreactions,anda higherefficiencycanbeachievedwiththementionedrenewable productsarepurehydrogenandcarbondioxide.Inrealitywithina fuelscomparedwithpurehydrogen.Itshouldbementionedthat fuel cell reformer, there are three ordinary reforming reactions: SR, partial oxidation (cid:4)POX(cid:5), and autothermal reforming (cid:4)ATR(cid:5). thetemperaturecandecreaseclosetotheinletifthesteamreform- SR, Eq. (cid:4)10(cid:5), is effective for hydrogen production and largely ingreactionrateistoohigh. exothermic.InPOX,Eq.(cid:4)11(cid:5),thefuelispartiallyburnedwitha 1.3 Challenges With Renewable Fuels. The direct use of substoichiometric amount of air. An ATR system contains one hydrocarbonfuelscanleadtothecatalyst’srapiddeactivationby reactorwithSRandonewithPOX(cid:2)7(cid:3). carbon formation on a traditional SOFC anode and also sulfur CH O +2·(cid:4)n−z(cid:5)·HO⇔nCO+2·(cid:4)n−z+0.5·m(cid:5)·H poisoning (cid:2)13(cid:3).Ahigh inlet temperature along with internal re- n m z 2 2 formingofahydrocarboncancauseahightemperaturegradient (cid:4)10(cid:5) andtensionswithintheanodeclosetothefuelinletduetothefast steamreformingreactionrate.Thisproblemcanbereducedifthe CnHmOz+0.5·(cid:4)n−z(cid:5)·O2⇔nCO+0.5·m·H2 (cid:4)11(cid:5) fuelinlettemperatureislowered,partoftheanodegasisrecycled, anodereformingactivityisreduced,orif(cid:4)partial(cid:5)prereformingis Itshouldbenotedthatifsufficientamountofheatisavailable,SR employed(cid:2)5(cid:3). givesmosthydrogenperamountofrawfuel;however,thecon- Theprobabilityforcarbondepositionsdependsonthesteam- version of complex hydrocarbons may be more difficult, com- paredwithPOX(cid:2)7(cid:3). to-carbonratioandoperatingtemperature.Ithasbeenwellestab- lishedthatthekeyreactionsoccuroverasurfacelayerofnickel 1.2 RenewableFuels.Usingalternativefuels(cid:4)comparedwith particles.Ifalayerofcarbonisallowedtobuildupandattachto hydrogen(cid:5)givesSOFCsamajoradvantagebecausepurehydrogen anickelcrystalliterapidcatalystbreakdowncanoccurduetothe ishighlyflammableandvolatile,whichmakesitproblematicto graphiteformation.Itshouldbenotedthathydrocarbonswitha handle. Also, hydrogen has low density, which makes storing longer carbon chain than methane have a higher propensity for costly.Itshouldalsobementionedthatpurehydrogenisexpen- carbondeposition(cid:2)5,14(cid:3).Itisconcludedthatmethaneandmetha- sive to obtain since it has to be extracted from another source, nolwithappropriatesteamcontentcanbedirectlyfedtoNi/YSZ mostcommonlynaturalgas(cid:2)11(cid:3). anodewithouttheproblemofcarbonformation(cid:2)6(cid:3).Forfuelswith Likehydrogen,methanolandethanolareusefulenergycarriers alongercarbonchain,aprereformer(cid:4)withacatalystlesssensitive ratherthanprimaryfuels(cid:4)naturalgas,coal,etc.(cid:5)throughgasifica- tocarbonformationthanNi/YSZ(cid:5)shouldbeincludedinthefuel tionorchemicalsynthesisreformingprocesses.Thecharacteris- cellsystem. ticsofthesealcohol-basedfuelsareverysimilartoconventional Sulfurneedstoberemovedbeforethefuelentersintothecell liquid fuels (cid:4)propane, butane, and diesel(cid:5) and can be readily toavoiddegradationwithinthecell.Variousmethodscanbeap- handled,stored,andtransported(cid:2)10(cid:3).TheCO emissionsdonot plied,suchashightemperaturedesulfurization,whereorganicsul- 2 031013-2 / Vol.8,JUNE2011 TransactionsoftheASME Downloaded 02 Mar 2011 to 130.235.81.195. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm (cid:7) (cid:8) (cid:9) (cid:12) Table2 Cellgeometry†2‡ (cid:8) 1 +(cid:9)·(cid:2)u u−(cid:2) −p+ (cid:10)T−(cid:4)(cid:10)(cid:5)(cid:4)(cid:2)u(cid:5)(cid:11) =F (cid:4)12(cid:5) (cid:5) (cid:7) Cellcomponent Thickness p Celllength 0.1m whereFisthevolumeforcevector,(cid:5)isthepermeabilityofthe Fuelchannelheight 1mm porousmedium,(cid:7) istheporosity,(cid:8)isthedynamicviscosity,uis p Airchannelheight 1mm thevelocityvector,andT istheviscousstresstensor(cid:4)T=v(cid:4)(cid:2)u Anodethickness 500 (cid:8)m +(cid:4)(cid:2)u(cid:5)T(cid:5)(cid:5).(cid:10)isthesecondviscosityandforgases;itisnormally Cathodethickness 50 (cid:8)m assumedas(cid:10)=−2(cid:8)/3(cid:2)18(cid:3).Thedensitiesandviscositiesforthe Electrolytethickness 20 (cid:8)m Interconnectthickness 500 (cid:8)m ppaerrtaitcuirpea,tiansgdgeasscerisbaerdeidneRpeenfsd.en(cid:2)2t,1o1n(cid:3).loTchaelcgoansciennltertatvioelnocaintidesteamre- definedasalaminarflowprofile.Theoutletisdefinedaspressure (cid:4)=1 atm(cid:5). fur compounds are reduced to hydrogen sulfite and the corre- 2.2 MassTransport.TheMaxwell–Stefanequationformass spondinghydrocarbon,passingacobaltormolybdenumcatalyst diffusion and convection is used to describe the mass transport supported on alumina. Adsorption methods can be applied for phenomenaforthegasesinsidethefuelcell(cid:2)17(cid:3).TheMaxwell– smallerSOFCsystems(cid:2)3(cid:3). Stefan equation is solved for the fuel and air channels and the Forfuelcellsystems,itisimportanttoconsideratwhatphase electrodes, the fuel operates as the system can need extra equipments to (cid:7) (cid:8) hfuaenldcleeltlhgeefnueerlalsltyortiankgesanudppqruoicteesasilnogt.oTfhspeaecqeuaipnmdewnetibgehstiadnedstfhoer (cid:2) −(cid:9)·w(cid:6)n D¯ ·(cid:2)x(cid:4)x −w(cid:5)(cid:2)p·u−DT·(cid:2)T +(cid:9)·u·(cid:2)w =S somefuelsthisbecomesevenmoreprominentwhenfuelstoring i ij j j j p i T j i spaceincreases.Methane,DME,ammonia,andbiogasarevapors (cid:4)13(cid:5) at 1 bar and at 253–293 K. Methanol, ethanol, and diesel are liquidsundertheseconditions.Thevaporsneedtobepressurized where w is the mass fraction, x is the molar fraction, n is the tnoommiackaellythreeafsuoenlasbtolerincogsitn(cid:2)1a5c(cid:3).ommercialpossiblesizewitheco- numberofspecies,DiTisthethermaldiffusioncoefficient,andDij istheMaxwell–Stefanbinarydiffusioncoefficient.S,sourceterm i bychemicalreactions,isonlydefinedfortheinternalreforming 2 MathematicalModel reactions because the electrochemical reactions are assumed to takeplaceattheinterfacesbetweentheelectrolyteandelectrodes. Atwo-dimensionalmodelforananode-supportedSOFCisde- The diffusion coefficient is dependent on temperature, as de- MveUloLTpIePdHYaSnIdCSim(cid:4)vpelresmioennt3e.d5(cid:5).inEqthueaticoonmsmfoerrcmiaolmseonfttwumar,em, aCsOsM,SaOndL sincvrioblevdedi,naRnedfs.o(cid:2)n2l,y11(cid:3)o.nOenMthaexwaierlls–iSdtee,fannitrodgifefnusainodnocxoyegfefinciaernet heattransportaresolvedsimultaneously.Thegeometryisdefined needstobecalculated.Onthefuelside,methane,water,hydro- inTable2,andasketchoftheinvestigatedcellcanbeseeninFig. 1.Notethedifferenceinscalebetweenthecelllength(cid:4)x-direction, gen, carbon monoxide, and carbon dioxide are present, and ten pairs of Maxwell–Stefan diffusion coefficient need to be calcu- asinFig.1(cid:5)andvariouscomponentthicknesses(cid:4)y-direction,asin lated.Theboundaryconditionsforthemasstransportequationare Fig.1(cid:5).Itshouldbementionedthatthemodelinthisstudyis2D definedasmassfractionforthegaschannelinlets;theoutletsare only,andtheconnectionbetweentheelectrodesandinterconnect definedasconvectiveflux(cid:2)2(cid:3). cannotbeexplicitlyobservedinthiscase. 