RESEARCHARTICLE Modeled Population Connectivity across the Hawaiian Archipelago JohannaL.K.Wren1,2*,DonaldR.Kobayashi3,YanliJia4,RobertJ.Toonen2 1 JointInstituteforMarineandAtmosphericResearch,UniversityofHawai‘iatMānoa,Honolulu,Hawai‘i, UnitedStatesofAmerica,2 Hawai‘iInstituteofMarineBiology,SchoolofOceanandEarthScienceand Technology,UniversityofHawai‘iatMānoa,Kāne‘ohe,Hawai‘i,UnitedStatesofAmerica,3 Ecosystemsand OceanographyProgram,PacificIslandsFisheriesScienceCenter,NationalOceanographicandAtmospheric Administration,Honolulu,Hawai‘i,UnitedStatesofAmerica,4 InternationalPacificResearchCenter, UniversityofHawai‘iatMānoa,Honolulu,Hawai‘i,UnitedStatesofAmerica a11111 *[email protected] Abstract Wepresentthefirstcomprehensiveestimateofconnectivityofpassivepelagicparticles releasedfromcoralreefhabitatthroughouttheHawaiianArchipelago.Potentialconnectivity OPENACCESS iscalculatedusingaLagrangianparticletransportmodelcoupledofflinewithcurrentsgener- Citation:WrenJLK,KobayashiDR,JiaY,Toonen atedbyanoceanographiccirculationmodel,MITgcm.Theconnectivitymatricesshowasur- RJ(2016)ModeledPopulationConnectivityacross prisingdegreeofself-recruitmentanddirectionaldispersaltowardsthenorthwest,fromthe theHawaiianArchipelago.PLoSONE11(12): e0167626.doi:10.1371/journal.pone.0167626 MainHawaiianIslands(MHI)tothenorthwesternHawaiianIslands(NWHI).Weidentify threepredictedconnectivitybreaksinthearchipelago,thatis,areasinthemidandnorthern Editor:GiacomoBernardi,UniversityofCalifornia SantaCruz,UNITEDSTATES partofthearchipelagothathavelimitedconnectionswithsurroundingislandsandreefs. Predictedregionsoflimitedconnectivitygenerallymatchobservedpatternsofgeneticstruc- Received:April22,2016 turereportedforcoralreefspeciesintheuninhabitedNWHI,butmultiplegeneticbreaks Accepted:November17,2016 observedintheinhabitedMHIarenotexplainedbypassivedispersal.Thebettercongru- Published:December8,2016 enceinourmodelingresultsbasedonphysicaltransportofpassiveparticlesinthelow-lying Copyright:Thisisanopenaccessarticle,freeofall atollsoftheuninhabitedNWHI,butnotintheanthropogenicallyimpactedhighislandsofthe copyright,andmaybefreelyreproduced, MHIbegsthequestion:whatultimatelycontrolsconnectivityinthissystem? distributed,transmitted,modified,builtupon,or otherwiseusedbyanyoneforanylawfulpurpose. TheworkismadeavailableundertheCreative CommonsCC0publicdomaindedication. DataAvailabilityStatement:Dataisavailablehere: https://www.bco-dmo.org/dataset/665467. Introduction Funding:ThispaperwasfundedbyNSF(OCE12- Determininglevelsandpatternsofconnectivityisvitalforunderstandingmetapopulation 60169),andinpartbyagrant/cooperative dynamicsandpersistence,andisessentialforeffectiveresourcemanagementsee[1–5].Over agreementfromtheNationalOceanicand ecologicaltimescales,populationpersistencedependsoneithertheabilitytoretainlocally AtmosphericAdministration,ProjectR/SS-13, whichissponsoredbytheUniversityofHawaiiSea producedlarvae,i.e.self-recruitment,ortheabilitytoimportlarvaefromnearbyareas,i.e. GrantCollegeProgram,SOEST,underInstitutional connectivity[6–8].Self-recruitmentisametricdescribinghowopenorclosedapopulationis, GrantNo.NA14OAR4170071fromNOAAOfficeof whichinturndescribesitsresilience[7,9].Openpopulationsreceiveaninfluxoflarvaefrom SeaGrant,DepartmentofCommerce(forRJTand outsidesources,makingthemmoreresilienttolocaldisturbancesbutlimitedinpotentialfor