ebook img

Model Theory and the Philosophy of Mathematical Practice: Formalization without Foundationalism PDF

365 Pages·2018·2.194 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Model Theory and the Philosophy of Mathematical Practice: Formalization without Foundationalism

ModelTheoryandthePhilosophyof MathematicalPractice Major shifts in the field of model theory in the twentieth century have seen the development of new tools, methods, and motivations formathematicians and philosophers. In this book, John T. Baldwin placestherevolutioninitshistoricalcontextfromtheancientGreeks to the last century, argues for local rather than global foundations for mathematics, and provides philosophical viewpoints on the importance of modern model theory for both understanding and undertaking mathematical practice. The volume also addresses the impactofmodeltheoryoncontemporaryalgebraicgeometry,number theory,combinatorics,anddifferentialequations.Thiscomprehensive and detailed book will interest logicians and mathematicians as well asthoseworkingonthehistoryandphilosophyofmathematics. johnt.baldwinisProfessorEmeritusintheDepartmentofMath- ematics,Statistics,andComputerScienceattheUniversityofIllinois atChicago.Hehaspublishedwidelyonmathematicsandphilosophy, andheistheauthorofanumberofbooksincludingFundamentalsof StabilityTheory(1988)andCategoricity(2009). Model Theory and the Philosophy of Mathematical Practice Formalization without Foundationalism john t baldwin . UniversityofIllinois,Chicago UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107189218 DOI:10.1017/9781316987216 ©JohnT.Baldwin2018 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2018 PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-107-18921-8Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. To: Grace,Sharon,Katie,PoppyGrace Mother,wife,daughter,granddaughter Contents ListofFigures [pagex] Acknowledgments [xi] Introduction [1] part i refining the notion of categoricity [29] 1 Formalization [31] 1.1 TheConceptofFormalization [32] 1.2 VocabularyandStructures [34] 1.3 Logics [41] 1.4 TheoriesandAxioms [47] 2 TheContextofFormalization [51] 2.1 TheProcessofFormalization [51] 2.2 TwoRolesofFormalization [54] 2.3 ACriterionforEvaluatingPropertiesofTheories [58] 2.4 VirtuousPropertiesasanOrganizingPrinciple [61] 3 Categoricity [68] 3.1 CategoricityofSecondOrderTheories [69] 3.2 Lω1,ω-categoricity [74] 3.3 Lω,ω:CategoricityinPower [78] 3.4 TheSignificanceofCategoricity(inPower) [84] part ii the paradigm shift [87] 4 WhatWasModelTheoryAbout? [89] 4.1 TheDownwardLo¨wenheim–Skolem–TarskiTheorem [89] 4.2 Completeness,Compactness,andtheUpward Lo¨wenheim–Skolem–TarskiTheorem [92] 4.3 CompleteTheories [99] 4.4 QuantifierComplexity [104] 4.5 Interpretability [108] 4.6 WhatIsaStructure,Really? [111] 4.7 WhenAreStructures‘Equal’? [116] vii viii contents 5 WhatIsContemporaryModelTheoryAbout? [119] 5.1 AnalogytoTheoremtoMethod [119] 5.2 UniversalDomains [124] 5.3 TheStabilityHierarchy [128] 5.4 CombinatorialGeometry [133] 5.5 Classification:TheMainGap [137] 5.6 WhyIsModelTheorySoEntwinedwith ClassicalMathematics? [143] 6 IsolatingTameMathematics [148] 6.1 GroupsofFiniteMorleyRank [149] 6.2 FormalMethodsasaToolinMathematics [151] 6.3 FirstOrderAnalysis [156] 6.4 WhatAretheCentralNotionsofModelTheory? [162] 7 InfinitaryLogic [167] 7.1 CategoricityinUncountablePowerforLω1,ω [168] 7.2 TheVaughtConjecture [171] 7.3 De´javu:CategoricityinInfinitarySecondOrderLogic [175] 8 ModelTheoryandSetTheory [177] 8.1 IsThereModelTheorywithoutAxiomaticSetTheory? [178] 8.2 IsThereModelTheorywithoutCombinatorialSetTheory? [182] 8.3 WhyIsℵ0ExceptionalforModelTheory? [186] 8.4 EntanglementofModelTheoryandCardinality [189] 8.5 EntanglementofModelTheoryandtheReplacementAxiom [192] 8.6 EntanglementofModelTheorywithExtensionsofZFC [196] 8.7 Moral [198] part iii geometry [201] 9 AxiomatizationofGeometry [203] 9.1 TheGoalsofAxiomatization [205] 9.2 DescriptionsoftheGeometricContinuum [211] 9.3 SomeGeometricDataSetsandAxiomSystems [217] 9.4 GeometryandAlgebra [221] 9.5 ProportionandArea [229] 10 π,Area,andCircumferenceofCircles [234] 10.1 πinEuclideanandArchimedeanGeometry [234] 10.2 FromDescartestoTarski [239] 10.3 πinGeometriesoverRealClosedFields [243] 11 Complete:TheWordforAllSeasons [250] 11.1 Hilbert’sContinuityAxioms [252] 11.2 AgainsttheDedekindPostulateforGeometry [255] contents ix part iv methodology [259] 12 FormalizationandPurityinGeometry [261] 12.1 ContentandVocabulary [262] 12.2 ProjectiveandAffineGeometry [265] 12.3 GeneralSchemesforCharacterizingPurity [267] 12.4 Modesty,Purity,andGeneralization [273] 12.5 PurityandtheDesarguesProposition [273] 12.6 DistinguishingAlgebraicandGeometricProof [281] 13 OntheNatureofDefinition:ModelTheory [283] 13.1 MethodologyofClassification [285] 13.2 TheFecundityoftheStabilityHierarchy [287] 13.3 DividingLines [292] 13.4 Definition,Classification,andTaxonomy [294] 14 Formalism-Freeness(MathematicalProperties) [300] 15 Summation [312] References [317] Index [347]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.