2.3 Heat Transport. The temperature distribution is calcu- 2.1 Momentum Transport. The gases flow inside the fuel lated separately for the gas phase (cid:4)in air and fuel channels and cellcomponents,suchasintheairandfuelchannels,andinthe electrodes(cid:5)andforthesolidphase(cid:4)interconnects,electrodes,and porous electrodes. The Darcy–Brinkman equation is introduced electrolyte(cid:5).Heatistransferredbetweenthephasesatthechannel andsolvedforthegasflowinthefuelandairchannelsandinthe wallsandintheporouselectrodes.Thegeneralheatconduction porous materials simultaneously (cid:2)16,17(cid:3). The Darcy–Brinkman equationisusedtocalculatethetemperaturedistributionforthe equation (cid:4)Eq. (cid:4)12(cid:5)(cid:5) is transformed into the standard Navier– solidmaterials,i.e.,electrolyte,interconnect,andelectrodes(cid:2)17(cid:3), Stokes equation when (cid:4)(cid:5)→(cid:6)(cid:5) and (cid:4)(cid:7) =1(cid:5) and into the Darcy p equationas(cid:4)Da→0(cid:5).DaistheDarcynumber.Thederivationof the Navier–Stokes and Darcy equations from the Darcy– (cid:2)(cid:4)−ks·(cid:2)Ts(cid:5)=Qs (cid:4)14(cid:5) BrinkmanequationcanbefoundinRef.(cid:2)16(cid:3), wherek isthethermalconductivityofthesolids,T isthesolid s s temperature,andQ istheheatsource(cid:4)heattransferbetweenthe s solidandgasphasesandheatgenerationduetoOhmicpolariza- tion(cid:5).NotethatheatgeneratedduetoOhmicpolarizationisas- sumedtoenterthesolidphase(cid:4)asapartofQ(cid:5),heatgeneration s duetoelectrochemicalreactions,concentrationandactivationpo- larizationaresimplifiedanddefinedasinterfaceconditions,such asforthemasstransport.Thetemperaturedistributionforthegas mixturesinthefuelandairchannelsandintheporouselectrodes iscalculatedas(cid:2)17(cid:3) (cid:2)(cid:4)−k ·(cid:2)T(cid:5)=Q −(cid:9)·c ·u·(cid:2)T (cid:4)15(cid:5) g g g g p,g g inwhichc isthegasphaseheatcapacity,T isthetemperature p,g g inthegasphase,andQ istheheattransferbetweenthegasand g solid phases. Because the Reynolds number is small, the heat transfer coefficient (cid:4)h (cid:5) in the porous electrodes (cid:4)spherical s,g,por Fig.1 Sketchofananode-supportedSOFC,nottoscale particlesareassumed(cid:5)canbecalculatedas(cid:2)19(cid:3) JournalofFuelCellScienceandTechnology JUNE2011,Vol.8 / 031013-3 Downloaded 02 Mar 2011 to 130.235.81.195. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm (cid:7) (cid:8) 2·k T·(cid:3)S h = g (cid:4)16(cid:5) q =q +q =−i· r+(cid:11) +(cid:11) (cid:4)22(cid:5) s,g,por d 0 r losses n ·F act,e conc,e p e wduhcetrievidtyp.iTshteheheealetcttrraondsefeprarbteictwleedeniamtheetegraasnadnkdgsioslitdhepghaassecodne-- wfahceerecoqn0diistiothne(cid:5),hqeartisgetnheerahteedatatgethneeriantteedrfaincseid(cid:4)espethceificeedllasduinetetro- pendsonthetemperaturedifferenceandtheparticleareatovol- changeinenthalpy,andqlossesistheheatgeneratedduetopoten- umeratioas(cid:2)20(cid:3) tial losses inside the cell.The amount of heat generated due to electrochemicalreactionscanbecalculatedas(cid:2)28(cid:3) Q =h ·(cid:4)T −T(cid:5)=AV·h ·(cid:4)T −T(cid:5) (cid:4)17(cid:5) g v g s s,g,por g s T·i ianrewahtoichvohluvmisethraetivoo,lwumhiechheisatutsreadnsffoerrhceoaetffitrcainensftearnbdetAwVeeinstthhee