JLKW).Theviewsexpressedhereinarethoseof localadaptation[10,11].Closedpopulationsaremoresensitivetolocaldisturbancesandpos- theauthorsanddonotnecessarilyreflecttheviews sessagreaterpotentialforlocaladaptationsincetheyaredependentonlocallyproducedoff- ofNOAAoranyofitssubagenciesThisisSea GrantcontributionUNIHI-SEAGRANT-JC-13-16, springandhaveamoredirectlinkbetweenlocalproductionandrecruitment.Marine PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 1/25 PopulationConnectivityinHawaii SOESTcontributionnumber9638andcontribution populationstudieshavehistoricallyworkedundertheassumptionthatmarinefishpopulations number1661fromtheHawai‘iInstituteofMarine areopen—thatis,theyreceivelarvaefromotherpopulationssomedistanceaway[12]dueto Biology. thedispersalabilityandrelativelylonglarvaldurationofmarinefishlarvae.However,studies CompetingInterests:Theauthorshavedeclared inrecentyearshavechallengedthisnotion,showingthatdespiteastronglarvaldispersalabil- thatnocompetinginterestsexist. itymanymarinereefpopulationsappearclosed,withlarvaestaying“closetohome”[6,13–16]. Wenolongerassumeallmarinepopulationstobeopen,andthefocusisnowondetermining theextenttowhichmarinepopulationsexchangelarvae(see[1,2]).Knowingtheconnected- nessofapopulationisvitalineffectivelymanagingthepopulationanddesigningfunctioning marinereserves. Mostcoastalmarinespecieshaveabiphasiclifecycle,inwhichdispersaltakesplacepre- dominantlyduringthepelagiclarvalstageofthelifecycle[17].Somespecieslaybenthiceggs thatdevelopintopelagiclarvae,whereasothersspawngametesdirectlyintothewatercolumn, wheretheydriftaspassiveparticlesuntiltheydevelopswimmingabilitiessimilartobenthic hatchlings.Larvaecanbefeedingornon-feedinginthewatercolumn,andthepelagiclarval phasemaylastforminutestomonthsinthepelagosbeforetheyreturntothebenthostosettle. Eachoftheselife-historydifferenceshavepredictableimpactsonobservedpopulationgenetic structure[18,19],butthebiologicalandphysicalfactorsdrivingdispersalintheseaarenot wellunderstoodanddifficulttogeneralize.Factorscontrollingsuccessfuldispersalcanbespe- ciesspecific[15,20–22],dependontimingofspawningevents[23,24],andvaryamongloca- tions[25–29]. TheHawaiianArchipelago,locatedinthesubtropicalNorthPacificOcean,isa2,500km longchainofvolcanicislandsandatolls,stretchingfrom19˚NintheMHIto30˚Ninthe NWHI.TheHawaiianArchipelagoisoneofthemostisolatedontheplanet,andhometoone ofthelargestmarinereservesintheworld,PapahānaumokuākeaMarineNationalMonument (PMNM).ThereisahighlevelofendemismintheHawaiianArchipelago[30,31],anddueto itsremotelocation,hasuniquemanagementneeds[32,33].WhiletheMHIarepopulatedwith activefisheriesandheavyanthropogenicloading,theNWHIareuninhabitedandfullypro- tectedwithlittleanthropogenicinfluence[34].OneofthehopesforestablishingPMNM, whichwasthelargestMPAontheplanetatthattime,wasaspillovereffectwheretheprotected fishpopulationsinPMNMwouldreplenishfishstockintheMHI.Unfortunately,thishope hasbeenlittlesupportedamongstudiestodateofbothinvertebratesandfishes[35–38].The lackofspilloverfromPMNMtotheMHIhasbeenattributedtotheprevailingsurfacecurrents movinglarvaeuptheislandchainfromtheMHItowardstheNWHI[35,39]. BecausemanagementneedsvarygreatlybetweentheheavilypopulatedMHIandtheunin- habitedPMNM,itisvitalthatweunderstandthepopulationdynamicsbetweentheseareasas wellaswithinthem.Well-connectedpopulationswithnumerousdispersalpathwaysamong