ebook img

Modeled Population Connectivity across the Hawaiian Archipelago PDF

25 Pages·2016·2.78 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeled Population Connectivity across the Hawaiian Archipelago

RESEARCHARTICLE Modeled Population Connectivity across the Hawaiian Archipelago JohannaL.K.Wren1,2*,DonaldR.Kobayashi3,YanliJia4,RobertJ.Toonen2 1 JointInstituteforMarineandAtmosphericResearch,UniversityofHawai‘iatMānoa,Honolulu,Hawai‘i, UnitedStatesofAmerica,2 Hawai‘iInstituteofMarineBiology,SchoolofOceanandEarthScienceand Technology,UniversityofHawai‘iatMānoa,Kāne‘ohe,Hawai‘i,UnitedStatesofAmerica,3 Ecosystemsand OceanographyProgram,PacificIslandsFisheriesScienceCenter,NationalOceanographicandAtmospheric Administration,Honolulu,Hawai‘i,UnitedStatesofAmerica,4 InternationalPacificResearchCenter, UniversityofHawai‘iatMānoa,Honolulu,Hawai‘i,UnitedStatesofAmerica a11111 *[email protected] Abstract Wepresentthefirstcomprehensiveestimateofconnectivityofpassivepelagicparticles releasedfromcoralreefhabitatthroughouttheHawaiianArchipelago.Potentialconnectivity OPENACCESS iscalculatedusingaLagrangianparticletransportmodelcoupledofflinewithcurrentsgener- Citation:WrenJLK,KobayashiDR,JiaY,Toonen atedbyanoceanographiccirculationmodel,MITgcm.Theconnectivitymatricesshowasur- RJ(2016)ModeledPopulationConnectivityacross prisingdegreeofself-recruitmentanddirectionaldispersaltowardsthenorthwest,fromthe theHawaiianArchipelago.PLoSONE11(12): e0167626.doi:10.1371/journal.pone.0167626 MainHawaiianIslands(MHI)tothenorthwesternHawaiianIslands(NWHI).Weidentify threepredictedconnectivitybreaksinthearchipelago,thatis,areasinthemidandnorthern Editor:GiacomoBernardi,UniversityofCalifornia SantaCruz,UNITEDSTATES partofthearchipelagothathavelimitedconnectionswithsurroundingislandsandreefs. Predictedregionsoflimitedconnectivitygenerallymatchobservedpatternsofgeneticstruc- Received:April22,2016 turereportedforcoralreefspeciesintheuninhabitedNWHI,butmultiplegeneticbreaks Accepted:November17,2016 observedintheinhabitedMHIarenotexplainedbypassivedispersal.Thebettercongru- Published:December8,2016 enceinourmodelingresultsbasedonphysicaltransportofpassiveparticlesinthelow-lying Copyright:Thisisanopenaccessarticle,freeofall atollsoftheuninhabitedNWHI,butnotintheanthropogenicallyimpactedhighislandsofthe copyright,andmaybefreelyreproduced, MHIbegsthequestion:whatultimatelycontrolsconnectivityinthissystem? distributed,transmitted,modified,builtupon,or otherwiseusedbyanyoneforanylawfulpurpose. TheworkismadeavailableundertheCreative CommonsCC0publicdomaindedication. DataAvailabilityStatement:Dataisavailablehere: https://www.bco-dmo.org/dataset/665467. Introduction Funding:ThispaperwasfundedbyNSF(OCE12- Determininglevelsandpatternsofconnectivityisvitalforunderstandingmetapopulation 60169),andinpartbyagrant/cooperative dynamicsandpersistence,andisessentialforeffectiveresourcemanagementsee[1–5].Over agreementfromtheNationalOceanicand ecologicaltimescales,populationpersistencedependsoneithertheabilitytoretainlocally AtmosphericAdministration,ProjectR/SS-13, whichissponsoredbytheUniversityofHawaiiSea producedlarvae,i.e.self-recruitment,ortheabilitytoimportlarvaefromnearbyareas,i.e. GrantCollegeProgram,SOEST,underInstitutional connectivity[6–8].Self-recruitmentisametricdescribinghowopenorclosedapopulationis, GrantNo.NA14OAR4170071fromNOAAOfficeof whichinturndescribesitsresilience[7,9].Openpopulationsreceiveaninfluxoflarvaefrom SeaGrant,DepartmentofCommerce(forRJTand outsidesources,makingthemmoreresilienttolocaldisturbancesbutlimitedinpotentialfor JLKW).Theviewsexpressedhereinarethoseof localadaptation[10,11].Closedpopulationsaremoresensitivetolocaldisturbancesandpos- theauthorsanddonotnecessarilyreflecttheviews sessagreaterpotentialforlocaladaptationsincetheyaredependentonlocallyproducedoff- ofNOAAoranyofitssubagenciesThisisSea GrantcontributionUNIHI-SEAGRANT-JC-13-16, springandhaveamoredirectlinkbetweenlocalproductionandrecruitment.Marine PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 1/25 PopulationConnectivityinHawaii SOESTcontributionnumber9638andcontribution populationstudieshavehistoricallyworkedundertheassumptionthatmarinefishpopulations number1661fromtheHawai‘iInstituteofMarine areopen—thatis,theyreceivelarvaefromotherpopulationssomedistanceaway[12]dueto Biology. thedispersalabilityandrelativelylonglarvaldurationofmarinefishlarvae.However,studies CompetingInterests:Theauthorshavedeclared inrecentyearshavechallengedthisnotion,showingthatdespiteastronglarvaldispersalabil- thatnocompetinginterestsexist. itymanymarinereefpopulationsappearclosed,withlarvaestaying“closetohome”[6,13–16]. Wenolongerassumeallmarinepopulationstobeopen,andthefocusisnowondetermining theextenttowhichmarinepopulationsexchangelarvae(see[1,2]).Knowingtheconnected- nessofapopulationisvitalineffectivelymanagingthepopulationanddesigningfunctioning marinereserves. Mostcoastalmarinespecieshaveabiphasiclifecycle,inwhichdispersaltakesplacepre- dominantlyduringthepelagiclarvalstageofthelifecycle[17].Somespecieslaybenthiceggs thatdevelopintopelagiclarvae,whereasothersspawngametesdirectlyintothewatercolumn, wheretheydriftaspassiveparticlesuntiltheydevelopswimmingabilitiessimilartobenthic hatchlings.Larvaecanbefeedingornon-feedinginthewatercolumn,andthepelagiclarval phasemaylastforminutestomonthsinthepelagosbeforetheyreturntothebenthostosettle. Eachoftheselife-historydifferenceshavepredictableimpactsonobservedpopulationgenetic structure[18,19],butthebiologicalandphysicalfactorsdrivingdispersalintheseaarenot wellunderstoodanddifficulttogeneralize.Factorscontrollingsuccessfuldispersalcanbespe- ciesspecific[15,20–22],dependontimingofspawningevents[23,24],andvaryamongloca- tions[25–29]. TheHawaiianArchipelago,locatedinthesubtropicalNorthPacificOcean,isa2,500km longchainofvolcanicislandsandatolls,stretchingfrom19˚NintheMHIto30˚Ninthe NWHI.TheHawaiianArchipelagoisoneofthemostisolatedontheplanet,andhometoone ofthelargestmarinereservesintheworld,PapahānaumokuākeaMarineNationalMonument (PMNM).ThereisahighlevelofendemismintheHawaiianArchipelago[30,31],anddueto itsremotelocation,hasuniquemanagementneeds[32,33].WhiletheMHIarepopulatedwith activefisheriesandheavyanthropogenicloading,theNWHIareuninhabitedandfullypro- tectedwithlittleanthropogenicinfluence[34].OneofthehopesforestablishingPMNM, whichwasthelargestMPAontheplanetatthattime,wasaspillovereffectwheretheprotected fishpopulationsinPMNMwouldreplenishfishstockintheMHI.Unfortunately,thishope hasbeenlittlesupportedamongstudiestodateofbothinvertebratesandfishes[35–38].The lackofspilloverfromPMNMtotheMHIhasbeenattributedtotheprevailingsurfacecurrents movinglarvaeuptheislandchainfromtheMHItowardstheNWHI[35,39]. BecausemanagementneedsvarygreatlybetweentheheavilypopulatedMHIandtheunin- habitedPMNM,itisvitalthatweunderstandthepopulationdynamicsbetweentheseareasas