qr=−T·(cid:3)Sr·n˙=−(cid:3)SrneF (cid:4)23(cid:5) solidandgasphase.Notethatthesurfacetovolumeratioforheat i transferishigherthanthatforchemicalreactionsbecausenotall n˙= (cid:4)24(cid:5) nF the available surface is covered with active nickel catalyst.The e heattransferareatovolumeratioequalstothematerialspecific wheren˙isthemolarfluxdensity(cid:4)mol/(cid:4)m2s(cid:5)(cid:5)and(cid:3)S isentropy r availablearea(cid:4)areaperweight(cid:5)timesthedensity.Theheatcapac- change of reaction (cid:4)−50.2 J/(cid:4)Kmol(cid:5)(cid:5), calculated from data in ityandthethermalconductivityinthegasphasedependonthe Ref.(cid:2)29(cid:3).Theheatgenerationduetoactivationandconcentration temperature and the concentration, as described in Refs. (cid:2)2,11(cid:3). polarizationscanbecalculatedas(cid:2)27,30(cid:3) TheheatingduetoOhmicpolarizationisdescribedinSec.2.4. Theinletgastemperatureisdefinedbytheoperatingtempera- qlosses=−i·(cid:4)(cid:11)act,e+(cid:11)conc,e(cid:5) (cid:4)25(cid:5) ture(cid:4)1000K(cid:5),andtheoutletoneisdefinedasaconvectiveflux. Theconcentrationpolarizationsduetoconcentrationdifferences Theboundariesatthetopandatthebottomofthecellaredefined insidethecellarespecifiedas(cid:2)(cid:7)26(cid:3) (cid:8) bysymmetriesbecauseitisassumedthatthecellissurroundedby othercellswiththesametemperaturedistribution.Theheatflux (cid:11) = RT ln pH2O,TPB·pH2,b (cid:4)26(cid:5) betweentheelectrodes/interconnectandgaschannelsarespecified conc,a n F p ·p attwochannelwalls,locatedoppositetoeachother,withacon- e,a H(cid:7)2,TPB H(cid:8)2O,b stantNusseltnumber(cid:4)4.094(cid:5)fromRef.(cid:2)21(cid:3),basedonthefully developedflowforarectangularduct(cid:4)aspectratiois1forboth (cid:11) = RT ln pO2,b (cid:4)27(cid:5) channels(cid:5).Thecellisalsoheatedduetochangeinentropyinthe conc,c ne,cF pO2,TPB electrochemicalreactionsandconcentrationandactivationpolar- wherep standsforthepartialpressureattheboundaryTPB izations,asdescribedinSec.2.4. i,TPB andp isthepartialpressureattheinterfacebetweengaschannel i,b 2.4 ElectrochemicalReactions.Twoapproachesfordefining and electrode. Chemical reactions involve energy barriers (cid:4)i.e., theelectrochemicalreactionscanbefoundinliterature,eitheras activationpolarization(cid:5),whichmustbeovercomebythereacting source terms in the governing equations (cid:2)22,23(cid:3) or as interface species.Theactivationpolarizationcanbeconsideredastheextra conditionsdefinedattheelectrode/electrolyteinterfaces(cid:2)24,25(cid:3). potential needed to overcome the energy barrier of the rate- Thelaterapproachisemployedinthisstudybecausethethickness determiningsteptoavaluethatthereactionproceedsatadesired oftheactivelayerissufficientlythin,comparedwiththethickness rate(cid:2)30(cid:3), (cid:7) (cid:8) of the electrode (cid:2)24,25(cid:3). The charge transfer equations are not 2RT i solved in this study; however, the temperature effects from (cid:11) = sinh−1 e (cid:4)28(cid:5) Ohmic, concentration, and activation polarization losses are in- act,e neF 2·i0,e cludedintheequationsforheattransport. (cid:7) (cid:8) cheBmoitchahlyrdearocgtieonnsanwditcharobxoyngemnoinoonxsid(cid:4)Eeqcsa.n(cid:4)2p(cid:5)aratnicdip(cid:4)a3t(cid:5)e(cid:5).inTheeleeclteroc-- i0,e=nRTFk(cid:2)eexp −RETe (cid:4)29(cid:5) e trochemical oxidation of hydrogen is several times higher than where i is the exchange current density. The pre-exponential thatofcarbonmonoxidewhilethewater-gasshiftreactionisrela- 