sitesaremoreresilient,thatis,morelikelytorecoverfromdisturbance.Conversely,isolated populationsthatarehighlydependentonself-recruitmentforpopulationmaintenanceareless likelytorecoverafteradisturbanceandfaceagreaterriskofextinction[3–5,7]. Extensivepopulationgeneticworkhasbeendonetocharacterizepopulationstructurefor fishandinvertebratestoinferexchangeamongsitesthroughouttheHawaiianArchipelago (reviewedby[20,22]),butonlyahandfulofstudieshavefocusedonestimatingdispersaldur- ingthelarvalstage[35,36,39–45].Todate,allsuchstudiesfocusoneitherasinglespeciesof interest,asmallregionofthearchipelagooraverylimitedtimeperiod.Here,wepresentthe firstcomprehensivedatasetdescribingmodeledpotentialconnectivityamongsitesthroughout theentireHawaiianArchipelagousingabiophysicalmodelcoupledwitheddyresolvingocean currents.Weuseapurelyphysicalmodelwithpassiveparticlestodeterminelikelypatternsof potentialconnectionswithinthearchipelagoandJohnstonAtollbecausedetailedinformation onlarvalbehavior,mortalityratesandpopulationsizesarenotcurrentlyavailableforthevast PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 2/25 PopulationConnectivityinHawaii majorityofspeciesinHawai‘i.Theresultsfromthisstudywillsetthegroundworkforfuture studiestousemorerealisticbiophysicalmodelsthatincorporatesuchfactorsaslarvalbehavior astheybecomeavailable. Methods Dispersalmodel MITgcm. TheMassachusettsInstituteofTechnologygeneralcirculationmodel (MITgcm)solvestheincompressibleNavier-Stokesequationsonasphereindiscretizedforms employingafinite-volumetechnique[46].TheregionalMITgcmimplementationforthe HawaiianArchipelagoextendsfrom175˚Eto150˚Wandfrom15˚Nto35˚Nata0.04˚(~4km intheregion)resolution.Intheverticaldirection,thewaterdepthisdividedinto50layers withathicknessrangingfrom5mnearthesurfaceto510mnearthebottom.Itisforcedatthe surfacebywindsderivedfromtheAdvancedScatterometer(ASCAT)observationswitha 0.25˚resolution,andbyheatandfreshwaterfluxesobtainedfromtheEuropeanCenterfor Medium-RangeWeatherForecast(ECMWF)InterimReanalysisata1.5˚resolution.The oceanstate,asestimatedbytheglobalHYCOMpredictionsystemata0.08˚resolution[47],is usedtodefinetheinitialandopenboundaryconditions.Thesimulationperiodrunsfrom May2009toMay2014.Weusetheflowfieldsinthe100mmodellayertodisperseparticlesin ourLagrangiantrackingexperiments(seebelow),asthislayerhasshowntobethebestpredic- torofsettlementintheregion[42,43]. Habitat. Forthisstudy,weincludedallavailablecoralreefhabitatintheHawaiianarchi- pelagoandJohnstonAtoll.JohnstonAtollisthenearestreeftotheHawaiianArchipelago, located1390kmsouthwestoftheBigIslandofHawai‘i.WechosetoincludeJohnstonAtollin thehabitatdefinitionbecausethereareshownbiogeographictiesbetweenJohnstonAtolland theHawaiianArchipelago[41,48–51].Togenerateourhabitatmap,weusedhabitatdefinedas ‘coralreef’inIKONOS-deriveddatafortheNorthwestHawaiianIslands[52,53]andthedata setpresentedin[54]fortheMHI,andcreateda4-km2gridofthathabitat,totaling687habitat pixels.Thehabitatpixelswereadditionallygroupedinto31differentislands/banks/atolls (hereafterreferredtoasislands)toallowforislandscalecomparisons(Fig1). Modelinitialization. Toinvestigatetheexchangeofparticlesamonglocationsinthe HawaiianArchipelago,weusedaLagrangianbio-physicalparticletrackingmodel[40,42]cou- pledwiththeflowfieldsfromtheMITgcmsimulationdescribedabove.Eddydiffusivitywas setto250m2/sec,consistentwithdriftersinHawaiianwaters(following[35]).Wereleased50 particles(virtuallarvae)dailyfromMay2,2009,untilApril10,2014,from687coralreefhabi- tatpixelstotalingjustover62millionreleasedparticlesforeachmodelrun.Weusedapelagic larvalduration(PLD)of45days,representativeformostreeffish[55].Previousstudiesshow thatPLD’slongerthan45daysdonotsignificantlyaltersettlementprobabilitiesintheMHI [42].Foraparticletobeconsidered“settled”,ithadtobewithina5kmradiusofthecenterof ahabitatpixelonthelastdayofitsPLD(onday45)(Table1).Preliminarystudiesshowno changeinconnectivitypatternswhenparticlesareallowedtosettleacrossarangeofPLD,so wechoseastaticPLDasopposedtorangeofPLD’sorasettlementwindowbecausewewere interestedinthephysicaldriversofdispersal.Thedispersalmodelwasrunthreetimesandthe outputaveragedforconsistency. Totesttherobustnessofthemodelwithrespecttooceancirculationmodelresolution[56] weranidenticalbiophysicalmodelruns,forcingthemodelwithcurrentvelocitiesfromthe globalHYCOMata0.08˚resolutionandaregionalimplementationofHYCOMat0.04˚ (availablefortheMHIonly)resolutioninadditiontotheMITgcm(S1File). PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 3/25 PopulationConnectivityinHawaii Fig1.MapoftheHawaiianArchipelago.ToppanelshowingtheHawaiianArchipelagodomainofthedispersalmodelwiththemajorsurfacecurrents(in green)identified(afterLumpkin1998).Bathymetrylinesdenote1000and50misobaths.BottompanelsshowcoralreefhabitatpixelsfortheNorthwestern HawaiianIslandsandMainHawaiianIslandsrespectively,witheachisland’shabitatpixelsshownasaseparatecolor.BathymetrylinesinNWHIdenote 50mdepthisobath. doi:10.1371/journal.pone.0167626.g001 PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 4/25 PopulationConnectivityinHawaii Table1. Glossaryofoftenusedterms. TermsanddefinitionsusedthroughouttheHawaiianArchipelago connectivitystudy. Potential Themodeledestimateofconnectivityofasiteusingphysicaloceanographicattributes connectivity andlimitedbiologicalfactorsinfluencingdispersalabilityoftheparticles. Settlement Inthisstudywedefinesettlementasanyparticlewithin5kmofthecenterofahabitat pixelonday45afterrelease Self-recruitment Aparticlethatsettlesbackontothesameislandfromwhichitwasreleased Connectivitybreak Anareaoverwhichfew,ifany,particlesareexchanged Source-sinkindex Theratioofexportofparticlesandimportofparticlestoanarea,dividedbythetotal numberofsuccessfullytransportedparticles. doi:10.1371/journal.pone.0167626.t001 Statisticalanalysis Wearefocusingonpotentialconnectivityinthisstudy,whichestimatestheconnectivityofa siteusingphysicaloceanographicattributesandlimitedbiologicalfactorsinfluencingdispersal ability(inourcasePLDandhabitat)[57,58].Toevaluatepatternsofpotentialconnectivityin theHawaiianArchipelago,wecreatedaconnectivitymatrixthatmeasuresthelikelihoodof particleexchangebycurrentsamongsites.Themodelgeneratesa687x687settlementmatrix (Sij)containingthenumberofparticlesreleasedfromhabitati(sourcesite)thatsuccessfully reachedhabitatj(receivingsite)forthefullrunofthemodel(fiveyears).Tocreatetherear- wardprobabilitymatrix,wescaledSijtoislandspecifictotalreleasedparticles.Rearwardprob- abilitymatricesreportoriginsitesofparticlesarrivingatthereceivingsiteandcanbewritten: P =S /∑S. ij(rearward) ij j Wethenbinnedthe687habitatsitesusedinthedispersalmodelbyisland,resultingina31 x31islandmatrix,toallowforasimplercomparisonofpotentialconnectivity.Theresulting probabilitymatrix(P )showstheoriginislandofsuccessfullytransportedparticlesateach ij island.ThenumberineachcelloftheP matrixistheprobabilityofaparticletransportedto ij islandjhavingoriginatedfromislandiforthefiveyearsthemodelwasrun,andeachrowin thematrixsumsto1.Thediagonaloftheprobabilitymatrixshowstheself-recruitmentfor eachisland.ForwardprobabilitymatriceswerealsogeneratedandaredescribedinS1File. BecausethemajorityofcoralreeffishspawnduringMay-June[59,60],wecalculatedallmet- ricsonbothyear-roundreleasesandreleasesrestrictedtoMay-Juneofeachyear.Allmatrices wereplottedusingthesoftwareprogramGenericMappingTools(GMT)4.5.11[61]. Subtractionmatricesweregeneratedbysubtractingtheprobabilitymatrixforyearround releasesfromthematrixforMay-JunereleasesusingthesubroutinegrdmathinGMT4.5.11. Theresultingsubtractionmatrixshowswherethetwoconnectivitymatricesdiffer.Onlyfor- wardmatriceswerecomparedwitheachother,andrearwardmatriceswitheachother.We usedmanteltestsforeachpairofconnectivitymatricesusingfunctionmantelintheVegan packageversion2.2–1inthestatisticalsoftwareR[62]tocalculatethecorrelationbetweenthe probabilitymatrices. Successfultransport,definedasanyparticlewithin5kmofthecenterofahabitatpixelon day45afterrelease,wascalculatedbytallyingthedailynumberofsuccessfullytransportedpar- ticlesforallislandsanddividingitbythetotalnumberofdailyparticlesreleasedforthefive- yearmodelrun,allowingustodetermineannualandseasonalvariability.Additionally,wecal- culatedislandspecific“settlement”successoverfiveyears. Dispersaldistance,thegeographicdistancebetweenthereleasesiteandreceivingsitefora successfullytransportedparticleatthereceivingsite,wasdeterminedbyfirstcalculatingdis- tancesbetweenall687habitatpixelsusingthedistancematrixfunctiondistmwiththeHaver- sineformulaintheR-packagegeosphere[63].Thedistmfunctioncalculatesthegreatcircle PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 5/25 PopulationConnectivityinHawaii distance(Haversineformula)betweentwopointsusingtheirlatitudesandlongitudesin degreesandcreatesa687x687distancematrix(Dij)withthereleasesites(i)onthex-axis (rows)andreceivingsites(j)onthey-axis(columns).Wemultipliedthesettlementmatrix (Sij)generatedbythebiophysicalmodel(seeabove)withthedistancematrix(Dij)togenerate aproductmatrix(Pij).Becausethereismorethanonespawningandsettlementsite(hence- forthhabitatsite)perisland(forexample,BigIslandhas129habitatsites,O‘ahuhas62and KureAtollhas13),weaddedallthedistancesforallthehabitatsitesintheproductmatrix belongingtoeachisland,generatinga31x31matrixcontainingthesumofallthedistancesof alltheparticlesforeachislandcalledtheislandproductmatrix(PIij).Thesameprocedurewas followedtogenerateanislandsettlementmatrix(SIij);asquare31x31matrixcontainingthe totalnumberofsuccessfulsettlersforeachisland.Wethendividedthecolumnsumsfromthe islandproductmatrixwiththecolumnsumsoftheislandsettlementmatrixtoobtainthe meandispersaldistanceforsuccessfullysettledparticlesateachisland.Thesecalculationswere performedforyear-roundreleases,aswellasforparticlereleasesconfinedtoMayandJuneof eachyeartoallowustoexploreseasonalpatterns. Self-recruitment,definedastheproportionofsuccessfullytransportedparticlesateach islandthatoriginatedfromthatsameisland,isanimportantmetricwhenevaluatingtheper- sistenceofapopulation[8,64].Wecalculatedself-recruitmentforthedurationofthemodel runforeachislandbydividingthenumberofreleasedparticlesfromanislandthatweretrans- portedbacktothatislandbythetotalnumberof“settlers”there.Thisallowsustodetermine howdependentanislandisonrecruitmentfromoutsidelocationstomaintainthepopulation. Source-sinkdynamicswereassessedbycalculatingasource-sinkindexfollowingHolstein etal.[21].Wedefineasourceasanislandthatexports(outgoing)moreparticlesthanit imports(incoming),andasinkislandimportsmoreparticlesthanitexports[21,64].The source-sinkindexisaratioofthedifferencebetweensuccessfultransportoutoftheisland (export)andsuccessfultransportintotheisland(import),dividedbythetotalofallsuccessfully transportedparticlesinandoutoftheisland[21,64].Becausetheindexlooksatthedifference inthetotalfluxofparticlesintoandoutofeachisland,itallowsustocompareislandswith varyingamountofhabitatandislandsthathavetotalnumbersoftransportedparticlesthatdif- fersbyordersofmagnitude.Theindexspansfrom-1to1,andapositiveindeximpliesasource siteandanegativeindeximplyasinksite.Thestrongertheindexthemorelikelythesiteisto beapersistentsourceorsinksite.Azeroindexindicatesthatthefluxofparticlesthataresuc- cessfullytransportedontotheislandandoutoftheislandsarethesame.Thisindexallowsus tocompareislandsinthearchipelagoandevaluatessource-sinkdynamicsonaregionalscale, whereasself-recruitmentallowsustocharacterizeislandsassourcesorsinksonalocalscale. Results Potentialconnectivity Theprobabilitymatrixshowsanisolation-by-distancepatternwithsitesfarawayfromeach otherhavinglittleornopotentialconnectivityandconsiderableself-recruitmentformost islandsacrosstheArchipelago(Fig2).RestrictingparticlereleasetothetypicalMay-June spawningseasonminimallyalterstheoverallpotentialconnectivitypatterns(r=0.932)(Fig2b, S1Fig).DuringspawningseasonO‘ahuandMaroReefshowstrongerconnectionswithneigh- boringislandswhileNi‘ihauandKaua‘ibecomelessconnected.Self-recruitmentismore importantforKureandMidwayAtolls(Fig2)duringspawningseason,whereasRaitaismore dependentonself-recruitmentyearround(Fig2). ThereislimitedpotentialconnectivitybetweentheNWHIandtheMHI,andthedirection ofdispersalispredominantlyfromtheMHItotheNWHI.ParticlesoriginatingintheMHI PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 6/25 PopulationConnectivityinHawaii Fig2.PotentialConnectivitymatrixfortheHawaiianArchipelago.(A)Thevaluesineachcellare “settlement”probabilitiesscaledtothereceivingsiteforyear-roundparticlerelease.Arrowsindicatedthe breaksmentionedinthetext.Eachrowinthematrixaddsupto1.Highvalues(red)indicatehighconnectivity andlownumbers(blue)indicatelowconnectivity,andwhitecellsdenotenoconnectivity.(B)Differencematrix showingthedifferenceinconnectivitybetweenyear-roundandMay-Juneparticlerelease.TheMay-June PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 7/25 PopulationConnectivityinHawaii releasematrixissubtractedfromtheyear-roundreleasematrix(inAabove).Positivevalues(red)denotea higherconnectivityvalueforyear-roundreleasesandanegativenumber(blue)denoteshigherconnectivity forMay-Junereleasedparticles. doi:10.1371/journal.pone.0167626.g002 form37uniqueconnectionswithsitesintheNWHI(markedareaintheupperrightcornerof Fig2a),whileparticlesoriginatingfromtheNWHIonlyform24uniqueconnectionswith sitesintheMHI(markedareasinthebottomleftinFig2a).Fourtimesasmanyparticlesare successfullytransportedfromtheMHItotheNWHIthanviceversa(3.1%fromMHIto NWHIand0.77%fromNWHItotheMHIofthetotalsuccessfullysettledlarvae).TheMHI donotexportanyparticlesnorthwestofMokumanamana,andislandslocatedbetweenKaula andNihoainthecenterofthearchipelagoaretheonlyislandsintheNWHItocontributepar- ticlestotheMHI.MostparticlesreleasedfromNihoaarelosttothesystem,indicatedbythe lowself-recruitment(<1%)andlowcontribution(6.067E-4%–0.72%)tothe“settlement”at nearbyislands(Fig2). WhiletransportbetweentheMHIandtheNWHIispredominantlynorthwestward,total transportbetweenallislandsinthearchipelagoisreversed,with37%ofthesuccessfullytrans- portedparticlesarriveatislandstothesouth(islandsbelowthediagonalinFig2a),while32% ofparticlesaretransportedtoislandstothenorth(islandsabovethediagonalinFig2a).How- ever,96.3%ofthesuccessfullytransportedparticlesoriginatingintheMHIendupsettling withintheMHIand3.73%aresuccessfullytransportedtotheNWHI,while95.1%ofsuccess- fullytransportedparticlesoriginatingintheNWHIaresuccessfullytransportedtositeswithin theNWHIand4.87%ofparticlesaresuccessfullytransportedtotheMHI. Therearethreebreaksintheconnectivitymatrixpresentforbothyear-roundandseasonal particlerelease.Veryfewparticlessuccessfullycrossthesebreaks.Thesebreaksaremorepro- nouncedduringspawningseasonreleases(Fig2b),andaremoredistinctintheforwardmatri- ces(S2andS3Figs).ThesouthernmostbreaklocatedbetweenNihoaandMokumanamanais themostpronounced.NoparticlescrossthisbreakintooroutoftheMHI,effectivelycutting theMHIofffromtheNWHI.ThecentralbreakatGardnerPinnaclesandMaroReefistra- versedonlybyparticlestoandfromRaitaBank.ThenorthernbreakbetweenLisianskiand PearlandHermesAtolleffectivelyisolatesKureAtollandMidwayIslands,resultinginhigh self-recruitmentforthenorthernmostislandsinthearchipelago. Usingflowfieldsfromdifferentoceanographiccirculationmodelsatdifferentspatialreso- lutionsallowsustotestwhetherthepotentialconnectivitypatternsarerobusttomodelresolu- tion.Thereisastrongcorrelationbetweenthepotentialconnectivitydescribedaboveandthe connectivitymatrixgeneratedfromadispersalmodelrunthatusedcurrentvelocitiesfromthe coarserglobalHYCOM(r=0.9291)(S4Fig).FortheMHI,wecomparedconnectivitymatrices generatedfromthreedispersalmodelrunsthatusedcurrentvelocitiesfromthe0.04˚MITgcm (S5aFig),0.04˚regionalHYCOM(S5bFig),and0.08˚globalHYCOM(S5cFig).Potential connectivityfortheMHIgeneratedfromthemodelrunusingdifferentresolutionsofthe HYCOMcurrentsshowedthestrongestcorrelation(r=0.974)(S6aFig),followedbyconnec- tivitymatricesgeneratedfromthemodelrunswiththesamespatialresolutionoftheflow field,MITgcmand0.04regionalHYCOM(r=0.9533)(S6bFig).Weobservedthelargestdif- ferencebetweenpotentialconnectivitygeneratedfrommodelrunsusingMITgcmandthe 0.08kmHYCOMflowfields(r=0.9305)(S6cFig). Total“settlement” Successfultransportacrossallislandsishighlyvariablewithameanof1.416%(SE7.708e-5)of allreleasedparticlessuccessfullyarrivingatareceivingsiteoverthefive-yearmodelrun.The PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 8/25 PopulationConnectivityinHawaii Fig3.TotalpercentsuccessfulsettlementforallsitesintheHawaiianArchipelagoforthefive-yearmodelrun.Thegreenbarsrepresentparticles spawnedduringpeakspawningseasonMay-Juneeachyear. doi:10.1371/journal.pone.0167626.g003 lowesttotalsuccessfultransportwasseenonJuly6,2011(0.682%),andthehighesttotalsuc- cessfultransportonNovember2,2012(2.405%).Thereisnodiscernibleseasonalpatternin totalarrivalsobservedforthearchipelagoasawhole(Fig3).Thehighestratesofsuccessful transportin2009(2.27%)and2010(2.22%)coincidedwithparticlesreleasedduringpeak spawningseason(markedbygreenbarsinFig3);however,thefollowingthreeyearshadsome ofthelowestratesofsuccessfultransportforparticlesreleasedinMay-June(0.68%,0.95%,and 0.96%). TheMHIhaveoveralllargerrelativeprobabilityofsuccessfularrivalswhileislandsnearthe observedbreaksintheconnectivitymatrixhavethelowestrelativeprobabilityofsuccessful arrivals.JohnstonAtollhasthelowestrelativesuccessfularrivalvalueofallat0.0637%for year-roundreleaseand0.0337%forpeakspawningseasonreleases(Fig4).AtKaula,therela- tivearrivalsuccessisalmosttwoordersofmagnitudelargercomparedwithJohnstonAtoll, with3.574%foryear-roundspawning.Weseethelargestrelativearrivalsforseasonalrelease atLāna‘iwith2.713%.Hawai‘iIslandistheonlyMHItoshowhigherarrivalsuccessforparti- clesreleasedduringspawningseason(2.523%)comparedtoyear-roundreleases(2.298%). Distancetraveled Thespatiallyaveragedmeandistancetraveledis112.32km(SE=1.705)foryear-roundparti- clerelease.Particlesreleasedduringpeakspawningseasontravelfurther,withmeandistance of124.37km(SE=2.372).Mediandistancesareshorter,101.39kmand110.80kmforyear- roundandMay-Junereleaserespectively,indicatingthatafewparticlesdisperse,traveling PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 9/25 PopulationConnectivityinHawaii Fig4.Totalpercentsuccessfulsettlementateachislandforthefive-yearmodelrun.GreenbarsshowsettlementforparticlesspawnedduringMay- June,graybarsshowsettlementforyear-roundspawning. doi:10.1371/journal.pone.0167626.g004 significantlylongerdistancesanddrivingupthemean.Thisisalsoevidentfromthelongright tailonthedensitykernel(Fig5). Particlesarrivingatislandsinthecenterofthearchipelagotravelthelongestmeandis- tances,whileparticlesatJohnstonAtolltraveltheshortest(100%self-recruitment)(Fig6).Par- ticlessuccessfullytransportedtothebankjustsouthofNihoadispersedmorethandoublethe meandistanceforothersitesacrossthearchipelago:onaverage341.4kmduringMay-June release,and277.2kmduringyear-roundrelease.Consistentwithtotaldispersaldistancesfor allislands,island-specificdispersaldistancesaregreaterforparticlesreleasedduringspawning season,for23outof31islands(Fig6).IntheMHI,dispersaldistancesareconsistentthrough- outtheyearexceptforparticlesreleasedfromKaua‘iwhichhasamuchlongerdispersaldis- tanceduringMay-Junerelease.Kaua‘idispersaldistancesaremoresimilartoislandslocated inthecenterofthearchipelago,likelyduetothepredominantlynorthwestdirectionofdis- persal(Fig2)andthelongerdistancesbetweenhabitatsintheNorthwesternHawaiianIslands. Particlesreleasedfromislandlocatedtothenorthwestofeachconnectivitybreak(Pearland HermesAtoll,MaroReefandMokumanamanaIsland)haveshorterdispersaldistancescom- paredtotheislandjustsoutheastofthebreak(LisianskiIsland,GardnerPinnacles,andNihoa Island)by45.6%,63.4%,and73.9%respectively. Self-recruitment Themeanself-recruitmentforthearchipelagois25.2%(SE=0.0414)butvariesgreatlyfrom islandtoisland.JohnstonAtollreliessolelyonself-recruitment(100%)forpopulationpersis- tence,whileatNihoaIslandself-recruitmentaccountsforlessthan1%oftotalsettlement(Fig 7).DuringpeakspawningseasonNihoa,alongwithGardnerPinnacles,importalltheirparti- cles.Islandspecificself-recruitment(Fig7,anddiagonalintheconnectivitymatrixinFig2)is strongestatKure(year-round50.5%),PearlandHermesAtoll(year-round80.67%,May-June PLOSONE|DOI:10.1371/journal.pone.0167626 December8,2016 10/25
Description: