ebook img

Model-Based Data Analysis Parameter Inference and Model Testing PDF

209 Pages·2016·4.39 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Model-Based Data Analysis Parameter Inference and Model Testing

Model-Based Data Analysis Parameter Inference and Model Testing Allen Caldwell January 25, 2016 2 Acknowledgement 3 4 Preface 5 6 Contents 1 IntroductiontoProbabilisticReasoning 11 1.1 WhatisProbability? . . . . . . . . . . . . . . . . . . . . . . . . 12 1.1.1 MathematicalDefinitionofProbability . . . . . . . . . . 13 1.2 ScientificKnowledge . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2.1 UpdatingScheme . . . . . . . . . . . . . . . . . . . . . . 16 1.2.2 SchoolsofDataAnalysis . . . . . . . . . . . . . . . . . . 18 1.2.3 Whichprobability? . . . . . . . . . . . . . . . . . . . . . 19 1.3 Warm-upExcercizes . . . . . . . . . . . . . . . . . . . . . . . . 20 1.3.1 ApparatusandEventType . . . . . . . . . . . . . . . . . 20 1.3.2 EfficiencyofAparratus . . . . . . . . . . . . . . . . . . . 21 1.3.3 ExercizeinBayesianLogic . . . . . . . . . . . . . . . . 22 2 BinomialandMultinomialDistribution 25 2.1 BinomialDistribution . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.1 SomePropertiesoftheBinomialDistribution . . . . . . . 26 2.1.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.3 CentralInterval . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.4 SmallestInterval . . . . . . . . . . . . . . . . . . . . . . 28 2.2 NeymanConfidenceLevelConstruction . . . . . . . . . . . . . . 29 2.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 LimitoftheBinomialDistribution . . . . . . . . . . . . . . . . . 32 2.4.1 LikelihoodfunctionforaBinomialModel . . . . . . . . . 32 2.4.2 GaussianApproximationfortheBinomialProbability . . 33 2.5 ExtractingKnowledgeusingBayesEquation . . . . . . . . . . . 36 2.5.1 FlatPior . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5.2 DefiningProbableRanges . . . . . . . . . . . . . . . . . 38 2.5.3 NonflatPrior . . . . . . . . . . . . . . . . . . . . . . . . 42 7 8 CONTENTS 2.5.4 ADetailedExample . . . . . . . . . . . . . . . . . . . . 43 2.6 MultinomialDistribution . . . . . . . . . . . . . . . . . . . . . . 49 2.6.1 BayesianDataAnalysis . . . . . . . . . . . . . . . . . . 49 2.6.2 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.6.3 AddingthePrior . . . . . . . . . . . . . . . . . . . . . . 51 3 PoissonDistribution 57 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.1 LimitoftheBinomialDistribution . . . . . . . . . . . . . 58 3.2.2 ConstantRateProcess&FixedObservationTime . . . . . 59 3.3 ThePoissonDistribution . . . . . . . . . . . . . . . . . . . . . . 60 3.3.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.2 ExamplesandGraphicalDisplay . . . . . . . . . . . . . . 61 3.4 BayesianAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4.1 DiscussionandExamples: FlatPriorResults . . . . . . . 66 3.4.2 Non-flatPriors . . . . . . . . . . . . . . . . . . . . . . . 69 3.5 SuperpostionoftwoPoissonProcesses . . . . . . . . . . . . . . . 72 3.5.1 LikelihoodforMultiplePoissonProcesses . . . . . . . . . 73 3.6 Feldman-CousinsIntervals . . . . . . . . . . . . . . . . . . . . . 75 3.7 BayesianAnalysisofPoissonProcesswithBackground . . . . . . 78 3.7.1 ComparisonoftheBayesianandFeldman-CousinsIntervals 78 3.8 UncertainBackground . . . . . . . . . . . . . . . . . . . . . . . 82 3.8.1 FrequentistAnalysis . . . . . . . . . . . . . . . . . . . . 82 3.8.2 BayesianAnalysis . . . . . . . . . . . . . . . . . . . . . 82 3.9 BayesianAnalysisoftheOn/OffProblem . . . . . . . . . . . . . 83 3.9.1 SourcediscoverywithOn/Offdata . . . . . . . . . . . . . 87 3.9.2 On/offwithfactorizedJeffreyspriors . . . . . . . . . . . 88 4 GaussianProbabilityDistributionFunction 97 4.1 TheGaussDistributionastheLimitoftheBinomialDistribution . 98 4.2 TheGaussDistributionastheLimitofthePoissonDistribution . . 98 4.3 Gauss’derivationoftheGaussdistribution . . . . . . . . . . . . . 99 4.4 SomepropertiesoftheGaussdistribution . . . . . . . . . . . . . 101 4.5 CharacteristicFunction . . . . . . . . . . . . . . . . . . . . . . . 103 4.5.1 Sumofindependentvariables . . . . . . . . . . . . . . . 104 4.5.2 CharacteristicFunctionofaGaussian . . . . . . . . . . . 106 4.5.3 SumofGaussdistributedvariables . . . . . . . . . . . . . 106 CONTENTS 9 4.5.4 GraphicalExample . . . . . . . . . . . . . . . . . . . . . 107 4.5.5 AddinguncertaintiesinQuadrature . . . . . . . . . . . . 108 4.6 AddingCorrelatedVariables . . . . . . . . . . . . . . . . . . . . 110 4.6.1 CorrelationCoefficient-examples . . . . . . . . . . . . . 110 4.6.2 SumofCorrelatedGaussDistributedVariables . . . . . . 111 4.7 CentralLimitTheorem . . . . . . . . . . . . . . . . . . . . . . . 112 4.7.1 ExampleofCentralLimitTheorem . . . . . . . . . . . . 114 4.8 CentralLimitTheoremforPoissonDistribution . . . . . . . . . . 115 4.9 Practical use of the Gauss function for a Poisson or Binomial probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.10 FrequentistAnalysiswithGaussdistributeddata . . . . . . . . . . 120 4.10.1 Neymanconfidencelevelintervals . . . . . . . . . . . . . 120 4.10.2 Feldman-Cousinsconfidencelevelintervals . . . . . . . . 122 4.11 BayesiananalysisofGaussdistributeddata . . . . . . . . . . . . 125 4.11.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 129 4.12 Ontheimportanceoftheprior . . . . . . . . . . . . . . . . . . . 131 5 ModelFittingandModelselection 139 5.1 BinomialData . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.1.1 BayesianAnalysis . . . . . . . . . . . . . . . . . . . . . 140 5.1.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.2 FrequentistAnalysis . . . . . . . . . . . . . . . . . . . . . . . . 146 5.2.1 Test-statistics . . . . . . . . . . . . . . . . . . . . . . . . 146 5.2.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.3 Goodness-of-fittesting . . . . . . . . . . . . . . . . . . . . . . . 149 5.3.1 BayesAnalysis-poormodel . . . . . . . . . . . . . . . . 151 5.3.2 FrequentistAnalysis-poormodel . . . . . . . . . . . . . 152 5.4 p-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.4.1 Definitionofp-values . . . . . . . . . . . . . . . . . . . . 154 5.4.2 Probabilitydensityforp . . . . . . . . . . . . . . . . . . 154 5.4.3 Bayesianargumentforp-values . . . . . . . . . . . . . . 156 5.5 Theχ2 teststatistic . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.5.1 χ2 forGaussdistributeddata . . . . . . . . . . . . . . . . 158 5.5.2 Alternatederivation . . . . . . . . . . . . . . . . . . . . . 160 5.5.3 Useoftheχ2 distribution . . . . . . . . . . . . . . . . . . 160 5.5.4 General case for linear dependence on parameters and fixedGaussianuncertainties . . . . . . . . . . . . . . . . 164 5.5.5 Parameteruncertaintiesforthelinearmodel . . . . . . . . 168 10 CONTENTS 5.5.6 χ2 distributionafterfittingparameters . . . . . . . . . . . 169 5.5.7 χ2 forPoissondistributeddata . . . . . . . . . . . . . . . 171 5.5.8 Generalχ2 AnalysisforGaussdistributeddata . . . . . . 172 5.5.9 χ2 forBayesianandFrequentistAnalysis . . . . . . . . . 173 5.6 MaximumLikelihoodanalysis . . . . . . . . . . . . . . . . . . . 174 5.6.1 Parameteruncertaintiesinlikelihoodanalysis . . . . . . . 175 5.6.2 Likelihoodratioasteststatistic . . . . . . . . . . . . . . . 178 5.6.3 LikelihoodratioforPoissondistributeddata . . . . . . . . 181 5.7 ModelSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 5.7.1 Fisher’ssignificancetesting . . . . . . . . . . . . . . . . 184 5.7.2 Neyman-Pearsonhypothesistesting . . . . . . . . . . . . 184 5.7.3 Bayesianposteriorprobabilitytest . . . . . . . . . . . . . 185 5.8 Testofp-valuedefinitions,fromBeaujeanetal. . . . . . . . . . . 185 5.8.1 DatawithGaussianuncertainties . . . . . . . . . . . . . . 186 5.8.2 ExamplewithPoissonuncertainties . . . . . . . . . . . . 188 5.8.3 ExponentialDecay . . . . . . . . . . . . . . . . . . . . . 194

Description:
of four of these symptoms ? (From R.Barlow) Ritu Aggarwal and Allen Caldwell, Error bars for distributions of numbers of events, The European
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.