0,e tivelyfast(cid:2)23(cid:3).Thecontributionofoxidationofcarbonmonoxide factor (cid:4)k(cid:2)(cid:5) is 2.35(cid:14)1011 (cid:15)−1m−2 for the cathode and 6.54 hasbeenneglectedinthisstudy.Thecellaveragecurrentdensity (cid:14)1011 (cid:15)−1m−2fortheanode,respectively.Theactivationenergy inthisstudyisspecifiedas0.3 A/cm2. (cid:4)E(cid:5)is137kJ/molforthecathodeand140kJ/molfortheanode Ohmicpolarizationoccursduetoresistanceoftheflowofions (cid:2)26(cid:3). intheelectrolyteandelectricalresistanceintheelectrodes.The 2.5 InternalReformingReactions.Sufficientactivityforthe electrodesandelectrolyteareheatedduetothiseffect(cid:2)26,27(cid:3), reformingreactionsisprovidedinsidetheSOFCanode(cid:2)31(cid:3).Re- Q =i·(cid:11)ohm (cid:4)18(cid:5) asicotinondekpiennedtiecnstforonmthReeafc.t(cid:2)i3v2e(cid:3)afroeratthoevsotelaummererfaotriom(cid:5)inagnd(cid:4)afnroemxpRreesf-. ohm (cid:12) (cid:2)33(cid:3) for the water-gas shift reactions are used to calculate the reaction rates in this work. Other global kinetic models can be (cid:11) =R ·i (cid:4)19(cid:5) found in Refs. (cid:2)34,35(cid:3). The catalytic steam reforming reaction ohm ohm occurs at the surface of the nickel catalyst and is specified as Rohm=(cid:13)(cid:12)a+(cid:13)(cid:12)el+(cid:13)(cid:12)c (cid:4)20(cid:5) (cid:2)32,36(cid:3) (cid:7) (cid:7)−225(cid:14)103(cid:8) a el c r =AV· 943exp ·p p where (cid:12)is the component thickness and Rohm is the electrolyte r (cid:7)R·T (cid:8) CH4 (cid:8)H2O area-specificOhmicresistance.Theelectronic/ionicconductivities −1937 (cid:4)(cid:13)(cid:5)arecalculatedasdescribedinRef.(cid:2)26(cid:3). −7.74(cid:14)10−9exp R·T ·pCOpH32 (cid:4)30(cid:5) Heatgeneratedduetoelectrochemicalreactionsandduetopo- larization losses are, as previously described, defined at the wherepiisthepartialpressureofgasspeciesi,Tisthetempera- electrodes/electrolyteinterfaces, ture,r isthereactionrate,andAV istheactiveareatovolume ratio.Equation(cid:4)30(cid:5)originatesfromexperimentsperformedatthe −n·(cid:4)−k(cid:2)T(cid:5)− =q (cid:4)21(cid:5) Research Center Jülish, and the anode material consists of Ni- 0 031013-4 / Vol.8,JUNE2011 TransactionsoftheASME Downloaded 02 Mar 2011 to 130.235.81.195. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm 8YSZsubstratewithastandardcompositionofCH O Ni(cid:2)36(cid:3). Table3 Inletmolarfractions n m z The range for the AV (cid:4)related to catalytic kinetic reactions(cid:5) varies in literature between 1(cid:14)105 m2/m3 (cid:2)37(cid:3) and 2.2 H2 CO CO2 CH4 H2O (cid:14)106 m2/m3(cid:2)32(cid:3)forSOFCanodes.Themeasuredspecificsur- facearea(cid:4)m2/g(cid:5)forNi/YSZmaterialdevelopedforSOFCanodes Methanol,SF=3 0.270 0.115 0.051 0.017 0.547 Methanol,SF=5 0.247 0.072 0.042 0.011 0.628 (cid:4)withaporesizeof225nm(cid:5)is70(cid:14)106 m2/m3(cid:2)38(cid:3).Notethat Ethanol,SF=3 0.359 0.114 0.030 0.112 0.385 notallthesurfacesareavailableforcatalyticreactionsduetothe Ethanol,SF=5 0.312 0.081 0.036 0.080 0.491 distribution of catalyst, nonavailable pores, and mass transfer Biogassteammixture 0.03 0 0.27 0.36 0.34 limitations among others. An AV of 2.2(cid:14)106 m2/m3, corre- 30%prereformed sponding to 3.1% of the total Ni/YSZ specific area to volume naturalgas(cid:2)11(cid:3) 0.263 0.0294 0.0436 0.171 0.493 ratio,isusedinthiswork.Thetrendforthedevelopmentduring thepastyearsisinthedirectionofemployingsmallerparticlesto getlargerAV. Thereactionrate(cid:4)Eq.