ebook img

Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading: LEAP-UCD-2017 PDF

655 Pages·2020·57.92 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading: LEAP-UCD-2017

Bruce L. Kutter Majid T. Manzari Mourad Zeghal Editors Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading LEAP-UCD-2017 Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading (cid:129) Bruce L. Kutter Majid T. Manzari Mourad Zeghal Editors Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading LEAP-UCD-2017 Editors BruceL.Kutter MajidT.Manzari DepartmentofCivilandEnvironmental DepartmentofCivilandEnvironmental Engineering Engineering UniversityofCalifornia,Davis GeorgeWashingtonUniversity Davis,CA,USA Washington,DC,USA MouradZeghal DepartmentofCivilandEnvironmental Engineering RensselaerPolytechnicInstitute Troy,NY,USA ISBN978-3-030-22817-0 ISBN978-3-030-22818-7 (eBook) https://doi.org/10.1007/978-3-030-22818-7 Thisbookisanopenaccesspublication. ©TheEditor(s)(ifapplicable)andTheAuthor(s)2020 Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicenseandindicate ifchangesweremade. Theimagesorotherthirdpartymaterialinthisbookareincludedinthebook’sCreativeCommonslicense, unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthebook’sCreative Commonslicenseandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthepermitted use,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsorthe editorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrors oromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaims inpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Liquefactionofsaturatedsandsduringearthquakesandassociatedgrounddeforma- tions continue to be a major concern for engineers involved with design and evaluation of civil infrastructure, such as buildings, transportation facilities (e.g., bridges, roads, and ports), and water systems (e.g., dams, levees, pipelines, and aqueducts).Numerousconstitutivemodelsandnumericalsimulationplatformshave beendevelopedandarebeingusedtopredictthebehaviorofsaturatedsandsduring liquefaction.Thesesimulationtoolsarenowbeingusedinpracticetohelpevaluate civilinfrastructureeventhoughthereisnocurrentlyviableformalprocessavailable forvalidationofthesetools. Liquefaction Experiments and Analysis Projects (LEAP) is a series of collabo- rativeresearchprojectswiththemaingoalofproducingreliableexperimentaldatato be used for the assessment, calibration, and validation of constitutive models and numerical modeling techniques available for analysis of soil liquefaction and its effects.LEAPwasinitiallyenvisionedasafollowonfromthepioneeringVELACS (Verification of Liquefaction Analysis by Centrifuge Studies) project spearheaded byK.ArulanandanandR.F.Scottinthe1990s. This volume presents results from one LEAP project (LEAP-UCD-2017) that culminated in a workshop at the UC Davis in December 2017. It was preceded by LEAPprojectshostedbyProfessorIaiattheUniversityofKyotoandLEAP-GWU- 2015 hosted at the George Washington University and was followed in 2019 by LEAP-ASIA,atKansaiUniversity,hostedbyProfessors TobitaandUeda. LEAP-UCD-2017addressestherepeatability,variability,andsensitivityofcen- trifuge tests in modeling lateral spreading of mildly sloping liquefiable soils. To achieve this goal, 24 centrifuge tests were conducted at 9 different centrifuge facilitiesaroundtheworld.Theresultsofthesecentrifugetestsallowedfordefining aresponsesurfaceandenabledanassessmentofthesensitivityandvariabilityofthe tests. For the first time, a sufficient number of experiments were conducted on the same test configuration to enable the assessment of the test-to-test and facility- facilityvariabilityofthecentrifugetestresults. v vi Preface Theexperimental data obtained inthisprojectprovidedaunique opportunityto assess the capabilities of a number of numerical modeling techniques currently available for the analysis of soil liquefaction. Nine of the 24 centrifuge tests were selected for a type B prediction exercise in which 12 numerical simulation teams participated. To assist the numerical modeling effort, a large number of laboratory testswereperformedtocharacterizethephysicalandmechanicalresponseofOttawa F-65 Sand and to define the stress-strain-strength response of this soil in cyclic loading. These tests along with other available experimental data on Ottawa sand were used by the numerical simulation teams to calibrate the constitutive models embedded in their numerical simulation software. The results of both the experi- ments and numerical simulations were discussed in an international workshop that washeldinDecember2017onthecampusoftheUniversityofCalifornia,Davis. Thebackground,observations,andlessonslearnedinthecourseofLEAP-UCD- 2017projectaredescribedthroughoutthevolume,organizedinfourmainsections: 1. TheOverviewPaperssectionincludespapersthatdescribethespecificationsfor experiments,materialpropertiesforthetestedsand,andcomparisonsbetweenall oftheexperimentsandallofthesimulations. 2. TheCentrifugeExperimentPaperssectionincludesonepaperfromeachcentri- fugeexperimentteam. 3. TheNumericalSimulationPaperssectionincludesonepaperfromeachteamthat participatedintypeBandtypeCsimulations. 4. Finally, the Workshop Essays section includes short essays on topics related to LEAPthatweresubmittedatthetimeoftheLEAP-UCD-2017workshop. Thepapersinthisvolumecontainmanyconclusionsandimportantobservations. Inthispreface,oneormoreoftheeditorswanttohighlightsomeimportantpoints: 1. ThedataproducedbyLEAP-UCD-2017isreadilyavailabletothegeneralpublic through the NHERI Cyberinfrastructure Center’s DesignSafe at https://doi.org/ 10.9517603/DS2N10S.Weenvisionthatthefutureresearcherscouldusethedata and different metrics or techniques for type C simulations and as calibration/ validationbenchmarks. 2. The LEAP-UCD-2017 numerical simulation exercise demonstrated the role of experience and careful peer review in achieving reasonable simulations. Mod- elers with significant experience in numerical simulation of geotechnical engi- neeringproblemspredictedsomekeyaspectsoftheresponse(e.g.,magnitudeof lateralspreading)withreasonableaccuracies.Thiswasparticularlyinterestingas theconstitutivemodelsusedbythesamemodelerswerenotnecessarilythemost efficientincapturingthestress-strainresponseofthesoilinelementtests. 3. The results of centrifuge model tests are dependent on model initial conditions and experimental setup. Replication and repeatability of the model tests are essentialtointerpretthevariabilityinmeasurementsandobservations. 4. Theinterpretationofvariabilityoftheinitialstatewasimprovedsignificantlyby usinganewlydesignedLEAPconepenetrationtestinalmostallofthecentrifuge tests.Duetoerrorsassociatedwithdirectmeasurementofdensityfrommassand Preface vii volume,thedirectmeasurementofdensitybycurrentproceduresappearstobea lessreliableindicatorofstatethantheconepenetrationresistance. 5. Therestillisasignificantscatterobservedinthemeasurementsofminimumand maximum dry density for Ottawa F-65 sand; this scatter led to difficulty in the properselectionofrelativedensitybythenumericalmodelers. 6. The use of high-speed cameras in LEAP-UCD-2017 for measuring the lateral displacementsofgroundsurfaceduringlateralspreadingprovedtobeparticularly valuableandcomplimentarytomeasurementstypicallymadeafterthetest. 7. Inadditiontotheresultsofmonotonicandcyclictriaxialanddirectsimpleshear tests that were made available to the simulation teams in LEAP-2017 project, a larger database of element tests that include other relevant stress paths (e.g., hollowcylindertorsionalshear)andcoverawiderrangeofstressstates(smaller confining stresses that are comparable to average stresses in the centrifuge specimen)willenhancetheabilityofthenumericalmodelerstofurthercalibrate andfine-tunetheparametersoftheirconstitutivemodels. 8. Closecoordinationoftheexperimentaleffortsandcontinuouscommunicationof the research teams was a key in obtaining high-quality and consistent results. Numerous conference calls and web-based meeting with the participants across the United States, Europe, and Asia were held to develop and disseminate standards of practice regarding the method of sample preparation, density mea- surement,conepenetrationtesting,anddisplacementmeasurement. 9. Althoughthereadersmaybegintodrawconclusionsregardingwhichsimulation platformsandconstitutivemodelsarebestforagiventypeofanalysis,itisclear thatdifferentindividualswillbeabletodrawdifferentconclusionsinthisendeavor. Furthermore,acceptablenumericaltoolsmaybesensitivetoerrorsintheinputand to theaccuracy ofthemodel calibration andcalibration data. Even oneindividual could draw different conclusions regarding the acceptability of simulation tools depending on the metrics used for assessment. The bases for assessment of numerical models could involve multiple aspects of behavior such as: (a) Ability to predict element test results, such as the effective stress friction angleandliquefactiontriggeringcurves(e.g.,stressratiovs.numberofcycles to3%strain) (b) Ability to predict the shear modulus reduction and damping curves in labo- ratoryelementtests (c) Respectforperceivedfundamentalsofsoilbehavior,suchascriticalstatesoil mechanicsandstress-dilatancyrelationships (d) Ability to predict the ultimate residual displacement observed in a series of centrifugemodeltests (e) Ability to predict the cyclic strain amplitudes leading up to and following “triggering”inthecentrifugetests (f) Abilitytopredictthetimehistorytracesfromallofthenuancesporepressure andaccelerationsensorsinthecentrifugetests (g) Ability of the numerical tools to predict the evolution of density and soil behaviorinaseriesofshakingevents viii Preface Someengineersmayconsideranumericaltooltobedisqualifiedifitcannotpass stage (a) of validation. Others may focus only on the end result (e.g., item (d) residual displacement). Others may put different weights on each of the aboveitemsconsideredintheassessment.Itisclearthatsignificantworkremains inestablishingaformalwidelyacceptedframeworkfortheassessmentoflique- factionsimulationtools. Davis,CA,USA BruceL.Kutter Washington,DC,USA MajidT.Manzari Troy,NY,USA MouradZeghal ParticipantsintheLEAP-UCD-2017Workshop Preface ix Attendee Affiliation TarekAbdoun RensselaerPolytechnicInstitute PedroArduino UniversityofWashington RichardArmstrong CaliforniaStateUniversity,Sacramento ArulArulmoli EarthMechanics,Inc. AndresBarrero TheUniversityofBritishColumbia MichaelBeaty BeatyEngineering,Portland,Oregon EmilioBilotta UniversityofNaplesFedericoII RossBoulanger UniversityofCaliforniaatDavis JonathanBray UniversityofCalifornia,Berkeley TrevorCarey UniversityofCaliforniaatDavis LongChen UniversityofWashington ZhaoCheng ItascaConsultingGroup,Inc. YannisDafalias UniversityofCaliforniaatDavis KathleenDarby UniversityofCaliforniaatDavis ShidehDashti UniversityofColorado,Boulder JasonDeJong UniversityofCaliforniaatDavis RicardoDobry RensselaerPolytechnicInstitute MayaElKortbawi UniversityofCaliforniaatDavis MohamedElGhoraiby GeorgeWashingtonUniversity RichardFragaszy US,NationalScienceFoundation DavidFrost GeorgiaInstituteofTechnology KiyoshiFukutake ShimizuCorporation AndreasGavras UniversityofCaliforniaatDavis AlborzGhofrani UniversityofWashington NithyagopalGoswami RensselaerPolytechnicInstitute Jeong-GonHa KAIST(KoreaAdvancedInstituteofScienceandTechnology) StuartHaigh CambridgeUniversity TimothyHaynes UniversityofCaliforniaatDavis GabbyHernandez UniversityofCaliforniaatDavis FranciscoHumire UniversityofCaliforniaatDavis SusumuIai FLIPConsortium KojiIchii KansaiUniversity BorisJeremic UniversityofCaliforniaatDavisandLBNL AliKhosravi UniversityofCaliforniaatDavis MohammadKhosravi UniversityofCaliforniaatDavis DongsooKim KAIST(KoreaAdvancedInstituteofScienceandTechnology) SeongnamKim KAIST(KoreaAdvancedInstituteofScienceandTechnology) TakatoshiKiriyama ShimizuCorporation EvangeliaKorre RensselaerPolytechnicInstitute SteveKramer UniversityofWashington KevinKuei UniversityofCaliforniaatDavis BruceL.Kutter UniversityofCaliforniaatDavis HoeLing ColumbiaUniversity KaiLiu ZhejiangUniversity JorgeMacedo UniversityofCalifornia,Berkeley (continued) x Preface GopalSPMadabhushi UniversityofCambridge SrikanthSCMadabhushi UniversityofCambridge AndrewMakdisi UniversityofWashington IanMaki CaliforniaDivisionofSafetyofDams ErikMalvick CaliforniaDivisionofSafetyofDams MajidT.Manzari TheGeorgeWashingtonUniversity AlejandroMartinez UniversityofCaliforniaatDavis FrankMcKenna UniversityofCalifornia,Berkeley LelioMejia GeosyntecConsultants,Inc. JackMontgomery AuburnUniversity TylerOathes UniversityofCaliforniaatDavis KyleO'Hara UniversityofCaliforniaatDavis MitsuOkamura EhimeUniversity OsamuOzutsumi MeisoshaCorporation DongSoonPark K-waterResearchInstitute NicholasPaull UniversityofCaliforniaatDavis RenminPretell UniversityofCaliforniaatDavis AdamPrice UniversityofCaliforniaatDavis ZhijianQiu UniversityofCalifornia,SanDiego EllenRathje UniversityofTexas InthuornSasanakul UniversityofSouthCarolina SumeetKumarSinha UniversityofCaliforniaatDavis AsriNuraniSjafruddin EhimeUniversity NicholasStone UniversityofCaliforniaatDavis AlexSturm UniversityofCaliforniaatDavis MahdiTaiebat TheUniversityofBritishColumbia JiroTakemura TokyoInstituteofTechnology LiaoTing-Wei NationalCentralUniversity,Taiwan TetsuoTobita KansaiUniversity DimitraTsiaousi Fugro,WalnutCreek,California KyoheiUeda KyotoUniversity JoseUgalde Fugro,WalnutCreek,California RyosukeUzuoka KyotoUniversity RubenRodrigoVargasTapia KyotoUniversity TomaWada KyotoUniversity RuiWang TsinghuaUniversity HungWen-Yi NationalCentralUniversity,Taiwan DanWilson UniversityofCaliforniaatDavis TianlongXu GeorgiaInstituteofTechnology MingYang TheUniversityofBritishColumbia MouradZeghal RensselaerPolytechnicInstitute BarryZheng UniversityofCaliforniaatDavis YanguoZhou ZhejiangUniversity KaterinaZiotopoulou UniversityofCaliforniaatDavis

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.