Model for the Production of CO Cameron band emission in Comet 1P/Halley SusarlaRaghuramandAnilBhardwaj∗ SpacePhysicsLaboratory,VikramSarabhaiSpaceCentre,Trivandrum695022,India. 2 Abstract 1 TheabundanceofCO incometshasbeenderivedusingCOCameronband(a3Π →X1Σ+)emissionassumingthat 0 2 2 photodissociative excitation of CO2 is the main production process of CO(a3Π). On comet 1P/Halley the Cameron (1-0)bandhasbeenobservedbyInternationalUltravioletExplorer(IUE)onseveraldaysinMarch1986. Acoupled n chemistry-emissionmodelisdevelopedforcomet1P/Halleytoassesstheimportanceofvariousproductionandloss a J mechanismsofCO(a3Π)andtocalculatetheintensityofCameronbandemissionondifferentdaysofIUEobservation. 0 Two different solar EUV flux models, EUVAC of Richards et al. (1994) and SOLAR2000 of Tobiska (2004), and 3 differentrelativeabundancesofCOandCO ,areusedtoevaluatetheroleofphotonandphotoelectroninproducing 2 COmoleculeina3Πstateinthecometarycoma. Itisfoundthatincomet1P/Halley60–70%ofthetotalintensityof ] P theCameronbandemissioniscontributedbyelectronimpactexcitationofCOandCO2,whilethecontributionfrom E photodissociativeexcitationofCO2 issmall(20–30%). Thus,inthecometswhereCOandCO2 relativeabundances . arecomparable,theCameronbandemissionislargelygovernedbyelectronimpactexcitationofCO,andnotbythe h photodissociativeexcitationofCO asassumedearlier.ModelcalculatedCameronband1-0emissionintensity(40R) p 2 - isconsistentwiththeobservedIUEslit-averagedbrightness(37±6R)usingEUVACmodelsolarfluxon13March o 1986, and also on other days of observations. Since electron impact excitation is the major production mechanism, r t theCameronemissioncanbeusedtoderivephotoelectrondensityintheinnercomaratherthantheCO2abundance. s a Keywords: COmolecule,comet1P/Halley,Cameronbandemission,UVemission,photochemistry [ 1 v 1. Introduction the abundance of CO in comets (Weaver et al., 1994; 2 1 Weaveretal.,1997;Feldmanetal.,1997). 9 Ejectingneutralgasanddustintospace,cometscre- 2 The observation of Cameron band of CO molecule ate extensive and unique atmospheres in the interplan- 6 in the coma of comet 103P/Hartley 2 (Weaver et al., . etary space. Interaction of solar extreme ultraviolet 1 1994) by Hubble Space Telescope (HST) gave an in- (EUV)radiationwithcometaryspeciescausesspectrum 0 citement to re-examine the data of several comets ob- 2 of different emissions. Spectroscopic observations of served by the International Ultraviolet Explorer (IUE) 1 cometsintheUVregionbyspace-basedtelescopesgive satellite. Cameron band (1-0) emission at 1993 Å is : informationaboutcomposition, abundance, andspatial v observed in 4 comets, including comet 1P/Halley, in i distribution of neutral species in the cometary coma X the IUE spectra (Feldman et al., 1997). The Cameron (e.g., Feldman et al., 2004). The number densities of band(0-0)and(0-1)emissionsat2063and2155Å,re- r CO andCOincometarycomahavebeenderivedusing a 2 spectively, could not be observed since they fall in the emissions from the dissociative products which can be lowsensitivityendoftheIUElong-wavelengthcamera. produced in metastable states. Assuming photodisso- Since the excited upper state (a3Π) of Cameron band ciativeexcitationisthemainproductionmechanismin emissionismetastableanditslifetimeisverysmall(∼3 populatingthea3ΠmetastablestateofCO,theCameron band(a3Π→X1Σ+)emissionhasbeenusedtoestimate ms,Gilijamseetal.,2007)comparedtolifetimeofCO2 molecule (∼135 hours at 1 AU, Huebner et al., 1992), theCO(a3Π)moleculecantraveladistanceoffewme- ∗Corresponding author: [email protected], bhard- ters only in the cometary coma before de-exciting into [email protected] ground state (X1Σ+) via emitting photons. Hence, the PreprintsubmittedtoPlanetaryandSpaceScience January31,2012 CameronbandemissioncanbeusedtoprobeCO dis- Thisincreaseinabundancecanbeexplainedbydissoci- 2 tribution,andthusitsabundanceinthecoma,provided ation of CO-bounded species and also through heating itisproducedonlythroughphotodissociationofCO . ofseveralrefractorygrainsbysunlight. Othercometary 2 Besidesphotons,thesolarEUV-generatedphotoelec- specieslikeH CO,C O ,POM(polyoxymethylene,or 2 3 2 trons also play a significant role in driving the chem- polyformaldehyde),CH OH,andCO canalsoproduce 3 2 istryofcometaryspeciesinthecoma. Theimportance COmoleculesinphotodissociationprocess(seeGreen- ofphotoelectronsinexcitation,dissociation,andioniza- bergandLi,1998;CottinandFray,2008,andreferences tionofvariouscometaryspeciesandsubsequenteffects there in). However, there are no literature reports on on emissions in the inner coma are discussed in sev- the production of CO(a3Π) from CO-bearing species, eral works (e.g., Cravens and Green, 1978; Ip, 1985; like H CO, CH OH, and C O , via photodissociation 2 3 3 2 Boice et al., 1986; Ko¨ro¨smezey et al., 1987; Bhard- orelectronimpactdissociativeexcitation. waj et al., 1990, 1996; Haider et al., 1993; Ha¨berli Reanalysis of the IUE data on comet 1P/Halley etal.,1996;Bhardwaj,1999,2003;HaiderandBhard- showed 5 observations of the Cameron 1-0 band emis- waj,2005;CampbellandBrunger,2009;Feldmanetal., sion,whichspanovera10-daysperiodinMarch1986; 2009; Bhardwaj and Raghuram, 2011a,b). To explain theintensityof1-0emissionvariedbyafactorofabout the Cameron band emission in comet 103P/Hartley 2, 4 from lowest value of 20±6 to highest value of 65±9 Weaver et al. (1994) considered five possible produc- Rayleighs (Feldman et al., 1997). Assuming that the tion mechanisms of CO(a3Π) molecule. The modelled production of Cameron band emission is only through Cameron band emission of CO molecule by Weaver photodissociationofCO ,Feldmanetal.(1997)derived 2 etal.(1994)suggestedthat60%oftotalCO(a3Π)pro- theCO abundancesof∼2to6%,andalsotheCO /CO 2 2 duction can be through photodissociative excitation of abundanceratio. CO ; the remaining was attributed to other excitation TheproductionofCO(a3Π)ismainlyassociatedwith 2 processes. Feldman et al. (1997) assumed that pho- spatial distribution of CO and CO molecules in the 2 todissociative excitation of CO is the only source of coma. We have recently developed a model for the 2 Cameron band emission in comet 1P/Halley. Recent chemistryofCO(a3Π)oncomet103P/Hartley2(Bhard- calculations of Bhardwaj and Raghuram (2011a) have waj and Raghuram, 2011a). In the present paper this demonstrated that in the comet 103P/Hartley 2, 60 to coupled chemistry model has been employed to study 90% of CO(a3Π) production is through the photoelec- the production of Cameron band emissions on comet tronimpactofCO andCOandthatthecontributionof 1P/Halley. The contributions of major production and 2 photodissociation of CO is quite small. The derived lossprocessesofCO(a3Π)incomet1P/Halleyareeval- 2 ratesofelectronimpactdissociationofCO producing uatedfordifferentrelativeabundancesofCOandCO . 2 2 CO(a3Π)byFeldmanetal.(2009)showthatphotodis- The photochemistry in the cometary coma is driven sociationcanbecomparablewithelectronimpactexci- bysolarUV-EUVradiation.ThesolarUVfluxisknown tationinproducingCameronbandemission. However, to vary considerably both with the 27-day solar rota- the comet 103P/Hartley 2 is depleted in CO (relative tion period and with the 11-year solar activity cycle. abundance <1%). But in the case of comet 1P/Halley SincethecontinuousmeasurementsofsolarEUVfluxes theCOabundanceisrelativelyhighercomparedtothat are not available for different cometary observations, on the 103P/Hartley 2, and hence the contribution due one has to depend on the empirical solar EUV mod- todirectexcitationofCObyelectronimpactwouldbe els. ToassesstheimpactofsolarEUVfluxonthecal- muchlarger. culated brightness of Cameron band emission we have There are several observations of CO in comet taken two most commonly used solar EUV flux mod- 1P/Halley, as well as in other comets, which suggest els,namelyEUVACmodelofRichardsetal.(1994)and that CO is produced directly from the nucleus as well SOLAR2000 v.2.3.6 (S2K) model of Tobiska (2004). ashavingprevaileddistributedsourcesinthecometary ThesolarEUVfluxfromthesetwomodelsfor13March coma(Eberhardtetal.,1987;Eberhardt,1999;DiSanti 1986areshowninFig.1. et al., 2003; Cottin and Fray, 2008). The measured This paper will demonstrate that in comets where number density of CO by neutral mass spectrometer CO and CO relative abundances are comparable, the 2 on Giotto spacecraft, which flew through the coma of photoelectron impact excitation of CO plays a major 1P/Halley, is ≤7% relative to water at 1000 km come- roleincontrollingthebrightnessofCameronband,and tocentric distance. This relative abundance is higher notthephotodissociationofCO asassumedpreviously. 2 (≤15%) at larger distances (2 × 104 km) in the coma SincetheCameronbandemissionisforbiddenandelec- (Eberhardtetal.,1987;Eberhardt,1999;Festou,1999). tron impact is the major excitation mechanism, this 2 emission is suitable to track photoelectron flux in the andsolarzenithangleθ,iscalculatedbydegradingthe inner cometary coma rather than the CO abundance. solar UV-EUV radiation in the cometary coma using 2 We have also studied the sensitivity of calculations as- thefollowingequation sociated with variation in input solar flux and electron (cid:90) (cid:88) impactexcitationcrosssectionsofCO andCOinesti- Q(E,r,θ)= n(r)σI(λ)I (λ)exp[−τ(r,θ,λ)]dλ(2) 2 i i ∞ matingtheintensityofCameronbandemission. i λ where, 2. Model (cid:88) (cid:90) ∞ τ(r,θ,λ)= σA(λ)secθ n(r(cid:48))dr(cid:48) (3) The neutral parent species considered in the model i i i r are H O, CO , and CO. The density of neutral parent 2 2 speciesinthecomaiscalculatedusingHaser’sformula, Here σA(λ) and σI(λ) are absorption and ionization i i which assumes spherical distribution of gaseous envi- crosssections,respectively,ofith speciesatwavelength ronmentaroundthenucleus. Thenumberdensityni(r) λ, ni(r) is its neutral gas density calculated using the ofith speciesinthecomaatacometocentricdistancer equation1,andτ(r,θ,λ)isopticaldepthofthemedium. isgivenby I∞(λ)isunattenuatedsolarfluxatthetopofatmosphere at wavelength λ. All calculations are made at solar fQ ni(r)= 4πivirp2(e−βi/r) (1) ztieonnitchroasnsgsleec0ti0o.nTshoefHph2oOto,CabOso2,rpatnidonCaOndarpehtoaktoeinonfriozma- Here Q is the total gas production rate of the comet, ShunkandNagy(2009). p v is the average velocity of neutral species taken as 1 The steady state photoelectron fluxes are calculated i kms−1,β isscalelength(β =8.2×104 km,β = using the Analytical Yield Spectrum (AYS) approach, i H2O CO2 5.0 × 105 km, and β = 1.4 × 106 km) and f is frac- which is based on the Monte Carlo method. Details CO i tional abundance of ith species. Calculations are made of the AYS approach are given in several of the previ- forcomet1P/Halleytakingtotalgasproductionrateas ouspapers(SinghalandHaider,1984;Bhardwajetal., 6.9×1029s−1,whichhasbeenobservedbyGiottomis- 1990,1996;SinghalandBhardwaj,1991;Bhardwajand sion (Krankowsky et al., 1986). Since cometary coma Singhal, 1993; Bhardwaj, 1999, 2003; Bhardwaj and is dominated by water, 80% of total production rate is Michael, 1999a,b; Haider and Bhardwaj, 2005; Bhard- assumedtobeH O. waj and Jain, 2009). We have used two dimensional 2 The in situ gas measurements at comet 1P/Halley yieldspectratocalculatedphotoelectronflux fp(E,r)as made by Giotto Neutral Mass Spectrometer (NMS) on afunctionofenergyEandcometocentricdistancer the encounter date 13 March 1986 showed that CO2 (cid:90) ∞ Q(E,r,θ)Uc(E,E ) abundanceis3.5%ofwater(Krankowskyetal.,1986). fp(E,r)= (cid:80)n(r)σ (E) o (4) On the same day, based on IUE observation, Feldman w i iT etal.(1997)derivedCO abundanceof4.3%.Eberhardt where Q(E,r,θ) is primary photoelectron production 2 etal.(1987)suggestedthatbelow1000km,nuclearrate rate calculated using equation 2. σ (E) is total in- iT ofCOproductioncanbe7%ofwater.Theradialprofile elasticelectronimpactcrosssectionatenergyEforthe ofCOcalculatedbyEberhardtetal.(1987)showedal- ith species whose number density is n(r). The lower i mostaconstantvalueofCOrelativeabundance(≤15%) limitofintegrationwisminimumexcitationenergyand above15000km. ThisincreaseinCOabundanceisat- Uc(E,E ) is two dimensional composite yield spectra o tributedtothepresenceofanextendedsourceforCOin (SinghalandHaider,1984;Bhardwajetal.,1990). The the cometary coma. The IUE-derived average produc- total inelastic electron impact cross sections for water tionrateofCOis4.7%(Feldmanetal.,1997). Wehave aretakenfromRaoetal.(1995),andthoseforCO and 2 taken 4% CO and 7% CO directly coming from nu- COaretakenfromJackmanetal.(1977). 2 cleusasthestandardinputforthemodel. Wehavealso Thelossprocessofphotoelectronsthroughcollisions considered extended CO density profile directly from withthermalelectronsisconsideredusingthefollowing Giotto NMS observation (Eberhardt et al., 1987). Fur- formula ther,therelativeabundancesofCO andCOarevaried 2 n β(E,n ,T) to assess the effect on the intensity of Cameron band n σeff = e e (5) e e−e emissionanddifferentproductionchannelsofCO(a3Π). EW The primary photoelectron energy spectrum wheren isthethermalelectrondensity,Eistheenergy e Q(E,r,θ), at energy E, cometocentric distance r, of photoelectron, and W is the average energy lost per 3 collision between photoelectron and the thermal elec- in comet 103P/Hartley 2. Recently, Bhardwaj and tron. The expression β is given by McCormick et al. Raghuram (2011a) have demonstrated that on comet (1976). More details are provided in Bhardwaj et al. 103P/Hartley 2 the photoelectron impact dissociative (1990). Thecalculatedphotoelectronfluxesforthetwo excitation of CO followed by photoelectron impact 2 solarEUVfluxmodelsat1000kmareshowninFig.2. of CO are the major production processes of Cameron The electron impact volume production rates of dif- band,andnotthephotodissociativeexcitationofCO as 2 ferent ions from neutral species and volume excitation suggestedbyWeaveretal.(1994). rates for CO(a3Π) state from CO and CO are calcu- Since comet 103P/Hartley 2 is CO depleted (rel- 2 latedusingphotoelectronflux f (E,r)andelectronim- ative abundance ≤1%), the contribution to Cameron p pact excitation cross section σ of ith species and kth band emission through dissociative excitation of CO ik 2 stateas by EUV-generated photoelectrons is more important. (cid:90) 100 However, in case of comets where CO abundance is V(r)=n(r) f (E,r)σ (E)dE (6) larger, like 1P/Halley, the contribution of CO to the i p ik w Cameron band emission would be significant. The de- Thecrosssectionsforelectronimpactdissociativeion- rived CO2/CO abundance ratios for several IUE obser- ization of water are taken from Itikawa and Mason vationsofcomet1P/Halleyshowedthattheabundance (2005), for CO2 from Bhardwaj and Jain (2009), and ofCOcanbeevendoublethatofCO2 (Feldmanetal., forCOfromMcConkeyetal.(2008). 1997). Table1presentsthereactionsinvolvedintheproduc- The calculated production rate profiles of CO(a3Π) tionandlossofCO(a3Π). Huebneretal.(1992)calcu- usingsolarEUVACandS2Kmodelsforrelativeabun- lated the cross section for photodissociative excitation danceof4%CO2and7%COareshowninFigure4.For of CO producing CO in a3Π state using total absorp- both solar EUV flux models, the peak production rate 2 tioncrosssectionandtheyieldmeasuredbyLawrence occurs at cometocentric distance ∼20 km. The major (1972). We averaged these cross section values over productionmechanismofCO(a3Π)isthephotoelectron 50Åbinintervalstocalculatephotodissociativeexcita- impactofCO,whosecontributionis∼70%tothetotal tionrateusingsolarfluxfromEUVACandS2Kmodels; CO(a3Π) production. On using the S2K solar flux, the thiscrosssectionisshowninFig.3. Thecrosssection calculated total production rate is 1.5 times larger than for electron impact excitation of CO in the a3Π state that obtained using the EUVAC flux. This variation is is taken from Jackman et al. (1977) and for dissocia- mainlyduetothedifferenceintheinputsolarEUVflux tiveexcitationofCO producingCO(a3Π)istakenfrom (cf.Fig.1)andsubsequentlyEUV-generatedphotoelec- 2 BhardwajandJain(2009).Thesecrosssectionsarepre- tronflux(cf.Fig.2).Inthewavelengthregion700–1050 sented in Fig. 2. To estimate the effect of electron im- Å, the S2K model solar flux is a factor of ∼2.5 larger pactcrosssectionsonemissions,wehaveusedtheelec- than the EUVAC model (cf. Fig. 1). As shown in Fig- tron impact cross sections recommended by Avakyan ure 3, the photodissociative excitation cross section of etal.(1998)fortheabovetwoprocesses,whicharealso CO2 producing CO(a3Π) maximizes around 880–1000 shown in Fig. 2. The electron temperature profile, re- Å.Further,theS2Ksolarfluxinthe1000–1050Åwave- quiredfordissociativerecombinationreactions,istaken length bin is around 20 times higher than the EUVAC fromKo¨ro¨smezeyetal.(1987). flux. The average cross section value for photodisso- ciation of CO producing CO(a3Π) in the wavelength 2 region1000–1050Åiscomparablewiththepeakvalue 3. Resultsanddiscussions around900Å(cf.Figure3). Moreover,intheinnercometarycoma,belowcome- 3.1. Cameronbandemission tocentric distance of 50 km, the optical depth for so- The first clear observation of Cameron band emis- larfluxatwavelengthsbelow200Åandabove1000Å sionofCOmoleculeismadeincomets103P/Hartley2 is smaller compared to other wavelengths because of and C/1992 T2 Shoemaker-Levy (Weaver et al., smaller absorption cross sections of neutral species 1994), which was followed by detection in several (mainlywater). Therateofphotodissociativeexcitation other comets, including 1P/Halley, in the IUE repro- of CO molecule into CO(a3Π) mainly depends on the 2 cessed data (Feldman et al., 1997). Assuming that degradationofsolarfluxinthewavelengthregion850– the photodissociative excitation of CO is the ma- 1050 Å. Hence, in the innermost coma (≤50 km), for 2 jor production mechanism of Cameron band emission, a given relative abundance of CO , the production rate 2 Weaver et al. (1994) derived the abundance of CO ofCO(a3Π)viaphotodissociationofCO isdetermined 2 2 4 by the solar flux in the wavelength bin 1000–1050 Å on13March1986atgeocentricdistance0.96AU.The and at wavelengths 1025.7 Å (H I) and 1031.9 Å (O volumeemissionratefor3transitions(0-0,1-0,and0- VI).ThecalculatedphotodissociationratesofCO pro- 1)oftheCameronbandarecalculatedusingthefollow- 2 ducingCO(a3Π)at0.9AUare1.66×10−7s−1and5.28 ingformula ×10−7 s−1 usingEUVACandS2Ksolarfluxes,respec- (cid:88) tively,on13March1986. V (r)=q (A / A )V(r)exp(−τ) (8) ν(cid:48)ν(cid:48)(cid:48) oν(cid:48) ν(cid:48)ν(cid:48)(cid:48) ν(cid:48)ν(cid:48)(cid:48) From Figure 2 it is seen that the calculated steady ν(cid:48)(cid:48) statephotoelectronfluxusingtwosolarfluxmodelsdif- ferinmagnitudebyafactorof2.Sincethecrosssection whereV(r)istotalvolumeexcitationrateofCO(a3Π)at forelectronimpactofCOproducingCO(a3Π)peaksat a given cometocentric distance r, given by equation 6, lower energies (∼10 eV) where the photoelectron flux qoν(cid:48) is the Franck-Condon factor for transition, Aν(cid:48)ν(cid:48)(cid:48) is is also high (∼108 cm−2 s−1 eV−1 sr−1; cf. Fig. 2), the theEinsteintransitionprobabilityfromupperstateν(cid:48)to electronimpactexcitationofCOisamajorproduction lower state ν(cid:48)(cid:48), and τ is the optical depth. Since reso- source of Cameron band emission. At larger (>5000 nancefluorescenceisnotaneffectiveexcitationmecha- km) cometocentric distances, due to decrease in pho- nismfortheCameronband,thecometarycomacanbe toelectronflux,thephotodissociativeexcitationofCO safelyassumedtobeopticallythin.TheFranck-Condon 2 starts becoming an increasingly important process (cf. factorsaretakenfromNicholls(1962)andbranchingra- Fig.4). Contributionsfromdissociativerecombination tiosfromConway(1981). reactions and resonance fluorescence of CO are more Thecalculatedbrightnessprofilesforeachofthepro- thantwoordersofmagnitudelowercomparedtomajor duction processes along projected distances from nu- productionprocesses. cleus are shown in Figure 7. At 100 km projected Since the lifetime of CO(a3Π) is about ∼3 ms, the distance, the contribution due to photoelectron impact quenching of the excited a3Π metastable state by vari- excitation of CO to the total Cameron band intensity ous cometary species is not very efficient. The calcu- is about a factor 4 higher than the dissociative exci- latedlossrateprofilesofCO(a3Π)forvariousprocesses tation processes of CO2, while contributions of other are shown in Figure 5. The radiative de-excitation is productionprocessesarearound2ordersofmagnitude the main loss process. Very close to the nucleus, the smaller. Around1000kmprojecteddistance,bothpho- loss due to quenching of CO(a3Π) by water is compa- todissociative excitation and electron impact dissocia- rable to the radiative de-excitation. Quenching by wa- tive excitation of CO2 are contributing equally to the ter molecule would be a more significant loss process totalCameronbandintensity.Thephotodissociativeex- ofCO(a3Π)inthehigherwaterproductionratecomets, citationofCO2dominatestheelectronimpactexcitation likeHale-Bopporwhenthecometismuchclosertothe processesabove5000km. Sunthan1AU.Thecalculatednumberdensityprofileof The calculated relative contributions of (1-0), (0-0), CO(a3Π)isshowninFig.6. Above100km,thedensity and (0-1) bands to the total Cameron band are 13.9%, profileofCO(a3Π)mostlyfollowingthenumberdensity 10.4%, and 14.5%, respectively. The intensities of (1- profilesoftheparentspeciesCO andCO. 0),(0-0)and(0-1)CameronbandsofCOmoleculeare 2 The above calculated total production rate is inte- calculated as a function of relative abundances of CO2 gratedupto105 kmtoobtaintheheight-integratedcol- andCO.Thecalculatedpercentagecontributionsofdif- umnintensityofCameronbandemissionwhichispre- ferent production processes of Cameron band at three sentedinTable2.Wealsocalculatedthelineofsightin- projected distances for two different solar flux mod- tensityatagivenprojecteddistancezfromthecometary els are presented in Table 2. The IUE-observed 1-0 nucleus using production rates of different excitation Cameron band emission on 13 March 1986 is 37±6 processesofCO(a3Π)as Rayleighs. (cid:90) R Using EUVAC solar flux as input, our model cal- I(z)=2 V(s)ds (7) culated 1-0 Cameron band emission intensity for the z relative abundance 4% CO and extended distribution 2 where s is abscissa along the line of sight and V(s) is of CO is 59 Rayleighs which is higher than IUE ob- the corresponding emission rate. The maximum limit servedintensitybyafactor1.3to2. TakingCO abun- 2 of integration R is taken as 105 km. These brightness dance as 4% and CO abundance as 7% from nucleus, profilesarethenaveragedovertheprojectedarea6600 the calculated 1-0 intensity is 51 Rayleighs, which is × 11000 km2 corresponding to the IUE slit dimension higher than the IUE-observed value by a factor 1.2 to 9(cid:48)(cid:48).07 × 15(cid:48)(cid:48).1 centred on nucleus of comet 1P/Halley 1.6. The calculated intensity for 3% CO and 7% CO 2 5 is 46 Rayleighs, which is consistent only with the up- impact excitation of CO alone contribute around 45 to per limit of IUE-observed intensity. In all the above 55% (40 to 60%) to the total Cameron band intensity cases,below1000kmprojecteddistances,thecontribu- when EUVAC (S2K) solar flux is used. The contribu- tion of photodissociation of CO to the Cameron band tion of photodissociation of CO to the IUE-observed 2 2 emission is <15%, while electron impact of CO con- Cameronbandbrightnessisaround20%(30%)forEU- tribute65to80%. Wehavealsocalculatedtheintensity VAC (S2K) solar flux model when the abundances of of Cameron band taking the Feldman et al. (1997) de- COandCO inthecometarealmostequal. Thesecom- 2 rivedabundancesof4.3%CO and4.7%CO.Thecal- putation show that in the IUE field of view the pho- 2 culatedintensityof1-0Cameronbandemissioninthis toelectron is a major production source (60-75% con- caseis40R,whichisconsistentwiththeobservedvalue tribution) for the Cameron band emission, whereas the of 37 ± 6 R on 13 March 1986 (cf. Table 3). The cal- contributionduetophotonsissmall(20-35%). culated1-0Cameronbandemissionintensityatvarious ThecalculationspresentedinTables2and3renders projected distances in the IUE-slit field of view is pre- that in case of comets where CO /CO abundance ratio 2 sented in the Figure 8; The circular contours and gray iscloserto1orlargerthan1,theemissionintensityof scale provide information on brightness variation. The Cameronbandismainlycontrolledbytheabundanceof calculated results using S2K solar flux model for the COintheinnercometarycoma. Thephotoelectronim- above discussed relative compositions of CO and CO pactexcitationofCOisthemainproductionmechanism 2 arealsopresentedinTable2. Thecalculatedintensities for the production of Cameron band emission, but not are higher by a factor of ∼1.5, which is mainly due to thephotodissociativeexcitationofCO assuggestedor 2 higherinputsolarfluxandsubsequentlyEUV-produced assumedinearlierstudies(Weaveretal.,1994;Weaver photoelectron’sflux(cf.Figs.1and2). etal.,1997;Feldmanetal.,1997). Thus,incometsthat Using OH 3085 Å emission observation by IUE, havesufficientCOabundancetheelectronimpactexci- Tozzi et al. (1998) derived water production rates for tationofCOproducingCO(a3Π)canbeanefficientex- different days of IUE observations (1986 March 9, 11, citationmechanismforCameronbandemission. Since 13, 16, 18) around Giotto encounter period. The wa- Cameron emission is mainly governed by electron im- terproductionratederivedon13March1986,theclos- pact excitation reactions, this emission can be used to est approach day of Giotto spacecraft, was 5.9 × 1029 track the photoelectron density mainly in the energy s−1. Feldman et al. (1997) have considered these de- range10to15eVnearthenucleus. rivedproductionratesofH Otoestimaterelativeabun- In the case of comet 103P/Hartley 2, which has an 2 dances of CO and CO for corresponding days of ob- orderofmagnitudelowergasproductionrateandmuch 2 servation. WehavecalculatedtheintensityofCameron lowerCO(abundance<1%)thancomet1P/Halley,the band for different days of IUE observations taking the dissociativerecombinationofCO+ becomesacompet- 2 sameH O,CO ,andCOproductionratesasquotedin ing production mechanism at larger (>104 km) come- 2 2 Feldman et al. (1997). The solar EUV fluxes on each tocentric distances (Bhardwaj and Raghuram, 2011a). day ofobservation was obtainedby usingEUVAC and However, in comparison, on comet 1P/Halley the pro- S2K solar flux models and scaling them according to ductionratesofH O,CO ,andCOaresohighthatthe 2 2 the heliocentric distance of comet. The IUE projected photonandphotoelectronimpactreactionsaredominant field of view is calculated for IUE slit dimension used throughouttheinnercometarycoma. in observation, which vary according to the geocentric distanceofthecometinMarch1986.Thecalculatedin- 3.2. Effectofelectronimpactcrosssection tensitiesofCameron1-0,0-0,0-1bandsandpercentage Inthissectionwewilldiscusstheimpactofcrosssec- contributions from different production process to the tions for electron impact excitation of CO(a3Π) from IUEslit-averagedbrightnessarepresentedTable3. The CO and CO. The threshold for exciting CO molecule 2 calculated intensity of 1-0 emission is consistent with inthemetastablea3Πstateis6eVandthepeakvalueof the IUE-observation for the EUVAC solar flux model, crosssectionoccursaround10eV(cf.Fig.2).Thecross while it is higher by a factor of 1.5 on using S2K so- sectionforelectronimpactexcitationofCOproducing lar flux. The calculations presented in Table 3 show CO(a3Π) reported by Jackman et al. (1977) is theoret- that for a change in the CO /CO abundance ratio by ically fitted based on Born approximation and experi- 2 a factor of 2, the total photoelectron impact excitation mentalmeasurementsofAjello(1971). Theuncertainty contribution changes by only ∼10%; it varies from 68 associated with measurement is about 75%. However, to76%(60to69%)ofthetotalIUE-observedintensity theuncertaintyinthecrosssectionatenergieslessthan forEUVAC(S2K)solarfluxmodel. Thephotoelectron 15eVis35%(Ajello,1971),wherethecontributionof 6 electronimpactexcitationplaysamajorrole(cf. Fig2). model (Tobiska, 2004). Calculations are made for dif- ThecrosssectionmeasurementsofFurlongandNewell ferentdaysofIUE-observationofcomet1P/Halley.The (1996)differatthepeakvalueofcrosssectionbyafac- important results from the present model calculations tor 2 (cf. Figure 2). The threshold for dissociation of canbesummarizedasfollows: CO molecule into CO(a3Π) state is 11.45 eV. Ajello 2 • Forthesameday,thesolarfluxfromthetwomod- (1971)measuredCameronbandemissioncrosssections els (EUVAC & S2K) are different, and the differ- inthewavelengthregion1950–2500ÅbyexcitingCO 2 encebetweenthemvarieswithwavelength. moleculethroughelectronimpact. Sawadaetal.(1972) concludedthatthesecrosssectionsarecomparablewith • TheproductionratesobtainedbyusingS2Ksolar crosssectionsof12.6eVand13.6eVstates. Thecross fluxmodelarehigherthanthatofEUVACmodel. section value for CO(a3Π) production due to electron ThephotodissociationofCO islargerbyafactor 2 impactofCO measuredat80eVbyErdmanandZipf 2 of2.5,whilethephotoelectronimpactexcitationis (1983)is2.4×10−16 cm−2. BhardwajandJain(2009) largerbyafactorof∼1.5. modifiedthefittingparametersgivenbyJackmanetal. (1977) for the excited states 12.6 eV and 13.6 eV of • ThetotalproductionrateofCO(a3Π)peaksaround CO moleculetomatchcrosssectionvaluemeasuredby cometocentricdistanceof20kmforbothsolarflux 2 ErdmanandZipf(1983)at80eV(formorediscussion models. onthesecrosssectionsseeAjello,1971;Sawadaetal., • Throughout the inner coma the main loss mecha- 1972;BhardwajandJain,2009). Avakyanetal.(1998) nismofCO(a3Π)isradiativedecay. Verycloseto correctedAjello(1971)reportedcrosssectionsbasedon measurements of Erdman and Zipf (1983). The differ- thenucleus(<20km)quenchingbywaterisalso significant. ence in the cross section of Avakyan et al. (1998) and BhardwajandJain(2009)below30eVisaboutafactor • Intheinner(≤5000km)comathemajorproduc- of2(cf. Fig2). tion mechanism of CO(a3Π) is photoelectron im- UsingelectronimpactCO(a3Π)excitationcrosssec- pactexcitationofCO. tionsfromFurlongandNewell(1996)forCOandfrom Avakyanetal.(1998)forCO ,andusingEUVACsolar • On using EUVAC solar flux, and abundances of 2 flux, the calculated emission intensity of 1-0 Cameron COandCO2asderivedfromIUE-observation,the band, for a given relative abundances of CO and CO , model calculated Cameron band 1-0 emission in- 2 islargerbyafactor2. Inthesecalculationsthecontri- tensity(40R)isconsistentwiththeIUE-observed butionofelectronimpactexcitationofCOisincreased brightness(37±6R)on13March1986,andalso from70%to85%atcometocentricdistancesbelow103 onotherdaysofobservations. However,thecalcu- km and 40% to 60% at distances above 103 km. On latedintensitiesarelargerbyafactor1.5whenthe using these cross sections, the percentage contribution S2KsolarEUVfluxisused. of photoelectron impact excitation of CO to the total • For EUVAC (S2K) solar flux model, around 70% CameronemissionintheIUE-slit-averagedintensityis (65%) of the total intensity of Cameron band ob- found to increase by 10%, but there is no significant served by the IUE is contributed by electron im- change in electron impact excitation of CO . In this 2 pact excitation of CO and CO molecules, while case the contribution from photodissociative excitation 2 the contribution from photodissociative excitation ofCO isdecreasedby10%. 2 ofCO isabout20–30%only. 2 • In comets having comparable CO and CO rela- 2 4. Summary tiveabundances, theintensityofCameronbandis largelydeterminedbythephotoelectronimpactex- Using the coupled chemistry-emission model a de- citationofCO,andnotthephotodissociativeexci- tailed study of Cameron band (a3Π → X1Σ+) emis- tationofCO assuggestedbyearlierstudies. 2 sionhasbeencarriedoutonthecomet1P/Halleyaround the Giotto encounter period. The effects of change in • Since the emission intensity of Cameron band is solar flux on the production of CO(a3Π) and thus the mainlygovernedbyelectronimpactreactions,this Cameronbandintensityhavebeenevaluatedbyconsid- emission may be more useful to track the photo- eringtwodifferentsolarEUVfluxmodels,viz.EUVAC electrondensityin10–15eVenergyregioninthe model (Richards et al., 1994) and S2K (SOLAR2000) innercoma,ratherthantheCO2abundance. 7 Acknowledgements Cottin,H.,Fray,N.,2008.Distributedsourcesincomets.SpaceSci. Rev.doi:10.1007/s11214-008-9399-z. DiSanti,M.,Mumma,M.,Russo,N.D.,Magee-Sauer,K.,Griep,D., One of the authors (SR) was supported by ISRO re- 2003.Evidenceforadominantnativesourceofcarbonmonoxide searchfellowshipduringtheperiodofthisstudy. incometC/1996B2(Hyakutake).J.Geophys.Res.Planets108f, 15–11.doi:10.1007/s11214-008-9399-z. Eberhardt,P.,1999.Distributedsourcesincomets.SpaceScienceRev. References 90,45–52.doi:10.1023/A:1005221309219. Eberhardt,P.,Krankowsky,D.,Schulte,W.,Dolder,U.,Lammerzahl, P.,Berthelier,J.J.,Woweries,J.,Stubbemann,U.,Hodges,R.R., Ajeilnlot,hJe.iMnt.e,r1v9a7l112.E60m-i4s5s0io0nÅc,roIIs.sJs.eCchtieomns.PofhyCsO.525b,y3e1l6e9c–tr3o1n7i7m.pdaocit: Hoffman,J.H.,Illiano,J.M.,1987.TheCOandN2Abundancein 10.1063/1.1676564. Comet1P/Halley.Astron.Astrophys.187,481–414. Erdman,P.W.,Zipf,E.C.,1983.Electron-impactexcitationofthe Avakyan,S.V.,II’in,R.N.,Lavrov,V.M.,Ogurtsov,G.N.(Eds.), Cameronsystem(a3Π→X1Σ)ofCO.Planet.Spece.Sci.31,317 1998. Collision Processes and Excitation of UV Emission from –321.doi:10.1016/0032-0633(83)90082-X. Planetary Atmospheric Gases: A Handbook of Cross Sections. Feldman,P.D.,Cochran,A.L.,Combi,M.R.,2004.Spectroscopic GordonandBreachSciencePublishers. investigationsoffragmentspeciesinthecoma: incometsII.M. Bhardwaj, A., 1999.OntheroleofsolarEUV,photoelectrons, and auroralelectronsinthechemistryofC(1D)andtheproductionof C.Festou,H.A.Weaver,&H.U.Keller(Ed.)(Tucson: Univ.of CI1931Åintheinnercometarycoma:AcaseforcometP/Halley. Arizona). J.Geophys.Res.104,1929–1942.doi:10.1029/1998JE900004. Feldman,P.D.,Festou,M.C.,Tozzi,G.P.,Feldman,P.D.,Weaver, Bhardwaj,A.,2003.OnthesolarEUVdepositionintheinnercoma H.A.,1997.TheCO2/COabundanceratioin1P/Halleyandseveral othercometsobservedbyIUEandHST.Astrophys.J.475,829– of comets with large gas production rates. Geophys. Res. Lett. 30(24).doi:10.1029/2003GL018495. 834.doi:10.1086/303553. Feldman,P.D.,Lupu,R.E.,McCandliss,S.R.,Weaver,H.A.,2009. Bhardwaj,A.,Singhal,R.P.,1993.OpticalthinHLymanalphapro- The far ultraviolet spectral signatures of formaldehyde and car- ductiononouterplanets:lowenergyprotonaccelerationinparallel bondioxideincomets.AstrophysJ.699(2), 1104–1112. doi: electricfieldsandneutralHatomprecipitationfromringcurrentJ. Geophys.Res.9473–9481(98).doi:10.1029/92JA02400. 10.1088/0004-637X/699/2/1104. Festou, M.C., 1999.Distributedsourcesincomets.SpaceScience Bhardwaj,A.,Haider,S.A.,Singhal,R.P.,1990.Auroralandpho- Rev.90,53–67.doi:10.1023/A:1005225426057. toelectronfluxesincometaryionospheres.Icarus85,216–228. doi:10.1016/0019-1035(90)90112-M. Furlong,J.M.,Newell,W.R.,1996.Totalcrosssectionmeasurement forthemetastable(a3Π)stateinCO.J.Phys.B:At.Mol.Phys.29, Bhardwaj, A., Haider, S. A., Singhal, R. P., 1996. Production and 331–338.doi:10.1088/0953-4075/29/2/020. emissionsofatomiccarbonandoxygenintheinnercomaofcomet 1P/Halley: Roleofelectronimpact.Icarus120,412–430. doi: Gilijamse,J.J.,Hoekstra,S.,Meek,S.A.,Metsa¨la¨,M.,vandeMeer- 10.1006/icar.1996.0061. akker,S.Y.T.,T,S.Y.,Meijer,G.,Groenenboom,G.C.,C.,G., 2007.TheradiativelifetimeofmetastableCO(a3Π,ν=0).J.Chem. Bhardwaj, A., Jain, S. K., 2009. Monte Carlo model of elec- Phys.127,221102–4.doi:10.1063/1.2813888. tRroens. e1n1e4rg,y1d1e3g0r9a.dationdoiin:10a.10C2O9/220a0t9mJAos0p1h4e2re9.8;J. cGoreroepchtiyosn. Greenberg,J.M.,Li,A.,1998.Frominterstellardusttocomets: the doi:10.1029/2009JA014298. extendedCOsourceinHalley.Astron.Astrophys.332,374–384. Ha¨berli,R.M.,Altwegg,K.,Balsiger,H.,Geiss,J.,1996.Heatingof Bhardwaj, A., Michael, M., 1999a. Monte Carlo model for elec- thethermalelectronsinthecomaofcometP/Halley.J.Geophys. etrffionciednecgireasd.atJi.onGienopShOy2s.gRase:s.C1r0o4ss(s1e0c)t,ion2s4,71y3ie–l2d4s7p2e8c.tradaonid: Res.101(A7),15579–15589. 10.1029/1999JA900283. Haider,S.A.,Bhardwaj,A.,2005.Radialdistributionofproduction rates,lossratesanddensitiescorrespondingtoionmasses≤40amu Bhardwaj, A., Michael, M., 1999b. On the excitation of Io’s at- intheinnercomaofcometHalley: Compositionandchemistry. mosphere by the photoelectrons: Application of the analytical Icarus177,196–216.doi:10.1016/j.icarus.2005.02.019. 1y0ie.l1d02sp9e/1c9tr9u8mGLof90S0O322.0G. eophys.Res.Lett.26,393–396. doi: Haider, S. A., Bhardwaj, A., Singhal, R. P., 1993. Role of auroral and photoelectrons on the abundances of Methane and Ammo- Bhardwaj,A.,Raghuram,S.,2011a.ModelforCameron-bandemis- nia in the coma of comet Halley. Icarus 101, 234 – 243. doi: sion in comets: A case for the EPOXI mission target comet 103P/Hartley2.Mon.Not.R.Astron.Soc.412,L25–L29. doi: 10.1006/icar.1993.1021. 10.1111/j.1745-3933.2010.00998.x. Huebner, W. F., Keady, J. J., Lyon, S. P., 1992. Solar photorates forplanetaryatmospheresandatmosphericpollutants.Astrophys. Bhardwaj, A., Raghuram, S., 2011b. Coupled Chemistry-Emission SpaceSci.195(1),1–294.doi:10.1007/BF00644558. ModelforAtomicOxygenGreenandRed-doubletEmissionsin Comets:AcasestudyforthecometC/1996B2Hyakutake.Astro- Ip,W.,1985.Apreliminaryconsiderationoftheelectronimpaction- izationeffectincometarycomas.Adv.SpaceRes.5,47–51. doi: phys.J.(Submitted). 10.1016/0273-1177(85)90066-3. Boice,D.C.,Huebner,W.F.,Keady,J.J.,Schmidt,H.U.,Wegmann, R., 1986.AmodelofcometP/Giacobini-Zinner.Geophys.Res. Itikawa, Y., Mason, N., 2005.Crosssectionsforelectroncollisions Lett.13,381–384.doi:10.1029/GL013i004p00381. withwatermolecules.J.Phys.Chem.Ref.Data34(1),1–22. doi: 10.1063/1.1799251. Campbell,L.,Brunger,M.J.,2009.Electronimpactexcitationofthe Jackman,C.H.,Garvey,R.H.,Green,A.E.S.,1977.Electronimpact carbon monoxide in comet Hale-Bopp. Geophys. Res. Lett. 36. doi:10.1029/2008GL036641. onatomosphericgases,I,updatedcrosssections.J.Geophys.Res. 82,5081–5090.doi:10.1029/JA082i032p05081. Cravens,T.E.,Green,A.E.S.,1978.Airglowfromtheinnercomasof comets.Icarus.33,612–623.doi:10.1016/0019-1035(78)90193-8. Ko¨ro¨smezey, A., Cravens, T. E., Gombosi, T. I., Nagy, A. F., Mendis, D. A., SzegÅ, K., Gribov, B. E., Sagdeev, R. Z., Conway, R. R., 1981. Spectroscopy of the Cameron bands in Shapiro, V. D., Shevchenko, V. I., 1987. A new model of the Mars airglow. J. Geophys. Res. 86, 4767 – 4775. doi: 10.1029/JA086iA06p04767. cometaryionosphere.J.Geophys.Res92(A7),7331–7340. doi: 8 10.1029/JA092iA07p07331. Bopp(C/1995O1).Science275,1900–1904. Krankowsky,D.,Lammerzahl,P.,Herrwerth,I.,Woweries,J.,Eber- Weaver, H. A., Feldman, P. D., McPhate, J. B., A’Hearn, M. F., hardt,P.,Dolder,U.,Herrmann,U.,Schulte,W.,Berthelier,J.J., Arpigny,C.,Smith,T.E.,1994.DetectionofCOCameronband Illiano, J. M., Hodges, R. R., Hoffman, J. H., 1986.In situ gas emissionincometP/Hartley-2(1991XV)withtheHubbleSpace andionmeasurementsatcometHalley.Nature321,326–329.doi: Telescope.AstrophysJ.422,374–380.doi:10.1086/173732. 10.1038/321326a0. Wysong,I.J.,2000.MeasurementofquenchingratesofCO(a3Π)us- Lawrence, G. M., 1972. Photodissociation of CO2 to produce inglaserpumpandprobetechnique.Chem.Phys.Lett.1-2,42– CO(a3π). J. Chem. Phys. 56 (7), 3435 – 3442. doi: 46.doi:10.1016/S0009-2614(00)00967-2. 10.1063/1.1677717. McConkey,J.W.,Malone,C.P.,Johnson,P.V.,Winstead,C.,McKoy, V., Kanik, I., 2008. Electron impact dissociation of oxygen- containingmoleculesAcriticalreview.Phys.Rept.466, 1–103. doi:10.1016/j.physrep.2008.05.001. McCormick, P. T., Michelson, P. F., Pettibone, D. W., Whitten, R. C., 1976. On the energy deposition of photoelectrons in the atmosphere of Venus. J. Geophys. Res. 81, 5196 – 5200. doi: 10.1029/JA081i028p05196. Nicholls,R.W.,1962.Laboratoryastrophysics.J.Quant.Spectry.Ra- diat.Transfer2,433–449.doi:10.1016/0022-4073(62)90030-4. Rao, M. V. V. S., Iga, I., Srivastava, S. K., 1995. Ionization cross-sections for the production of positive ions from H2O by electron impact. J. Geophys. Res. 100, 26421–26425. doi: 10.1029/95JE02314. Richards, P.G., Fennelly, J.A., Torr, D.G., 1994.EUVAC:Aso- larEUVfluxmodelofaeronomiccalculations.J.Geophys.Res. 99(A5),8981–8992.doi:10.1029/94JA00518. Rosati, R. E., Johnsen, R., Golde, M. F., 2003. Absolute yields of CO(a(cid:48)3Σ+,d3∆i,e3Σ−)+Ofromthedissociativerecombinationof CO+ionswithelectrons.J.Chem.Phys.119(22),11630–11635. 2 doi:10.1063/1.1623480. Rosati,R.E.,Skrzypkowski,M.P.,Johnsen,R.,Golde,M.F.,2007. YieldofexcitedCOmoleculesfromdissociativerecombinationof HCO+andHOC+ionswithelectrons.J.Chem.Phys.126,154302. doi:10.1063/1.2715943. Sawada, T., Strickland, D. J., Green, A. E. S., 1972. Electron en- ergydepositioninCO2.J.Geophys.Res.77,4812–4818. doi: 10.1029/JA077i025p04812. Schmidt,H.U.,Wegmann,R.,Huebner,W.F.,Boice,D.C.,1988. Cometarygasandplasmaflowandwithdetailedchemistry.Comp. Phy.Comm.49,17–59.doi:10.1016/0010-4655(88)90214-7. Seiersen,K.,Al-Khalili,A.,Heber,O.,Jensen,M.J.,Nielsen,I.B., Pedersen,H.B.,Safvan,C.P.,Andersen,L.H.,2003.Dissociative recombinationofthecationanddicationofCO2.Phys.Rev.A68. doi:10.1103/PhysRevA.68.022708. Shunk, R. W., Nagy, A. F., 2009. Ionospheres - physics, plasma physics,andchemistry.CambridgeUniversityPress. Singhal,R.P.,Bhardwaj,A.,1991.MonteCarloSimulationofPho- toelectronEnergizationinParallelElectricFields:Electroglowon Uranus.J.Geophys.Res.96,15963–15972. Singhal, R. P., Haider, S. A., 1984. Analytical yield spectrum ap- proachtophotoelectronfluxesintheearth’satmosphere.J.Geo- phys.Res.89,6847–6852.doi:10.1029/JA089iA08p06847. Skrzypkowski,M.P.,Gougousi,T.,Johnsen,R.,Golde,M.F.,1998. MeasurementoftheabsoluteyieldofCO(a3π)+Oproductsinthe dissociativerecombinationofCO+ ionswithelectrons.J.Chem. 2 Phys.108(20),8400–8407.doi:10.1063/1.476267. Tobiska, W.K., 2004.SOLAR2000irradiancesforclimatechange, aeronomyandspacesystemengineering.Adv.SpaceRes.34,1736 –1746.doi:10.1016/j.asr.2003.06.032. Tozzi,G.P.,Feldman,P.D.,Festou,M.C.,1998.Originandproduc- tionofC(1D)atomsincometarycomae.Astron.Astrophys.330, 753–763. Weaver,H.A.,Feldman,P.D.,A’Hearn,M.F.,Arpigny,C.,Brandt, J.C.,Festou,M.C.,Haken,M.,McPhate,J.B.,Stern,S.A.,Tozzi, G.P.,1997.TheactivityandsizeofthenucleusofcometHale- 9 Table1:ReactionsfortheproductionandlossofCO(a3Π). Reaction Rate(cm3s−1ors−1) Reference CO +hν→CO(a3Π)+O(3P) Model Presentwork 2 CO+hν→CO(a3Π) 1.69×10−9 Weaveretal.(1994) CO +e− →CO(a3Π)+O+e− Model Presentwork 2 ph CO+e− →CO(a3Π)+e− Model Presentwork ph CO++e−→CO(a3Π)+O K ∗ Seiersenetal.(2003), 2 a Rosatietal.(2003) HCO++e−→CO(a3Π)+H K † Rosatietal.(2007), b Schmidtetal.(1988) CO(a3Π)+hν→C+O 7.2×10−5 Huebneretal.(1992) CO(a3Π)+hν→CO++e− 8.58×10−6 Huebneretal.(1992) CO(a3Π)+hν→O+C++e− 2.45×10−8 Huebneretal.(1992) CO(a3Π)+hν→C+O++e− 2.06×10−8 Huebneretal.(1992) CO(a3Π)+H O→CO+H O 3.3×10−10 Wysong(2000) 2 2 CO(a3Π)+CO →CO+CO 1.0×10−11 Skrzypkowskietal.(1998) 2 2 CO(a3Π)+CO→CO+CO 5.7×10−11 Wysong(2000) CO(a3Π)+e− →CO++2e− Model Presentwork ph CO(a3Π) −→CO+hν 1.26×102 Lawrence(1972) ∗K =6.5×10−7(300/Te)0.8×0.87×0.29cm3s−1;here0.87 a isyieldofdissociativerecombinationofCO+ producingCO, 2 and0.29isyieldofCO(a3Π)producedfromCO. †K =2.4×10−7(300/Te)0.7×0.23cm3s−1;here0.23isyield b of dissociative recombination of HCO+ producing CO(a3Π), e− =photoelectron. ph 10