(cid:4)30(cid:5)(cid:5)isoftheArrheniustype.Itconsists 5(cid:4)formethanolandethanol(cid:5)arecalculatedfromtheexperiments ofthreeparts,partialpressures,pre-exponentialfactor,andacti- performedinRef.(cid:2)6(cid:3).Aftertheprereformingofethanol,thefuel vationenergy.Thepre-exponentialfactordescribestheamountof mixturecontainssomeethyleneandetan.Tosimplifythecalcu- collisionsbetweenthemoleculeswithinthereactionandtheex- lation and due to the lack of kinetic information in considering ponential expression with the activation energy describes the reformingofethyleneandetanonNi/YSZcatalyst,theseconcen- probabilityforthereactiontooccur.Thepre-exponentialfactors trationsareassumedtobemethane.Forthecaseofbiogas,asmall dependstronglyonthepropertiesoftheanodematerialandthe fractionofhydrogenisaddedtoenableelectrochemicalreactions temperature.Theactivationenergyisbasedonthecatalyticchar- close to the inlet as well, and steam is added to avoid carbon acteristics, such as chemical composition. The large difference deposition and to be used in the reforming reactions. The fuel between the activation energies in open literature composition for 30% prereformed natural gas is defined by the (cid:2)11,32,34–36,39(cid:3) makes it probable that more parameters have InternationalEnergyAgency(cid:4)IEA(cid:5)andisfrequentlyusedinlit- significant influences on the reaction rate. To truly enhance the erature. The flow rates for the different cases are calculated to understanding of these phenomena, microscale modeling is keepthefuelutilizationbeing80%.Theflowrateofairiskept needed. constantforallcasesandtheoxygenutilizationissettobe20%. Different approaches for defining the water-gas shift reaction can be found in literature: (cid:4)1(cid:5) global reaction mechanism that 3 ResultsandDiscussion considersreactionintheanodeonly(cid:2)9,23,33(cid:3),(cid:4)2(cid:5)globalreaction Thepredictedtemperaturedistributionforthecasewithprere- mechanism that considers reaction in the anode and in the fuel formedmethanolwithinitialSFsof3and5canbeseeninFigs. channel (cid:2)32,40(cid:3), and (cid:4)3(cid:5) a more advanced reaction mechanism 2 and 3, respectively. Increased SF means a slightly decreased that includes catalytic surface reaction kinetics for integrated temperaturerise(cid:4)5Kdifferenceinthemaximumtemperaturebe- steam reforming, water-gas shift reaction, and the Boudouard tweenthesetwocases(cid:5)duetoahigherflowrateintheflowchan- mechanism(cid:2)8,41(cid:3).Basedontheglobalschemefortheanode,the nel(cid:4)tokeepthefuelutilizationto80%(cid:5).Itshouldbementioned expressionforthecatalyzedwater-gasshiftreactioninRef.(cid:2)33(cid:3) thattheflowrateintheairchannelissignificantlyhigherthanin hasbeenselectedinthisstudy: (cid:7) (cid:8) the fuel channel. The temperature difference in the y-direction p p (cid:4)Fig.4(cid:5)intheairchannelsoccursbecausetheconvectiveheatflux r =k · p p − H2 CO2 (cid:4)31(cid:5) arebiggerintheairchannel(cid:4)comparedwiththefuelchannel(cid:5)due s sf H2O CO Kps totherelativelylargerairflowrate. Therateconstant(cid:4)k (cid:5)andtheequilibriumconstant(cid:4)K (cid:5)aretem- ThetemperaturedistributionforbiogasisshowninFig.5,that perature dependentsfexpressions calculated from exppserimental forprereformedethanol(cid:4)SF=3(cid:5)isshowninFig.6,andthatfor data,asdescribedinRef.(cid:2)33(cid:3). 