wellaswithinthem.Well-connectedpopulationswithnumerousdispersalpathwaysamong sitesaremoreresilient,thatis,morelikelytorecoverfromdisturbance.Conversely,isolated populationsthatarehighlydependentonself-recruitmentforpopulationmaintenanceareless likelytorecoverafteradisturbanceandfaceagreaterriskofextinction[3–5,7]. Extensivepopulationgeneticworkhasbeendonetocharacterizepopulationstructurefor fishandinvertebratestoinferexchangeamongsitesthroughouttheHawaiianArchipelago (reviewedby[20,22]),butonlyahandfulofstudieshavefocusedonestimatingdispersaldur- ingthelarvalstage[35,36,39–45].Todate,allsuchstudiesfocusoneitherasinglespeciesof interest,asmallregionofthearchipelagooraverylimitedtimeperiod.Here,wepresentthe firstcomprehensivedatasetdescribingmodeledpotentialconnectivityamongsitesthroughout theentireHawaiianArchipelagousingabiophysicalmodelcoupledwitheddyresolvingocean currents.Weuseapurelyphysicalmodelwithpassiveparticlestodeterminelikelypatternsof potentialconnectionswithinthearchipelagoandJohnstonAtollbecausedetailedinformation onlarvalbehavior,mortalityratesandpopulationsizesarenotcurrentlyavailableforthevast PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 2/25 PopulationConnectivityinHawaii majorityofspeciesinHawai‘i.Theresultsfromthisstudywillsetthegroundworkforfuture studiestousemorerealisticbiophysicalmodelsthatincorporatesuchfactorsaslarvalbehavior astheybecomeavailable. Methods Dispersalmodel MITgcm. TheMassachusettsInstituteofTechnologygeneralcirculationmodel (MITgcm)solvestheincompressibleNavier-Stokesequationsonasphereindiscretizedforms employingafinite-volumetechnique[46].TheregionalMITgcmimplementationforthe HawaiianArchipelagoextendsfrom175˚Eto150˚Wandfrom15˚Nto35˚Nata0.04˚(~4km intheregion)resolution.Intheverticaldirection,thewaterdepthisdividedinto50layers withathicknessrangingfrom5mnearthesurfaceto510mnearthebottom.Itisforcedatthe surfacebywindsderivedfromtheAdvancedScatterometer(ASCAT)observationswitha 0.25˚resolution,andbyheatandfreshwaterfluxesobtainedfromtheEuropeanCenterfor Medium-RangeWeatherForecast(ECMWF)InterimReanalysisata1.5˚resolution.The oceanstate,asestimatedbytheglobalHYCOMpredictionsystemata0.08˚resolution[47],is usedtodefinetheinitialandopenboundaryconditions.Thesimulationperiodrunsfrom May2009toMay2014.Weusetheflowfieldsinthe100mmodellayertodisperseparticlesin ourLagrangiantrackingexperiments(seebelow),asthislayerhasshowntobethebestpredic- torofsettlementintheregion[42,43]. Habitat. Forthisstudy,weincludedallavailablecoralreefhabitatintheHawaiianarchi- pelagoandJohnstonAtoll.JohnstonAtollisthenearestreeftotheHawaiianArchipelago, located1390kmsouthwestoftheBigIslandofHawai‘i.WechosetoincludeJohnstonAtollin thehabitatdefinitionbecausethereareshownbiogeographictiesbetweenJohnstonAtolland theHawaiianArchipelago[41,48–51].Togenerateourhabitatmap,weusedhabitatdefinedas ‘coralreef’inIKONOS-deriveddatafortheNorthwestHawaiianIslands[52,53]andthedata setpresentedin[54]fortheMHI,andcreateda4-km2gridofthathabitat,totaling687habitat pixels.Thehabitatpixelswereadditionallygroupedinto31differentislands/banks/atolls (hereafterreferredtoasislands)toallowforislandscalecomparisons(Fig1). Modelinitialization. Toinvestigatetheexchangeofparticlesamonglocationsinthe HawaiianArchipelago,weusedaLagrangianbio-physicalparticletrackingmodel[40,42]cou- pledwiththeflowfieldsfromtheMITgcmsimulationdescribedabove.Eddydiffusivitywas setto250m2/sec,consistentwithdriftersinHawaiianwaters(following[35]).Wereleased50 particles(virtuallarvae)dailyfromMay2,2009,untilApril10,2014,from687coralreefhabi- tatpixelstotalingjustover62millionreleasedparticlesforeachmodelrun.Weusedapelagic larvalduration(PLD)of45days,representativeformostreeffish[55].Previousstudiesshow thatPLD’slongerthan45daysdonotsignificantlyaltersettlementprobabilitiesintheMHI [42].Foraparticletobeconsidered“settled”,ithadtobewithina5kmradiusofthecenterof ahabitatpixelonthelastdayofitsPLD(onday45)(Table1).Preliminarystudiesshowno changeinconnectivitypatternswhenparticlesareallowedtosettleacrossarangeofPLD,so wechoseastaticPLDasopposedtorangeofPLD’sorasettlementwindowbecausewewere interestedinthephysicaldriversofdispersal.Thedispersalmodelwasrunthreetimesandthe outputaveragedforconsistency. Totesttherobustnessofthemodelwithrespecttooceancirculationmodelresolution[56] weranidenticalbiophysicalmodelruns,forcingthemodelwithcurrentvelocitiesfromthe globalHYCOMata0.08˚resolutionandaregionalimplementationofHYCOMat0.04˚ (availablefortheMHIonly)resolutioninadditiontotheMITgcm(S1File). PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 3/25 PopulationConnectivityinHawaii Fig1.MapoftheHawaiianArchipelago.ToppanelshowingtheHawaiianArchipelagodomainofthedispersalmodelwiththemajorsurfacecurrents(in green)identified(afterLumpkin1998).Bathymetrylinesdenote1000and50misobaths.BottompanelsshowcoralreefhabitatpixelsfortheNorthwestern HawaiianIslandsandMainHawaiianIslandsrespectively,witheachisland’shabitatpixelsshownasaseparatecolor.BathymetrylinesinNWHIdenote 50mdepthisobath. doi:10.1371/journal.pone.0167626.g001 PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 4/25 PopulationConnectivityinHawaii Table1. Glossaryofoftenusedterms. TermsanddefinitionsusedthroughouttheHawaiianArchipelago connectivitystudy. Potential Themodeledestimateofconnectivityofasiteusingphysicaloceanographicattributes connectivity andlimitedbiologicalfactorsinfluencingdispersalabilityoftheparticles. Settlement Inthisstudywedefinesettlementasanyparticlewithin5kmofthecenterofahabitat pixelonday45afterrelease Self-recruitment Aparticlethatsettlesbackontothesameislandfromwhichitwasreleased Connectivitybreak Anareaoverwhichfew,ifany,particlesareexchanged Source-sinkindex Theratioofexportofparticlesandimportofparticlestoanarea,dividedbythetotal numberofsuccessfullytransportedparticles. doi:10.1371/journal.pone.0167626.t001 Statisticalanalysis Wearefocusingonpotentialconnectivityinthisstudy,whichestimatestheconnectivityofa siteusingphysicaloceanographicattributesandlimitedbiologicalfactorsinfluencingdispersal ability(inourcasePLDandhabitat)[57,58].Toevaluatepatternsofpotentialconnectivityin theHawaiianArchipelago,wecreatedaconnectivitymatrixthatmeasuresthelikelihoodof particleexchangebycurrentsamongsites.Themodelgeneratesa687x687settlementmatrix (Sij)containingthenumberofparticlesreleasedfromhabitati(sourcesite)thatsuccessfully reachedhabitatj(receivingsite)forthefullrunofthemodel(fiveyears).Tocreatetherear- wardprobabilitymatrix,wescaledSijtoislandspecifictotalreleasedparticles.Rearwardprob- abilitymatricesreportoriginsitesofparticlesarrivingatthereceivingsiteandcanbewritten: P =S /∑S. ij(rearward) ij j Wethenbinnedthe687habitatsitesusedinthedispersalmodelbyisland,resultingina31 x31islandmatrix,toallowforasimplercomparisonofpotentialconnectivity.Theresulting probabilitymatrix(P )showstheoriginislandofsuccessfullytransportedparticlesateach ij island.ThenumberineachcelloftheP matrixistheprobabilityofaparticletransportedto ij islandjhavingoriginatedfromislandiforthefiveyearsthemodelwasrun,andeachrowin thematrixsumsto1.Thediagonaloftheprobabilitymatrixshowstheself-recruitmentfor eachisland.ForwardprobabilitymatriceswerealsogeneratedandaredescribedinS1File. BecausethemajorityofcoralreeffishspawnduringMay-June[59,60],wecalculatedallmet- ricsonbothyear-roundreleasesandreleasesrestrictedtoMay-Juneofeachyear.Allmatrices wereplottedusingthesoftwareprogramGenericMappingTools(GMT)4.5.11[61]. Subtractionmatricesweregeneratedbysubtractingtheprobabilitymatrixforyearround releasesfromthematrixforMay-JunereleasesusingthesubroutinegrdmathinGMT4.5.11. Theresultingsubtractionmatrixshowswherethetwoconnectivitymatricesdiffer.Onlyfor- wardmatriceswerecomparedwitheachother,andrearwardmatriceswitheachother.We usedmanteltestsforeachpairofconnectivitymatricesusingfunctionmantelintheVegan packageversion2.2–1inthestatisticalsoftwareR[62]tocalculatethecorrelationbetweenthe probabilitymatrices. Successfultransport,definedasanyparticlewithin5kmofthecenterofahabitatpixelon day45afterrelease,wascalculatedbytallyingthedailynumberofsuccessfullytransportedpar- ticlesforallislandsanddividingitbythetotalnumberofdailyparticlesreleasedforthefive- yearmodelrun,allowingustodetermineannualandseasonalvariability.Additionally,wecal- culatedislandspecific“settlement”successoverfiveyears. Dispersaldistance,thegeographicdistancebetweenthereleasesiteandreceivingsitefora successfullytransportedparticleatthereceivingsite,wasdeterminedbyfirstcalculatingdis- tancesbetweenall687habitatpixelsusingthedistancematrixfunctiondistmwiththeHaver- sineformulaintheR-packagegeosphere[63].Thedistmfunctioncalculatesthegreatcircle PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 5/25 PopulationConnectivityinHawaii distance(Haversineformula)betweentwopointsusingtheirlatitudesandlongitudesin degreesandcreatesa687x687distancematrix(Dij)withthereleasesites(i)onthex-axis (rows)andreceivingsites(j)onthey-axis(columns).Wemultipliedthesettlementmatrix (Sij)generatedbythebiophysicalmodel(seeabove)withthedistancematrix(Dij)togenerate aproductmatrix(Pij).Becausethereismorethanonespawningandsettlementsite(hence- forthhabitatsite)perisland(forexample,BigIslandhas129habitatsites,O‘ahuhas62and KureAtollhas13),weaddedallthedistancesforallthehabitatsitesintheproductmatrix belongingtoeachisland,generatinga31x31matrixcontainingthesumofallthedistancesof alltheparticlesforeachislandcalledtheislandproductmatrix(PIij).Thesameprocedurewas followedtogenerateanislandsettlementmatrix(SIij);asquare31x31matrixcontainingthe totalnumberofsuccessfulsettlersforeachisland.Wethendividedthecolumnsumsfromthe islandproductmatrixwiththecolumnsumsoftheislandsettlementmatrixtoobtainthe meandispersaldistanceforsuccessfullysettledparticlesateachisland.Thesecalculationswere performedforyear-roundreleases,aswellasforparticlereleasesconfinedtoMayandJuneof eachyeartoallowustoexploreseasonalpatterns. Self-recruitment,definedastheproportionofsuccessfullytransportedparticlesateach islandthatoriginatedfromthatsameisland,isanimportantmetricwhenevaluatingtheper- sistenceofapopulation[8,64].Wecalculatedself-recruitmentforthedurationofthemodel runforeachislandbydividingthenumberofreleasedparticlesfromanislandthatweretrans- portedbacktothatislandbythetotalnumberof“settlers”there.Thisallowsustodetermine howdependentanislandisonrecruitmentfromoutsidelocationstomaintainthepopulation. Source-sinkdynamicswereassessedbycalculatingasource-sinkindexfollowingHolstein etal.[21].Wedefineasourceasanislandthatexports(outgoing)moreparticlesthanit imports(incoming),andasinkislandimportsmoreparticlesthanitexports[21,64].The source-sinkindexisaratioofthedifferencebetweensuccessfultransportoutoftheisland (export)andsuccessfultransportintotheisland(import),dividedbythetotalofallsuccessfully transportedparticlesinandoutoftheisland[21,64].Becausetheindexlooksatthedifference inthetotalfluxofparticlesintoandoutofeachisland,itallowsustocompareislandswith varyingamountofhabitatandislandsthathavetotalnumbersoftransportedparticlesthatdif- fersbyordersofmagnitude.Theindexspansfrom-1to1,andapositiveindeximpliesasource siteandanegativeindeximplyasinksite.Thestrongertheindexthemorelikelythesiteisto beapersistentsourceorsinksite.Azeroindexindicatesthatthefluxofparticlesthataresuc- cessfullytransportedontotheislandandoutoftheislandsarethesame.Thisindexallowsus tocompareislandsinthearchipelagoandevaluatessource-sinkdynamicsonaregionalscale, whereasself-recruitmentallowsustocharacterizeislandsassourcesorsinksonalocalscale. Results Potentialconnectivity Theprobabilitymatrixshowsanisolation-by-distancepatternwithsitesfarawayfromeach otherhavinglittleornopotentialconnectivityandconsiderableself-recruitmentformost islandsacrosstheArchipelago(Fig2).RestrictingparticlereleasetothetypicalMay-June spawningseasonminimallyalterstheoverallpotentialconnectivitypatterns(r=0.932)(Fig2b, S1Fig).DuringspawningseasonO‘ahuandMaroReefshowstrongerconnectionswithneigh- boringislandswhileNi‘ihauandKaua‘ibecomelessconnected.Self-recruitmentismore importantforKureandMidwayAtolls(Fig2)duringspawningseason,whereasRaitaismore dependentonself-recruitmentyearround(Fig2). ThereislimitedpotentialconnectivitybetweentheNWHIandtheMHI,andthedirection ofdispersalispredominantlyfromtheMHItotheNWHI.ParticlesoriginatingintheMHI PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 6/25 PopulationConnectivityinHawaii Fig2.PotentialConnectivitymatrixfortheHawaiianArchipelago.(A)Thevaluesineachcellare “settlement”probabilitiesscaledtothereceivingsiteforyear-roundparticlerelease.Arrowsindicatedthe breaksmentionedinthetext.Eachrowinthematrixaddsupto1.Highvalues(red)indicatehighconnectivity andlownumbers(blue)indicatelowconnectivity,andwhitecellsdenotenoconnectivity.(B)Differencematrix showingthedifferenceinconnectivitybetweenyear-roundandMay-Juneparticlerelease.TheMay-June PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 7/25 PopulationConnectivityinHawaii releasematrixissubtractedfromtheyear-roundreleasematrix(inAabove).Positivevalues(red)denotea higherconnectivityvalueforyear-roundreleasesandanegativenumber(blue)denoteshigherconnectivity forMay-Junereleasedparticles. doi:10.1371/journal.pone.0167626.g002 form37uniqueconnectionswithsitesintheNWHI(markedareaintheupperrightcornerof Fig2a),whileparticlesoriginatingfromtheNWHIonlyform24uniqueconnectionswith sitesintheMHI(markedareasinthebottomleftinFig2a).Fourtimesasmanyparticlesare successfullytransportedfromtheMHItotheNWHIthanviceversa(3.1%fromMHIto NWHIand0.77%fromNWHItotheMHIofthetotalsuccessfullysettledlarvae).TheMHI donotexportanyparticlesnorthwestofMokumanamana,andislandslocatedbetweenKaula andNihoainthecenterofthearchipelagoaretheonlyislandsintheNWHItocontributepar- ticlestotheMHI.MostparticlesreleasedfromNihoaarelosttothesystem,indicatedbythe lowself-recruitment(<1%)andlowcontribution(6.067E-4%–0.72%)tothe“settlement”at nearbyislands(Fig2). WhiletransportbetweentheMHIandtheNWHIispredominantlynorthwestward,total transportbetweenallislandsinthearchipelagoisreversed,with37%ofthesuccessfullytrans- portedparticlesarriveatislandstothesouth(islandsbelowthediagonalinFig2a),while32% ofparticlesaretransportedtoislandstothenorth(islandsabovethediagonalinFig2a).How- ever,96.3%ofthesuccessfullytransportedparticlesoriginatingintheMHIendupsettling withintheMHIand3.73%aresuccessfullytransportedtotheNWHI,while95.1%ofsuccess- fullytransportedparticlesoriginatingintheNWHIaresuccessfullytransportedtositeswithin theNWHIand4.87%ofparticlesaresuccessfullytransportedtotheMHI. Therearethreebreaksintheconnectivitymatrixpresentforbothyear-roundandseasonal particlerelease.Veryfewparticlessuccessfullycrossthesebreaks.Thesebreaksaremorepro- nouncedduringspawningseasonreleases(Fig2b),andaremoredistinctintheforwardmatri- ces(S2andS3Figs).ThesouthernmostbreaklocatedbetweenNihoaandMokumanamanais themostpronounced.NoparticlescrossthisbreakintooroutoftheMHI,effectivelycutting theMHIofffromtheNWHI.ThecentralbreakatGardnerPinnaclesandMaroReefistra- versedonlybyparticlestoandfromRaitaBank.ThenorthernbreakbetweenLisianskiand PearlandHermesAtolleffectivelyisolatesKureAtollandMidwayIslands,resultinginhigh self-recruitmentforthenorthernmostislandsinthearchipelago. Usingflowfieldsfromdifferentoceanographiccirculationmodelsatdifferentspatialreso- lutionsallowsustotestwhetherthepotentialconnectivitypatternsarerobusttomodelresolu- tion.Thereisastrongcorrelationbetweenthepotentialconnectivitydescribedaboveandthe connectivitymatrixgeneratedfromadispersalmodelrunthatusedcurrentvelocitiesfromthe coarserglobalHYCOM(r=0.9291)(S4Fig).FortheMHI,wecomparedconnectivitymatrices generatedfromthreedispersalmodelrunsthatusedcurrentvelocitiesfromthe0.04˚MITgcm (S5aFig),0.04˚regionalHYCOM(S5bFig),and0.08˚globalHYCOM(S5cFig).Potential connectivityfortheMHIgeneratedfromthemodelrunusingdifferentresolutionsofthe HYCOMcurrentsshowedthestrongestcorrelation(r=0.974)(S6aFig),followedbyconnec- tivitymatricesgeneratedfromthemodelrunswiththesamespatialresolutionoftheflow field,MITgcmand0.04regionalHYCOM(r=0.9533)(S6bFig).Weobservedthelargestdif- ferencebetweenpotentialconnectivitygeneratedfrommodelrunsusingMITgcmandthe 0.08kmHYCOMflowfields(r=0.9305)(S6cFig). Total“settlement” Successfultransportacrossallislandsishighlyvariablewithameanof1.416%(SE7.708e-5)of allreleasedparticlessuccessfullyarrivingatareceivingsiteoverthefive-yearmodelrun.The PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 8/25 PopulationConnectivityinHawaii Fig3.TotalpercentsuccessfulsettlementforallsitesintheHawaiianArchipelagoforthefive-yearmodelrun.Thegreenbarsrepresentparticles spawnedduringpeakspawningseasonMay-Juneeachyear. doi:10.1371/journal.pone.0167626.g003 lowesttotalsuccessfultransportwasseenonJuly6,2011(0.682%),andthehighesttotalsuc- cessfultransportonNovember2,2012(2.405%).Thereisnodiscernibleseasonalpatternin totalarrivalsobservedforthearchipelagoasawhole(Fig3).Thehighestratesofsuccessful transportin2009(2.27%)and2010(2.22%)coincidedwithparticlesreleasedduringpeak spawningseason(markedbygreenbarsinFig3);however,thefollowingthreeyearshadsome ofthelowestratesofsuccessfultransportforparticlesreleasedinMay-June(0.68%,0.95%,and 0.96%). TheMHIhaveoveralllargerrelativeprobabilityofsuccessfularrivalswhileislandsnearthe observedbreaksintheconnectivitymatrixhavethelowestrelativeprobabilityofsuccessful arrivals.JohnstonAtollhasthelowestrelativesuccessfularrivalvalueofallat0.0637%for year-roundreleaseand0.0337%forpeakspawningseasonreleases(Fig4).AtKaula,therela- tivearrivalsuccessisalmosttwoordersofmagnitudelargercomparedwithJohnstonAtoll, with3.574%foryear-roundspawning.Weseethelargestrelativearrivalsforseasonalrelease atLāna‘iwith2.713%.Hawai‘iIslandistheonlyMHItoshowhigherarrivalsuccessforparti- clesreleasedduringspawningseason(2.523%)comparedtoyear-roundreleases(2.298%). Distancetraveled Thespatiallyaveragedmeandistancetraveledis112.32km(SE=1.705)foryear-roundparti- clerelease.Particlesreleasedduringpeakspawningseasontravelfurther,withmeandistance of124.37km(SE=2.372).Mediandistancesareshorter,101.39kmand110.80kmforyear- roundandMay-Junereleaserespectively,indicatingthatafewparticlesdisperse,traveling PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 9/25 PopulationConnectivityinHawaii Fig4.Totalpercentsuccessfulsettlementateachislandforthefive-yearmodelrun.GreenbarsshowsettlementforparticlesspawnedduringMay- June,graybarsshowsettlementforyear-roundspawning. doi:10.1371/journal.pone.0167626.g004 significantlylongerdistancesanddrivingupthemean.Thisisalsoevidentfromthelongright tailonthedensitykernel(Fig5). Particlesarrivingatislandsinthecenterofthearchipelagotravelthelongestmeandis- tances,whileparticlesatJohnstonAtolltraveltheshortest(100%self-recruitment)(Fig6).Par- ticlessuccessfullytransportedtothebankjustsouthofNihoadispersedmorethandoublethe meandistanceforothersitesacrossthearchipelago:onaverage341.4kmduringMay-June release,and277.2kmduringyear-roundrelease.Consistentwithtotaldispersaldistancesfor allislands,island-specificdispersaldistancesaregreaterforparticlesreleasedduringspawning season,for23outof31islands(Fig6).IntheMHI,dispersaldistancesareconsistentthrough- outtheyearexceptforparticlesreleasedfromKaua‘iwhichhasamuchlongerdispersaldis- tanceduringMay-Junerelease.Kaua‘idispersaldistancesaremoresimilartoislandslocated inthecenterofthearchipelago,likelyduetothepredominantlynorthwestdirectionofdis- persal(Fig2)andthelongerdistancesbetweenhabitatsintheNorthwesternHawaiianIslands. Particlesreleasedfromislandlocatedtothenorthwestofeachconnectivitybreak(Pearland HermesAtoll,MaroReefandMokumanamanaIsland)haveshorterdispersaldistancescom- paredtotheislandjustsoutheastofthebreak(LisianskiIsland,GardnerPinnacles,andNihoa Island)by45.6%,63.4%,and73.9%respectively. Self-recruitment Themeanself-recruitmentforthearchipelagois25.2%(SE=0.0414)butvariesgreatlyfrom islandtoisland.JohnstonAtollreliessolelyonself-recruitment(100%)forpopulationpersis- tence,whileatNihoaIslandself-recruitmentaccountsforlessthan1%oftotalsettlement(Fig 7).DuringpeakspawningseasonNihoa,alongwithGardnerPinnacles,importalltheirparti- cles.Islandspecificself-recruitment(Fig7,anddiagonalintheconnectivitymatrixinFig2)is strongestatKure(year-round50.5%),PearlandHermesAtoll(year-round80.67%,May-June PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 10/25

Description:
released from coral reef habitat throughout the Hawaiian Archipelago. tests for each pair of connectivity matrices using function mantel in the Vegan .. the interaction of particles with the physical environment [66–69] Current (HLC) and the North Hawaiian Ridge Current (NHRC), flow along the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.