30%prereformednaturalgasisshowninFig.7.Thecasewith ThesourcetermsS (cid:4)implementedintheMaxwellStefanequa- biogasandnaturalgascontainsmoremethanecomparedwiththat i tionformasstransport(cid:5),duetothecatalyticalreformingreactions, ofprereformedethanolandmethanol.Ahigherfractionofmeth- aredefinedas(cid:2)23(cid:3) anemeansadecreasedtotaltemperatureriseduetotheheatcon- sumptioninthesteamreformingreaction. SH2=(cid:4)3rr+rs(cid:5)·MH2 (cid:4)32(cid:5) The developed model is also used to simulate cases with an evenhigherconcentrationofmethaneandalsoahigherinlettem- S =−r ·M (cid:4)33(cid:5) perature(cid:4)comparedwiththecasesinTable3(cid:5).Thelimitationtobe CH4 r CH4 S =(cid:4)−r −r(cid:5)·M (cid:4)34(cid:5) H2O r s H2O S =(cid:4)r −r(cid:5)·M (cid:4)35(cid:5) CO r s CO where M is the molecular weight and S is the source term of i i speciesi.Thelastspecies(cid:4)CO(cid:5)canbeobtainedbecausethesum 2 of the mass fractions equals unity. The heat generation/ consumptionduetothereformingreactionsisspecifiedin(cid:2)11(cid:3) (cid:6) Q = r ·(cid:3)h (cid:4)36(cid:5) s i i i where(cid:3)h istheenthalpychangeduetothereactionsandQ is i s theheatgenerationinthesolidphase. 2.6 CellOperatingConditions.Theinvestigationperformed inthisstudyconcernsbiogas,prereformedmethanol,ethanol,and naturalgas.TheinletmolarfractionsarespecifiedinTable3.The Fig. 2 Gas phase temperature distribution for prereformed molarfractionsbasedoninitialsteam-to-fuelratios(cid:4)SFs(cid:5)of3and methanol„SF=3… JournalofFuelCellScienceandTechnology JUNE2011,Vol.8 / 031013-5 Downloaded 02 Mar 2011 to 130.235.81.195. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm Fig. 3 Gas phase temperature distribution for prereformed Fig. 6 Gas phase temperature distribution for prereformed methanol„SF=5… ethanol„SF=3… consideredisthattheprobabilityofcarbondepositionincreases occur,asobservedinFig.8,wheretheinletgastemperaturefor whentheSCistoolow.Thepotentialtroublewithahightem- thecasewithbiogasisincreasedwith100K.Notethattheheat peraturegradientclosetothefuelinletcanbemanagedwithlow- generatedbytheelectrochemicalreactionsandpolarizationlosses eringtheinlettemperatureordilutingthefuelsinceahighertem- isstillhigherthantheheatconsumedbythereformingreactions perature or a less diluted fuel gives a higher steam reforming whenthecompletecellisstudied. reactionrateandalsoahighertemperaturegradient.Thisisnota Thepredictedmolarfractionsinthefuelchannelforthepar- problem,forthecasesspecifiedinTable3,sincearelativelylow ticipatinggasspeciesalongtheflowdirectionforthecasewith inlettemperature(cid:4)1000K(cid:5)aswellasprereformedfuelmixturesis prereformedmethanol(cid:4)SF=3(cid:5)areshowninFig.9,andthosefor used.Theactivationenergyinthemethanesteamreformingreac- thecasewithbiogasareshowninFig.10.Hydrogenisconsumed tionishighforthiscase;i.e.,theprobabilityforreactionisvery and water is generated (cid:4)due to the electrochemical reactions(cid:5) low.Acatalyticcompositionwithdecreasedactivationenergywill alongtheflowdirectionforalltheinvestigatedsituations.Thereis causeasteepertemperaturegradient.Whentheinlettemperature a consumption of water as carbon monoxide and methane are is increased, a high temperature gradient close to the inlet can reformed.Dependingontheinletfraction,adecreaseinthemolar fractionofwatercanbeobservedclosetotheinlet,e.g.,forthe Fig. 4 Gas phase temperature distribution for prereformed Fig. 7 Gas phase temperature distribution for 30% prere- methanol„SF=3…inthemiddleofthecell„atx=0.05 m… formednaturalgas Fig. 5 Gas phase temperature distribution for biogas-steam Fig. 8 Gas phase temperature distribution for biogas-steam mixture mixturewithanincreasedinlettemperature 031013-6 / Vol.8,JUNE2011 TransactionsoftheASME Downloaded 02 Mar 2011 to 130.235.81.195. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm Fig.11 Reactionrate„inmol/„m3s……forthesteamreforming reaction within the anode for the case with biogas-steam Fig.9 Molarfractionofthegasspeciesinthefuelchannel alongtheflowdirectionforprereformedmethanol„SF=3… mixture is possible to change the reaction rate, either by changing the particlesizeofactivecatalystortheporousstructure,i.e.,active cases with prereformed methanol.The molar fraction of carbon catalyticarea. monoxidedependsonthewater-gasshiftreaction.Thecasewith AsshowninFig.13,highreactionratesforthewater-gasshift biogas contains initially very little hydrogen. The generation of reactionareobtainedwhentheinletconcentrationsarefarfrom morehydrogendependsonthesteamreformingreaction,which equilibrium conditions in terms of temperature and concentra- dependsontheactiveareatovolumeratio,temperature,andgas tions,forexample,formethanolwiththeSFof3.Thereaction species concentrations. Note that the total amount of molecules (cid:4)within the fuel cell(cid:5) increases as the steam reforming reaction rateforthewater-gasshiftreactionintheanodeforthecasewith biogasisshowninFig.14.Thereactionproceedsinitiallytothe proceedstotheright. Forthesituationswithhighinletconcentrationsofmethane(cid:4)for left due to a low concentration of carbon monoxide and a high example,thecasewithbiogas,showninFig.11(cid:5),thesteamre- concentration of carbon dioxide.As hydrogen is consumed and formingreactionrate(cid:4)withintheanode(cid:5)ishighaslongashigh watergeneratedbytheelectrochemicalreactionwithintheanode, thisreactionproceedstotheright.Thewater-gasshiftreactionis concentrationofmethaneisavailable.Thelowerrateclosetothe inletisduetoalowertemperature.Thereactionrateexpression has,aspreviouslymentioned,highactivationenergy.Thisisthe reason for the relatively low reaction rate, which enables the methane steam reforming reaction rate to be similar within the entirelengthoftheanode.Itshouldbementionedthattheback- wardreactionrateisnegligible,comparedwiththeforwardreac- tionrateforthesituationsappliedinthisstudy.Thereactionrate increasesasthetemperatureandconcentrationofsteamincrease and decreases as the concentration of methane decreases. Note thatthereisadifferenceinscalebetweenthex-andy-directions. Thesteamreformingreactionrateintheanodeforthecasewith prereformed methanol (cid:4)SF=3(cid:5) is shown in Fig. 12. It contains initiallyverylittlemethane.Thisgivesalowinitialsteamreform- ingreactionrate,whichincreasesasthecarbonmonoxideandthe hydrogenareconsumed,aswellasthetemperatureisincreased.It Fig.12 Reactionrate„inmol/„m3s……forthesteamreforming reactionwithintheanodeforprereformedmethanol„SF=3… Fig.10 Molarfractionofthegasspeciesinthefuelchannel Fig.13 Reactionrate„inmol/„m3s……forthewater-gasshift alongtheflowdirectionforbiogas-steammixture reactionwithintheanodeforprereformedmethanol„SF=3… JournalofFuelCellScienceandTechnology JUNE2011,Vol.8 / 031013-7 Downloaded 02 Mar 2011 to 130.235.81.195. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm
Description: